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Abstract 

Epilepsy is a critical neurological disorder affecting millions worldwide, requiring accurate and timely 

detection to prevent life-threatening complications. Clinical devices achieve high accuracy in seizure 

detection, ensuring reliable medical monitoring. However, the demand for wearable devices 

necessitates lightweight, low-power, real-time solutions. Wearable EEG-based seizure detection 

requires efficient signal encoding to optimize power consumption while maintaining classification 

accuracy and computational efficiency. In this study, we hypothesize that applying Linear Predictive 

Coding over long EEG segments provides a computationally efficient approach suitable for wearable 

applications. To evaluate this, EEG signals were analyzed using Linear Predictive Coding, Discrete 

Wavelet Transform, and Power Spectral Density-based features, and classified using Multilayer 

Perceptron, Random Forest, and Support Vector Machines. Among the tested combinations, the Linear 

Predictive Coding and Random Forest model achieved the best energy efficiency with an average 

consumption of 2.73 microjoules per percent and classification accuracy of 93.18%. One-way analysis 

of variance showed no significant accuracy difference among feature extraction methods (p = 0.856) 

but revealed a significant difference in energy efficiency (p = 1.93 × 10⁻⁷⁵). These findings demonstrate 

that Linear Predictive Coding is a promising technique for wearable seizure detection, offering a 

balance between accuracy and energy efficiency for next-generation medical applications. 
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1. Introduction 

Epilepsy is a neurological disorder characterized by recurrent seizures caused by abnormal 

electrical activity in the brain's neurons. Affecting more than 70 million people worldwide, this 

condition significantly reduces individuals' quality of life. Due to the unpredictable nature of epilepsy, 

patients experience considerable social, psychological, and physical challenges. Sudden seizures restrict 

daily activities and may lead to hazardous situations. Therefore, accurate and timely diagnosis of 

epilepsy is crucial to minimizing its impact [1, 2, 3]. 

Traditionally, electroencephalography (EEG) recordings are used for the diagnosis of epilepsy. In 

clinical settings, EEG-based systems are commonly employed for detecting epileptic seizures, and these 

methods achieve high accuracy rates. However, due to the limitations of clinical environments, 

continuous monitoring of patients is not feasible [4, 5]. At this point, wearable EEG devices offer a 

promising alternative for epilepsy patients. These devices can automate seizure detection by collecting 

EEG data while patients continue their daily activities. However, for wearable devices to continuously 

record data, they must have low power consumption, minimized computational load, and efficient 

memory usage. Therefore, the algorithms used for epileptic seizure detection must be energy-efficient 

and computationally optimized. 

Various methods have been employed in literature for automatic epileptic seizure detection. 

Traditional signal processing techniques, such as Time-Frequency Analysis [6, 7, 8, 9], Discrete 

Wavelet Transform (DWT) [10, 11, 12], and Principal Component Analysis (PCA) [13, 14, 15], are 

widely used. Additionally, different machine learning and deep learning models, particularly 

Autoencoders (AE) [16,17,18] and Convolutional Neural Networks (CNNs) [19, 20], have achieved 

significant success in analyzing EEG signals. However, these models often require high computational 

power and consume considerable energy, necessitating substantial optimization for real-time 

implementation on portable devices. For instance, Sopic et al.'s e-Glass system achieved 93.8% 

accuracy using the Physionet CHB-MIT dataset but had a limited battery life of only 2,71 days [21]. 



 

 

Yu et al. attempted to enhance epilepsy detection by integrating ECG and BVP with EEG, achieving 

83.9% sensitivity [22]. However, their study did not incorporate any energy consumption optimizations. 

Widely used seizure detection methods lack sufficient energy efficiency optimization. Traditional 

methods such as Discrete Wavelet Transform (DWT) and Principal Component Analysis (PCA) may 

lead to loss of information, while deep learning-based approaches require high energy consumption. 

