
 

1 
 

Optimization of truss industrial sheds with sloping and arched roofs 

using the force method and a meta-heuristic algorithm 

Ali Kaveh* and Neda Khavaninzadeh 

School of Civil Engineering, Iran University of Science and Technology, PO Box 16846-13114, 

Iran 

alikaveh@iust.ac.ir (corresponding author) 

Abstract 

Due to technological advances, efficient structural systems are increasingly required 

in modern industries. Many industrial buildings, such as warehouses, hangars, fire 

stations, and sports halls, are designed with large spans and non-flat roofs, often 

sloped or curved. This paper presents a comparative optimal design of steel truss 

sheds with two roof types (sloping and curved) and two column types (rectangular 

and circular). The Enhanced Colliding Body Optimization (ECBO) algorithm is 

employed, offering a balanced mechanism of exploration and exploitation, which 

improves efficiency compared to algorithms like PSO and GA. The design process 

follows AISC specifications, considering stress, displacement, and slenderness 

limitations. Structural members are modeled with discrete cross-sectional variables, 

and the trusses are analyzed under dead, live, snow, wind, and earthquake loads. 

Results indicate that the truss with a sloping roof and rectangular columns achieved 

the minimum weight while maintaining uniform stress distribution. This 

configuration demonstrated superior structural performance regarding strength and 

serviceability, highlighting its suitability for industrial applications. Overall, the 

findings emphasize the role of optimization methods in enhancing structural 

efficiency and provide guidance for the practical design of lightweight and resilient 

steel sheds. 
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1. Introduction 

In today's world, with the advancement of technology and science, the need for 

modern and efficient structures in various industries is required. The use of truss 

structures is known as one of the main methods in the design and construction of 

industrial structures and has become the first choice of engineers and architects due 

to their special features, such as lightness, strength and flexible design. After World 

War II, the need for rebuilding infrastructure led countries toward using modern 

construction methods. In this regard, truss structures have played a special role in 

industrial buildings by reducing construction costs, increasing implementation 

speed, and optimizing material usage [1]. Pitched roof frames are constructed in 

various types such as gable frames, saw tooth frames, and mono slope frames, T-

shape frames, lean-to frames, and domed frames [2]. Achieving maximum efficiency 

and reducing costs in the design and construction of industrial truss structures are 

the key challenge. Accurate analysis and optimization can serve as crucial strategies 

to address this. Gradient-based and stochastic optimization techniques have been 

widely used in the optimal design of structural systems [3–9]. Since the 1960s, 

considerable research has focused on minimizing the weight of structures through 

nonlinear mathematical programming [10–13]. Over the past two decades, 

metaheuristic algorithms have been widely applied in optimizing 2D and 3D 

structures, including trusses and frames [14–17]. Although much research has 

focused on frame structures, limited studies exist on the optimal design of truss sheds 

with inclined or non-prismatic members [18]. Several types of truss sheds are shown 

in Fig. 1. Given the significant effect of structure weight on project costs potentially 

up to 30–40% accurate design of trusses is essential. The force method is a classical 
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technique based on satisfying equilibrium first, followed by compatibility. Recent 

developments have enabled graph-theoretical approaches for analyzing both planar 

and space structures using this method [19-21]. 

Algebraic methods have been developed and extended by Denke [22], Robinson and 

Haggenmacher [23], Topçu [24], Kaneko et al. [25], Soyer and Topçu [26] and 

Kaveh and Shabani [27]. Mixed algebraic-topological methods have been performed 

by Gilbert and Heath [28], Coleman and Pothen [29, 30], and Pothen [31]. 

Simultaneous analysis and design can be found the work of Kaveh and Rahami [32] 

and Kaveh and Bijari [33]. 

Due to the limited number of studies focusing on truss sheds with non-prismatic 

members, here the effectiveness of graph-theoretic force method is integrated with 

a metaheuristic algorithm known as the ECBO. 