Huang and Sun proposed an Autoencoder (AE)-based feature extraction method for EEG signals, 

achieving an accuracy of 97% compared to PCA [23]. However, AE-based approaches have 

disadvantages in terms of computational cost and energy consumption. 

Linear Predictive Coding (LPC) is rarely studied for epilepsy detection but offers high 

computational efficiency, making it promising for portable devices. Tran et al. achieved 94% accuracy 

using LPC-based EEG features [24], while Jeppesen et al. (2021) combined LPC with HRV analysis 

for seizure detection [25]. However, these studies used small datasets, and LPC’s real-time applicability 

to wearable devices remains underexplored. 

In this study, we hypothesize that applying Linear Predictive Coding (LPC) over an extended time 

window of 2048 samples (~11.8 seconds) instead of short windows (10-25 ms) improves energy 

efficiency. We anticipate that this approach reduces computational complexity while maintaining high 

classification accuracy, making it highly suitable for wearable EEG devices. 

Also, we propose the most energy-efficient approach for epileptic seizure detection by comparing 

different feature extraction methods, including Linear Predictive Coding (LPC), Discrete Wavelet 

Transform (DWT) and Power Spectral Density Features (PSDF) based approach. A review of the 

literature reveals that most studies focus primarily on deep learning-based methods while failing to 

adequately address energy efficiency for wearable devices. In this context, our study contributes 

significantly to the development of energy-efficient and high-accuracy epileptic seizure detection 

systems for wearable EEG devices. 



 

 

In this context, we aim to investigate the energy efficiency and classification performance of various 

feature extraction techniques for epileptic seizure detection, including Linear Predictive Coding (LPC), 

Discrete Wavelet Transform (DWT), and Power Spectral Density-based Features (PSDF). The study 

further evaluates the compatibility of these methods with common classifiers such as Multi-Layer 

Perceptron (MLP), Random Forest (RF), and Support Vector Machines (SVM), emphasizing their 

suitability for resource-constrained, wearable applications. 

The proposed methodology is expected to contribute to the development of energy-efficient and high-

performance seizure detection algorithms for wearable EEG systems. By focusing on computational 

efficiency, memory usage, and accuracy, this research aims to provide a foundation for optimizing 

portable and real-time neurological monitoring technologies. 

2. Materials and Methods 

2.1 EEG datasets 

The general information about the EEG datasets from the Epileptology Department of Bonn 

University used in the study is provided in Table 1, while the statistical information is given in Table 2 

[26]. 

2.1.1 Dataset splitting 

In this study, EEG datasets provided by the Epileptology Department of the University of Bonn, 

whose characteristics are presented in Table 1, were used. The original datasets consist of five different 

classes (A, B, C, D, E), each containing 100 EEG signals. These signals were recorded at a sampling 

frequency of 173.61 Hz, with each signal comprising 4096 samples. However, in our study, the signals 

were split into two equal segments, resulting in 200 signals of 2048 samples each.  

The primary motivation for this segmentation process is to expand the dataset and enhance the 

model's generalization capability. Machine learning models require a sufficient amount of training data 

to be effectively trained. Since the number of signals in the original dataset is limited to 100, splitting 

them into two segments increases the dataset to 200 signals, allowing the model to learn from a larger 



 

 

number of examples. This helps the model better capture different variations and improves its 

generalization ability [27]. 

Since EEG signals contain time-varying frequency components, analyzing them within shorter 

time windows can provide valuable insights. In signals with a length of 4096 samples, distinguishing 

time-dependent frequency components can be challenging. However, by segmenting the signals into 

2048-sample segments, temporal variations can be better captured. This, in turn, enables a more 

accurate analysis of time-dependent features. 

[Table 1 here] 

Large datasets help prevent overfitting, enabling the model to achieve better generalization. A 

limited number of signals in the existing dataset may cause the model to memorize specific examples 

rather than learn general patterns. Segmenting the signals increases data diversity, allowing the model 

to learn a broader range of patterns and make more accurate predictions on new data. The analysis of 

critical frequency components is essential in epilepsy diagnosis. Shorter signal segments facilitate the 

examination of transient epileptic activities, enabling a more precise assessment of seizure onset and 

progression. 

[Table 2 here] 

Additionally, shorter signals enhance computational efficiency for intensive signal processing 

techniques such as spectral analysis, wavelet transformation, and other time-frequency methods. 

Performing analysis on 2048 samples instead of 4096 reduces processing time, making it more practical 

to work with large datasets. Fig. 1 shows the amplitude-sample value representation of the signal 

obtained by averaging the signals from sets A, B, C, D, and E. 

Although the recording modalities of healthy and epileptic subjects differ (extracranial vs. intracranial), 

this dataset has been widely used in the literature as a benchmark for seizure detection tasks. Therefore, 

it provides a valuable standardized framework for evaluating classification and energy efficiency 

performance across heterogeneous conditions. 



 

 

[Figure 1 here] 

2.2 Feature vector extraction techniques 

In the presented study, various feature extraction methods such as LPC, DWT and PSDF were 

employed. These techniques were selected with particular consideration given to computational time 

and memory consumption. Each method is inherently capable of being optimized to achieve higher 

accuracy. However, they were chosen based on configurations that meet the minimum computational 

time and memory requirements. Detailed information regarding the employed techniques and the 

extracted features is provided below. 

2.2.1 Linear predictive coding (LPC) based features 

LPC is a method based on predicting future samples of a signal as a weighted sum of previous 

samples. LPC is widely used, particularly in time series analysis and speech processing applications 

[28]. The residual error represents the difference between the predicted signal and the actual signal, and 

it is referred to as the modeling error. The LPC coefficients are defined by Eq. 1. 
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Here; X(n): Existing signal example, ai: LPC coefficients, p: Degree of the model (In this study, it was 

chosen as 10), e(n): Residual error (modeling error), The Residual error average is calculated with Eq. 

2. 
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In our study, 10th-order LPC coefficients were calculated from 2048-sample EEG signals. The 

feature vector consists of a total of 11 features, including the 10 LPC coefficients and the average of 

the modeling error. Unlike conventional applications where LPC is applied to short segments (typically 

10-25 ms), we apply LPC to an entire 2048-sample segment (~11.8 s). This allows for reduced 

computational overhead and energy consumption while still capturing key signal characteristics. 



 

 

2.2.2 Discrete wavelet transform (DWT) based features 

DWT allows for time-frequency analysis by decomposing a signal into different frequency bands 

[29]. In this study, the signal was decomposed into four levels using the Daubechies 4 (db4) wavelet. 

The signal components separated in the DWT process are expressed by Eq. 3. 

  4 4 3 2 1X t A D D D D      (3) 

Here; A4: The approximate coefficient at level 4 and D4, D3, D2, D1: The detail coefficients. 

In our study, the D4, D3, D2, D1, and A4 coefficients were extracted using DWT. Four statistical 

features (mean, standard deviation, skewness, and kurtosis) were computed for each component, 

resulting in a feature vector consisting of a total of 20 features. 

2.2.3 Power spectral density (PSD) based features 

In our study, the Welch method is used to calculate the Power Spectral Density (PSD) [30]. 

However, to minimize processing time, only the most discriminative spectral features have been 

extracted. It is possible to add other features, but it should be noted that this would increase memory 

consumption and processing time [31]. 

In PSD based feature (PSDF) extraction; D1: Total spectral power (the total power of all frequency 

bands), D2: Spectral entropy (measurement of the irregularity of frequency components), D3: Spectral 

bandwidth (distribution of power density), D4: Spectral skewness (shows the change in trend, which 

may help detect seizure onset), D5: Peak frequency (the frequency component with the highest power), 

D6: Delta band power (0.5-4 Hz), D7: Theta band power (4-8 Hz), D8: Beta band power (13-30 Hz). The 

specified features D1, D2, D3, D4, D5, D6, D7 and D8 form the feature vector in the PSDF extraction 

approach. 