After this introduction, Section 2 provides the force method using the associated 

graph of the model. Section 3 presents the ECBO algorithm, including the objective 

function and constraints. Section 4 outlines the structural loading conditions, while 

Section 5 provides the design examples. Finally, Section 6 concludes the present 

study. 

  

2. Methodology 

2.1 Force Method of Structural Analysis 

The force method, also known as the flexibility method, is an analytical approach 

for evaluating the internal forces of structures. In contrast to the stiffness method, 

which directly solves for displacements, the force method treats selected redundants 
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as unknowns. These are determined by enforcing compatibility conditions that 

ensure consistent displacements in the structure. 

The basic steps include: 

- Reducing the structure to a statically determinate system by removing the 

constraints corresponding to the selected redundants. 

- Writing compatibility equations relating displacements due to the applied loads and 

redundants. 

- Solving these equations to compute the redundant forces. 

- Evaluating internal forces and displacements using superposition. 

The use of this method is efficient for structures with a lower degree of static 

indeterminacy compared to the degree of kinematical indeterminacy, and offers 

computational advantages, especially when utilized in optimal design, where the 

analysis should be performed thousands of times. 

2.2 Graph-Theoretic Formulation 

In this study, a graph-theoretic approach is employed to construct the required 

matrices B0, B1, and matrix G. This is carried out via the associate graphs of the 

geometry of the planar trusses [34]. 

2.2.1 Associate Graph Formation 

Given a truss structure S, the associate graph A(S) of its truss model S is formed by 

representing each triangular panel as a node in A(S). Two nodes are connected if 

their corresponding panels share a common edge [35]. This representation helps to 

identify a generalized cycle basis (GCB), which supports the formation of self-
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equilibrating stress systems (SESs). As an example, consider a planar truss as shown 

in Figure 2 supported in a statically determinate fashion. 

2.2.2 Cycle Basis Selection 

The associate graph A(S) is utilized for the formation of a cycles basis. These 

cycles are then used to construct a statical basis for the formation of an efficient B1, 

which is crucial in applying the force method. 

2.3 Formulation of the Optimization Problem 

In this optimization process, the purpose is to minimize the weight of the steel used, 

while satisfying the member tension and slenderness constraints. Apart from the 

stress, there are other constraints that must be considered using the design code. This 

process is computationally expensive, in particular for large structures, when no 

analytical method can be used directly. However, when the existing structural 

profiles are limited to a specific discrete list, which significantly increases the 

complexity of the discrete optimization problems. For this purpose, the problem has 

been specialized with discrete variables, i.e. the cross-section number of the truss 

members, and programmed using MATLAB environment. The continuous values 

which may appear during the execution are rounded to correct variables and decoded 

before analyzing the structure. 

2.3.1 Design Variables 

The vector of design variables for a structure with member groups is given according 

to Eq. (1): 

, 1,2,..., (1)iX x i m                                                                                                   
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The design variables are the discrete cross-sectional area indices of truss members. 

Each xi corresponds to a standard profile selected from a predefined list based on 

design codes. 

2.3.2 Objective Function 

The objective is to minimize the total weight 𝑤 of the structure.The weight 

optimization is formulated with the aid of Eq. (2) using the density. 

( ) ( ) (2)Min w x L A x    

2.3.3 Constraints 

The optimization is subject to the following constraints Eq. (3): 

min max

( ) 0
. . (3)

j

i i i

g x
S t

x x x




 
 

The functions containing the limits of stresses and the allowable slenderness are as 

the Eq. (4) and Eq. (5): 

1 0 1,2,..., (4)
( )

k k

d

k allowable

g k N




   

 

1 0 1,2,..., (5)
( )

k k

d

k allowable

g k N




   

 

 is member tension, , dN  being the number of members, and   is member 

slenderness. 

3. Optimization Algorithms, ECBO  

In the field of optimization, there are various metaheuristic algorithms, each offering 

its own superiors to solve different optimization problems. In another study, we used 

four important algorithms including Particle Swarm Optimization (PSO), Genetic 
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Algorithm (GA), colliding Body Optimization (CBO), and Enhanced colliding Body 

Optimization (ECBO) to optimize our objective function, which was the mean 

square error. According to the conclusions of the analysis and as shown in Figure 3, 

it was found that the ECBO algorithm shows better convergence performance than 

the other three algorithms. Therefore, in this research, due to this superiority, the 

ECBO algorithm was chosen as the main optimization method. 