2.3 Classification methods and classification performance evaluation 

In the classification stage, three different classifiers were utilized: RF, SVM and MLP. RF is a 

tree-based learning method composed of multiple decision trees, which not only achieves high accuracy 



 

 

but also effectively reduces the risk of overfitting [32]. This characteristic enhances the generalizability 

and stability of the model, thereby improving energy efficiency in the classification process by avoiding 

unnecessary computations and yielding faster and more efficient results. Additionally, RF has the 

capability to effectively distinguish between classes, enabling accurate classification of complex signal 

data while contributing to energy savings. 

SVM is a classifier that aims to find the maximum margin between classes, often delivering high 

accuracy rates. It is particularly effective in nonlinear classification problems, making it well-suited for 

the classification of high-dimensional and complex signal data [33]. From an energy efficiency 

perspective, SVM’s ability to achieve high accuracy in nonlinear data enables obtaining correct results 

with a smaller number of samples and shorter computation times. This reduces computational power 

requirements, thereby enhancing energy efficiency. 

MLP is a neural network-based classifier that leverages deep learning methodologies to learn 

complex relationships [34]. It has the potential to achieve high accuracy when working with large 

datasets and is particularly effective in tasks such as epileptic seizure detection. Although MLP typically 

requires substantial computational power during the training process, energy efficiency can be 

improved through optimized network architectures and low-resolution modeling techniques. This 

allows for achieving high performance while consuming less energy. 

These three classifiers offer different classification strategies, contributing to the overall accuracy 

and reliability of the model while also providing significant benefits in terms of energy efficiency. The 

appropriate selection of classifiers helps avoid unnecessary computations, enables faster results, and 

reduces energy consumption, making them highly beneficial for time-critical applications such as 

epileptic seizure detection, where both accuracy and energy efficiency are crucial. 

To evaluate the epileptic seizure detection performance of the model, we used two typical 

classification indicators [35]. These indicators are accuracy and F1-score.  

 



 

 

2.4 Energy efficiency 

In our study, feature vectors were extracted using the LPC, DWT, and PSDF methods, and these 

vectors were tested with 10-fold cross-validation using RF, SVM, and MLP classifiers. The processing 

time consists of the total duration of the feature extraction and classification steps. Energy efficiency is 

used to assess the balance between the accuracy of a method and its computation time [36]. Energy 

efficiency determines the relationship between the energy consumed during processing time and 

accuracy according to the Eq. 4. 
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Here; E: Energy efficiency in Joules, P: Processor power in Watts, T: Total calculation time in seconds, 

: Accuracy rate in 0-1 or %. 

In the presented study, the total time for feature extraction and classification processes was 

recorded to determine energy efficiency, the accuracy rate () of each method was established, and 

energy consumption was calculated based on a processor model operating at 1 GHz and consuming 1 

mW of power. The energy efficiency values obtained for all methods were compared to identify the 

most efficient method. Since energy efficiency is defined as accuracy per unit energy, a lower value 

means higher efficiency. A lower energy efficiency value demonstrates that higher accuracy is achieved 

with less energy consumption. In other words, the smaller the energy efficiency of a method, the more 

efficient and energy-saving it is. 

3. Results and Discussion 

In this study, to evaluate energy efficiency in epileptic seizure detection, feature vectors were 

separately extracted using LPC, DWT, and PSDF methods from the Bonn University EEG datasets. 

These feature vectors were then used to train RF, SVM and MLP classifiers, and their performance was 

assessed using 10-fold cross-validation. The total processing time consisted of three main stages: 



 

 

Feature extraction, classifier training, and testing. The flow diagram of the proposed study is given in 

Fig. 2.  

The feature extraction stage involved processing EEG signals and converting them into the specific 

vector formats defined by each method. In the classification computation phase, the Weka software was 

used to train the classifiers, perform 10-fold cross-validation, and compute accuracy and F1-score 

metrics. All computations were carried out on a laptop computer equipped with an Intel i5-1235U 

processor (1.3 GHz, 10 cores) and 16 GB of RAM. 