Colliding Bodies Optimization (CBO) has been developed by Kaveh and Mahdavi 

[36], and it is improved by Kaveh and Ilchi Ghazaan [37] as the Enhanced Colliding 

Bodies Optimization (ECBO) using a memory to save the number of historically 

best CBs. ECBO  and also utilizes a mechanism to escape from local optima. 

The initial positions of all the CBs in an n-dimensional space are randomly 

determined as Eq. (6): 

0 ( ) 1,2,..., (6)k MIN MAX MINx x rand x X k n      

Every colliding object has a momentum as Eq. (7): 

1

1

( )
1, 2,..., (7)

1

( )

k n

k

func k
Mass k n

func k

 


 

In order to choose the objects, these are sorted in descending order and divided into 

2 equal groups; a “Stationary objects” and “Moving objects”. 

Thus the objects move to a better position. For all the objects prior the moving and 

collision, the speed is taken ( )V i .Eq. (8) and Eq. (9) show this. 

0, 1,2,..., (8)
2

k

n
V k   
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2

, 1, 2,..., (9)
2 2

k n k
k

n n
V x x k n


      

The velocity of the static and moving objects are as Eq. (10) and Eq. (11) after 

collision: 

2 2 2

2

( )

1,2,..., (10)
2

n n n
k k k

k

k n
k

Mass Mass V
n

V k
Mass Mass


  





  
  

2

2

( )

1, 2,..., (11)
2 2

k n k
k

k

k n
k

Mass Mass V
n n

V k n
Mass Mass








    
  

1 (12)
Max

iter

iter
  

 

The new position of objects is given by Eq. (13) and Eq. (14) 

1,2,..., (13)
2

new

k k k

n
x x random V k

   
 

2

1, 2,..., (14)
2 2

new

k n k
k

n n
x x random V k n



     
 

The parameter  Pr o  is chosen from the interval (0, 1) that specifies if a component 

of CB should be altered or not. For each colliding object, Pr o  is compared to  irn  . 

irn  , a random number uniformly distributed between (0, 1). If  Prirn o  , a 

dimension of the 𝑖𝑡ℎ CB is randomly chosen and the corresponding value is taken as 

Eq. (15). 
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,min , ,( ) (15)ij j j MAX j MINx x rand x x     

4. Structural loading 

According to 6th Iranian National Building Code [38], the structure must withstand 

the following combination of loadings, including dead, live, wind, snow, and 

earthquake: 

1.4D  

1.2 1.6 0.5( )rD L L or S   

 1.2 1.6( ) 0.5(1.6 )rD L or S L or W   

1.2 1.6 0.5( )rD W L L or S    

1.2 0.2D E L S    

0.9 1.6D W  

0.9D E  

where D, E, W, L, S are dead, earthquake, wind, live, snow loads, respectively. 

𝐿𝑟  means  L, where L is roof live load. 

The dead loads 

In order to consider the dead and lateral loads, the roof type is considered as a metal 

sandwich panel with a mass of 14.65 kg/m2. This load includes the purlins on the 

roof and there is no false ceiling. The collateral load is assumed to be zero. The 

information about the dead load is given in Table 1. 

The live loads 
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According to 6th edition of the Iranian National Building Code [38], the live load 

for a lightweight roof is 50.98 kg/m2 and there is no concentrated load for it. It is 

also assumed that the live load cannot be reduced. The live load information is 

illustrated in Table 2. 

The snow load 

Snow load is one of the types of environmental loads acting on a building. When it 

snows, snowflakes accumulate on the roof. The accumulation of snowflakes 

increases the weight of the mass and exerts downward vertical pressure on the roof 

of the building. For sloping roofs, balanced and unbalanced loading is performed as 

shown in Figure 4. 