Table 3 presents the accuracy (Acc) and F1-score (F1) values for RF, SVM, and MLP classifiers 

trained with feature vectors derived from LPC, DWT and PSDF across 14 different classification tasks. 

Fig. 3 illustrates the graphical representation of these values for both 14-class classification tasks. 

Overall, the RF classifier achieved the highest accuracy and F1-score values across all feature 

groups. Particularly when using PSDF, the RF model obtained the highest success with an average 

accuracy of 95.70%. The MLP model also produced results close to RF and demonstrated strong 

performance, especially with LPC and DWT features. SVM, on the other hand, exhibited lower 

accuracy compared to the other two classifiers. In multi-class classification tasks (e.g., A-B-C-D-E, B-

C-D-E), SVM's accuracy dropped below 70%, whereas RF and MLP maintained relatively high 

accuracy levels. In binary classification tasks (e.g., A-C, B-E, A-E), all classifiers achieved high 

accuracy and F1-scores. Particularly, RF and MLP achieved over 99% accuracy in classifications 

involving seizure-containing classes such as A-E and B-E. While SVM also performed well in these 

tasks, its accuracy fell below 95% in some cases. This indicates that distinguishing seizure-containing 

classes from healthy individuals or non-seizure patients is relatively easier. 

[Figure 2 here] 

However, classifier performance declined in multi-class classification tasks. In cases where all five 

classes (A-B-C-D-E) were included, SVM yielded the lowest accuracy (70.60%), whereas RF achieved 

up to 89.40% accuracy with DWT and PSDF. MLP performed slightly lower than RF in multi-class 

classifications but still produced successful results. This suggests that RF generalizes better in high-



 

 

dimensional and complex datasets. When evaluating feature sets, PSDF generally provided the highest 

accuracy rates. When used with RF, accuracy rates remained above 95% even in multi-class 

classification tasks. DWT features produced results similar to PSDF in some tasks but were generally 

slightly lower with RF. LPC features, on the other hand, exhibited the lowest accuracy, particularly in 

multi-class classification. 

In conclusion, the highest success in epileptic seizure detection was achieved with the RF and 

PSDF combination. However, MLP also performed comparably well in many cases. The SVM model 

was hindered by lower accuracy, especially in multi-class classification problems. These findings 

highlight that RF and PSDF methods form one of the best combinations for seizure detection. 

[Table 3 here] 

A one-way analysis of variance (ANOVA) was conducted to determine whether there were 

significant differences in classification accuracy between the three methods: LPC, DWT, and PSDF. 

The results showed no statistically significant difference among the methods, F(2.120)=0.155, p=0.856. 

Since the p-value is much greater than the conventional threshold of 0.05, we fail to reject the null 

hypothesis, indicating that the accuracy values obtained from LPC, DWT, and PSDF do not 

significantly differ from each other. 

[Figure 3 here] 

Table 4 presents the total processing time and energy efficiency values for RF, SVM, and MLP 

classifiers using feature vectors extracted with LPC, DWT and PSDF across 14 different classification 

tasks. Fig. 4 illustrates the graphical representation of the results for all 14 classification tasks. 

Among the feature extraction methods, LPC demonstrated the lowest energy consumption across 

all classification tasks. The average energy consumption when using LPC based features was 2.73 µJ/% 

for RF, 2.63 µJ/% for SVM, and 2.78 µJ/% for MLP. This efficiency is attributed to the lower 

computational complexity of LPC, as calculating linear predictive coefficients requires fewer 

operations compared to other methods. DWT based features exhibited moderate energy consumption, 



 

 

with average values of 5.39 µJ/% for RF, 6.00 µJ/% for SVM, and 6.11 µJ/% for MLP. Since DWT 

involves time-frequency transformations, it requires more computational resources than LPC, leading 

to an increase in energy consumption. However, its energy consumption remains lower than that of 

PSDF. PSDF resulted in the highest energy consumption among the three methods, with average values 

of 12.45 µJ/% for RF, 13.81 µJ/% for SVM, and 13.13 µJ/% for MLP. The high energy requirement of 

PSDF is due to the additional spectral computations involved in power spectral density estimation, such 

as Fourier transformations and statistical calculations. This increased computational load makes PSDF 

less suitable for low-power wearable and portable systems. 

In terms of classifiers, RF exhibited the lowest energy consumption, with an average of 12.45 µJ/% 

across all tasks. The tree-based structure of RF allows it to make quick decisions in the feature space, 

resulting in efficient computation. On the other hand, SVM had the highest energy consumption, with 

an average of 13.81 µJ/%. This is particularly evident when using DWT and PSDF. The MLP classifier 

consumed less energy than SVM but more than RF, with an average of 13.13 µJ/%.  

[Table 4 here] 

Although the SVM classifier exhibited the shortest computation time among the tested classifiers, 

its overall energy efficiency remained lower due to its relatively poor classification accuracy. Energy 

efficiency is determined not only by computational cost but also by the effectiveness of the 

classification process. Since SVM achieved lower accuracy compared to RF and MLP, the energy spent 

per correctly classified instance was higher, reducing its overall efficiency. This can be attributed to 

SVM’s sensitivity to feature selection and hyperparameter tuning, which may have led to suboptimal 

decision boundaries in this study. Additionally, while SVM benefits from a fast training and inference 

process, its performance tends to decline in complex, high-dimensional classification tasks, particularly 

when dealing with EEG signals that exhibit non-stationary characteristics. In contrast, RF and MLP, 

despite requiring slightly longer computation times, achieved higher accuracy, thereby utilizing their 

energy consumption more effectively. As a result, SVM's lower computational demand did not translate 



 

 

into higher energy efficiency, highlighting the importance of balancing computational cost with 

classification performance in energy-constrained applications. 

The nature of the classification tasks also influences energy consumption. Binary classification 

tasks (such as A-C, A-E, B-D) required lower energy consumption than multi-class classification tasks. 

This is because binary classifications involve simpler decision boundaries, reducing computational 

complexity. In contrast, multi-class classification tasks (such as A-B-C-D-E, B-C-D-E) significantly 

increased energy consumption, especially when PSDF was used. Multi-class problems require the 

classifier to process more complex decision boundaries, increasing the computational burden and 

consequently raising energy consumption. 

[Figure 4 here] 

When considering feature extraction methods, DWT and PSDF significantly increase energy 

consumption, particularly in multi-class classification tasks. PSDF, in particular, requires extensive 

spectral computations, making it the most power-intensive feature extraction method. Therefore, LPC 

or DWT should be preferred in wearable devices where energy efficiency is a priority. In summary, the 

combination of LPC features with the RF classifier provides the highest energy efficiency. For low-

power applications, LPC based features, and RF should be the preferred choice. If PSDF is used to 

improve classification accuracy, the additional energy cost must be considered, and hardware 

optimizations should be implemented to mitigate its impact. 

The statistical analysis conducted using a one-way ANOVA test reveals a significant difference in 

energy efficiency among the three methods: LPC, DWT, and PSDF. The results show an F-statistic of 

947.13 and a p-value of 1.93 × 10⁻⁷⁵, indicating that the observed differences are highly statistically 

significant (p <0.05). Given the extremely low p-value, we reject the null hypothesis and conclude that 

energy efficiency varies significantly among the three methods. 