The flat roof snow load, rP , is evaluated by using the following Eq. (16) : 

(16)r s n h s sP I C C C P  

Where nC is the snow removal coefficient, hC is the temperature condition 

coefficient, sC is the slope coefficient, sP  is the base snow load, and sI  is the snow 

load importance coefficient according to the 6th edition of the Iranian National 

Building Code [28]. To obtain the unbalanced snow load,  and dh  are obtained as 

follows Eq. (17) and Eq. (18): 

0.43 2.2 (17)sP    

3 40.12 100 50 0.5 (18)d u sh l P    

So: 0.96 , 0.3468, 2.845r dP h     

For arched roofs, balanced and unbalanced loading is performed as shown in Figure 

5. 
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The seismic load 

The seismic base shear, uV  is determined using the following Eq. (19): 

(19)uV CW  

Where C and W are the seismic response coefficient and the effective seismic 

weight, respectively. The coefficient, C , is evaluated as Eq. (20) 

(20)
u

ABI
C

R
  

Where  A  is the design basis acceleration, B  is the building reflection coefficient, 

I  is the building importance coefficient, and  uR  is the building behavior 

coefficient. 

Since the location of this study is Tehran, Iran, the above values are obtained from 

the standard No. 2800, 4th edition [39]. 

The wind loads 

For calculating the wind load, for a low rise structure, the wind pressure is obtained 

using Eq. (21) 

(21)w e t g p dP I qC C C C C
 

where q is the base wind pressure taken by Eq. (22) 

20.000613 (22)q V  

Also, wI  is the wind load importance coefficient, eC  is the velocity change effect 

coefficient, tC is the land slope and elevation coefficient, gC is the wind gust effect 

coefficient, pC is the pressure coefficient, and dC  is the wind alignment coefficient. 

These coefficients are obtained from the 6th Iranian National Building Code [38]. 

5. Design examples 

In this study, the analysis and optimal design for four different cases of truss sheds 

have been carried out by the force method using the associate graph method and 
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utilizing the ECBO metaheuristic algorithm. In these four studied examples, the 

height and width of the sheds are taken the same. The truss members are divided into 

16 groups. The list of profiles used for optimization is given in Table 3. The sections 

used are equal in angle and leg. Figure 6 shows the general view and schematic of 

the trusses. 

All four models shared identical geometric configurations, as shown in Table 4 for 

their general geometric characteristics. Two types of supports (one hinged and one 

fixed) are utilized for representing realistic structural conditions. In practice, many 

trusses have a fixed support and a hinged support to enable the transmission of 

horizontal and vertical forces on the one hand and to allow for thermal deformation 

and partial settlements on the other.  

The values of uR  for the different structures in this study have been determined based 

on the design standards for structures under earthquake loads, particularly ASCE 7 

and Eurocode 8. According to these sources, the values of uR  for the seismic design 

of trusses in cases 2 and 4 are 5-6, while for cases 1 and 3, they are 4-5. In this study, 

we considered the uR   values to be 5 for all cases. 

 Regarding the empirical period of vibration of the trusses, there are various methods 

including empirical formulas, numerical modeling, and modal analysis, and in this 

research, we used the empirical formula from Eq. (23). 

.( ) (23)nH
T C

L
  

where T is the period, H  is the height of the truss, L  is the span of the structure, C  

and n  are empirical parameters that can vary depending on the type of structure (for 

steel structures, 0.1 0.15C   and 0.5n   are usually used). 



 

13 
 

Figure 7 illustrates the grouping scheme of truss members for all 4 cases. Also, 

Figure 8 shows the associate graph formed, which is the same for all 4 cases. 

The convergence results with the ECBO algorithm after performing 250 iterations 

and using a population size of 50 for all the studied cases are compared in Figure 9. 

Also the optimal cross section comparison is provided in Table 5. The results 

indicate that the minimum weight was achieved in the second case, i.e. to a shed 

truss with a sloping roof having rectangular columns. The comparison of the results 

generally shows that even with more members in the trusses with rectangular 

columns, they have better results than the conical column cases. In general, it can be 

stated that rectangular columns led to lower optimal values than the conical columns 

in both types of roofs. 

A comparison of the CPU times for performing the optimization is illustrated in 

Figure 10. It is observed that the optimization time in the case with rectangular 

columns is shorter than in the case with conical columns. Figure 11 shows the 

comparison of the best cost values, or the lowest optimal weight values, for each of 

the cases examined.  

The stress analysis of the truss members of the shed in Figure 12 shows that the 

stress of all members is almost less than unity and has an acceptable value. Also, the 

comparison of the maximum stresses of the members is given in Table 6. This 

comparative stress analysis determines the structural efficiency of each truss model 

and helps in selecting the most appropriate configuration in terms of performance 

and optimal material consumption. Case 2 has a lower maximum stress distribution 

and also the stress distribution according to Figure 12 is more uniform in Case 2 than 

other models, which shows that it remains safer under the applied forces and has 

better performance in terms of safety and economy. 
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6. Conclusions 

The comparative analysis of the four studied truss shed configurations revealed 

valuable insights into the structural efficiency associated with different roof shapes 

and column types. While conical columns are often used for architectural and 

aesthetic purposes, the findings of this study indicate that rectangular columns lead 

to lighter structural designs under the same loading conditions. This study presented 

the analysis and optimal design of four steel truss sheds with varying roof shapes 

and column types, employing the force method and a graph-theoretical approach for 

structural analysis, and the Enhanced Colliding Bodies Optimization (ECBO) 

algorithm for design optimization. Two types of roof geometries (arched and sloped) 

and two types of columns (rectangular and conical) were considered to investigate 

their influence on structural performance and optimal weight. The results 

demonstrated that truss sheds with sloping roofs and rectangular columns 

consistently achieved the lowest optimal weights, highlighting their structural 

efficiency and material economy. Despite having more members, configurations 

with rectangular columns outperformed those with conical columns in both roof 

types. Furthermore, the use of the force method, combined with the associate graph 

formulation, resulted in efficient structural analysis with reduced computational 

effort, particularly advantageous for repetitive analyses in optimization loops. Stress 

distributions across the optimized trusses were found to be within allowable limits, 

confirming the validity of the design. Among the four cases, the truss with a sloping 

roof and rectangular columns not only had the lightest structure but also exhibited a 

more uniform stress distribution, indicating better performance in terms of strength 

and serviceability. This study highlights the potential of combining graph-theoretical 

formulations with advanced metaheuristic algorithms for the optimal design of 

industrial steel structures. Future research can extend this approach to consider 
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dynamic loads, nonlinear material behavior, multi-objective optimization (e.g., cost 

vs. weight), or real-world constraints such as fabrication limits and environmental 

factors. 
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Fig. 1. Different types of truss sheds 
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(a) The graph model of a planar truss S 

 

 

                           (b) Associate graph of S                  (c) The elements of a GCB of S 

Fig. 2. Planar truss S, its associate graph, and the corresponding GCB elements 
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Fig. 3. Comparison of the convergence performance of four different algorithms in mean square error 

 

Fig. 4. A balanced and unbalanced loading for sloping roofs, 
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Fig. 5. A balanced and unbalanced loading for arched roofs, 

 

 

Table1. Summary of the dead loading 

Dead load kg/m2 14.64 

Loading per (m) 6 

Uniform dead load (𝑘𝑔/𝑚) 87.84 

 

Table2. Summary of the live loading 

Live load (𝑘𝑔/𝑚2) 50.98 

Loading per (m) 6 

Uniform live load (𝑘𝑔/𝑚) 305.88 

 

Table 3. List of the available profile for truss models 

Prf. 

ID 

Prf. 

Name 

Area 

(cm2) 

Prf . 

ID 

Prf. 

Name 

Area 

(cm2) 

Prf. 

ID 

Prf. 

Name 

Area 

(cm2) 

Prf. 

ID 

Prf. 

Name 

Area 

(cm2) 

1 20x3 1.12 24 50x7 6.56 47 75x10 14.1 70 120x13 29.7 

2 20x4 1.45 25 50x8 7.41 48 75x12 16.7 71 120x15 33.9 

3 25x3 1.42 26 50x9 8.24 49 80x7 10.8 72 130x12 30 

4 25x4 1.85 27 55x5 5.32 50 80x8 12.3 73 130x14 34.7 

5 25x5 2.26 28 55x6 6.31 51 80x10 15.1 74 130x16 39.3 

6 30x3 1.74 29 55x8 8.23 52 80x12 17.9 75 140x13 35 

7 30x4 2.27 30 55x10 10.1 53 80x14 20.6 76 140x15 40 

8 30x5 2.78 31 60x5 5.82 54 90x8 13.9 77 150x12 34.8 
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9 35x3 2.04 32 60x6 6.91 55 90x9 15.5 78 150x14 40.3 

10 35x4 2.67 33 60x8 9.03 56 90x11 18.7 79 150x15 43 

11 35x5 3.28 34 60x10 11.1 57 90x13 21.8 80 150x16 45.7 

12 35x6 3.87 35 65x6 7.53 58 90x16 26.4 81 150x18 51 

13 40x3 2.35 36 65x7 8.7 59 100x8 15.5 82 150x20 56.3 

14 40x4 3.08 37 65x8 9.85 60 100x10 19.2 83 160x15 46.1 

15 40x5 3.79 38 65x9 11 61 100x12 22.7 84 160x17 51.8 

16 40x6 4.48 39 65x11 13.2 62 100x14 26.2 85 160x19 57.5 

17 45x4 3.49 40 70x6 8.13 63 100x16 29.6 86 180x16 55.4 

18 45x5 4.3 41 70x7 9.4 64 100x20 36.2 87 180x18 61.9 

19 45x6 5.09 42 70x9 11.9 65 110x10 21.2 88 180x20 68.4 

20 45x7 5.86 43 70x11 14.3 66 110x12 25.1 89 180x22 74.7 

21 50x4 3.89 44 75x6 8.75 67 110x14 29 90 200x16 61.8 

22 50x5 4.8 45 75x7 10.1 68 120x11 25.4 91 200x18 69.1 

23 50x6 5.69 46 L75x8 11.5 69 120x12 27.5 92 200x20 76.4 

 

 

 

Fig. 6. General view and schematic of the trusses 
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Table 4. The geometrical information of building shape 

Eave height 6 m 

Crown height 7.5 m 

Width 16 m 

Length 18 m 

Bay spanning 3@ 6 m 

 

Fig. 7. Geometry and member grouping 
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Fig. 8. The associate graph of the considered sheds truss 

 

 

 

 

 

 

 

 

 



 

26 
 

 

 

 

Fig. 9.The convergence diagrams of the ECBO 
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Table 5.  Results of the optimization with 250 iterations 

Group number 

of  Element 

Case 4 

Profile ID 

Case 3 

Profile ID 

Case 2 

Profile ID 

Case 1 

Profile ID 

1 71 68 65 50 

2 86 34 29 60 

3 91 49 17 54 

4 87 70 79 75 

5 54 48 65 54 

6 41 44 38 49 

7 51 31 33 45 

8 23 29 40 29 

9 65 87 65 90 

10 59 70 83 71 

11 54 61 87 65 

12 41 75 88 71 

13 54 83 88 84 

14 59 80 90 86 

15 83 74 71 78 

16 70 50 81 66 

Best weight (kg) 327880 356220 300080 485410 

Average weight 

(kg) 

1448611 3126832 1957834 

2058739 

Std (kg) 5147709 8101679 6212349 4601257 

 



 

28 
 

 

Fig.10. Comparison of the optimization time 

 

 

 

 

 

 

Fig.11. Comparison of the best costs  
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Fig. 12. The stress values of the shed truss members in optimal design 

Table 6. Comparison of Maximum Member Stresses 

 Case1 Case2 Case3 Case4 

Max stress 1.0064 0.9684 0.9987 1.0808 

 