When evaluating the feature extraction methods LPC, DWT, and PSDF in terms of memory 

consumption, significant differences arise due to the number of extracted features and computational 

complexity. Assuming each feature is stored in 64-bit (8-byte) double precision floating-point format, 



 

 

the total memory requirement varies across methods. The LPC method, which includes 11 features, 

consumes a total of 88 bytes of memory. This is due to the ability of LPC coefficients to summarize the 

spectral characteristics of the signal with a small number of parameters. In contrast, the DWT method, 

which includes 20 features obtained through multi-resolution wavelet decomposition, requires 160 

bytes of memory. While DWT provides a richer feature set by capturing both time and frequency 

domain information, this results in higher memory usage. The PSDF method, on the other hand, 

contains 8 features and has the lowest memory consumption at 64 bytes. However, despite its memory 

efficiency, PSDF is computationally expensive, making it less suitable for low-latency wearable device 

applications. In conclusion, LPC is the most memory-efficient method, DWT requires the most 

memory, and PSDF has the lowest memory consumption but demands the highest computational 

resources. Therefore, when selecting a feature extraction method for wearable systems, a balance must 

be struck between memory, computational efficiency, and classification performance. 

The EEG dataset from the University of Bonn, used in our study, is a highly suitable and 

comprehensive dataset for epileptic seizure detection. One of its greatest advantages is that it is divided 

into five distinct classes: A, B, C, D, and E. These classes cover a wide spectrum ranging from healthy 

individuals to epilepsy patients and include recordings taken during seizures. Alternative datasets often 

contain fewer classes or have lower sampling frequencies. Therefore, the use of the University of Bonn 

EEG dataset provides a significant advantage for seizure detection and comparative analyses. 

Among alternative EEG datasets, notable examples include the CHB-MIT EEG dataset, the TUH 

EEG dataset, and the Epilepsy Ecosystem dataset [37, 38]. The CHB-MIT EEG dataset focuses on 

pediatric epilepsy patients and provides long-term EEG recordings, making it valuable for real-time 

analyses. However, due to its high sampling frequency and large data size, processing requires greater 

computational power, leading to increased energy consumption. The TUH EEG dataset encompasses a 

broad patient population and includes EEG recordings obtained from various electrode systems. While 

this diversity is beneficial for model generalization, the heterogeneity of the dataset can complicate the 

analysis process. The Epilepsy Ecosystem dataset, on the other hand, consists of EEG recordings 

collected from portable EEG devices, making it advantageous for real-time applications. However, its 



 

 

lower sampling frequency and limited patient population may hinder the model's generalizability on a 

larger scale. 

The superiority of the University of Bonn EEG dataset over these alternatives lies in its clean and 

well-structured nature. Working with single-channel averaged EEG signals eliminates variations arising 

from different electrode systems, making model training more consistent. Additionally, since the 

recordings were obtained in a controlled laboratory environment, the noise levels are low, simplifying 

the signal processing pipeline. On the other hand, a limitation of the Bonn dataset is that it does not 

contain long-term EEG recordings like other datasets and represents only a specific patient group. This 

may make it challenging to generalize models for real-time applications or broader patient populations. 

Several factors directly influence the impact of dataset selection on energy efficiency calculations. 

One key factor is the sampling frequency, which determines the energy efficiency of a dataset. Higher 

sampling frequencies generate more data points, increasing processing time and consequently energy 

consumption. However, the University of Bonn EEG dataset has an optimal sampling frequency of 

173.61 Hz, which does not impose an excessive computational burden in terms of energy consumption. 

If an alternative dataset with a higher sampling frequency, such as CHB-MIT (256 Hz. or higher), were 

used, the increased data volume would lead to a significant rise in processing time and energy 

consumption. Conversely, if a dataset with a lower sampling frequency, such as the Epilepsy Ecosystem 

dataset, were chosen, energy consumption might decrease, but accuracy could be compromised. The 

broad scope of the TUH EEG dataset allows for the development of a more diverse model; however, 

its large data size could extend processing time and reduce energy efficiency. 

Thus, the Bonn University EEG dataset offers a balanced trade-off between energy efficiency and 

accuracy. While datasets containing long-term EEG recordings provide more information for epilepsy 

detection, they require higher computational power due to their large data volume. In this context, the 

Bonn EEG dataset has been one of the most suitable choices for our study, thanks to its optimal 

sampling frequency, low noise level, and balanced class structure. 



 

 

The applicability of the methods examined in our study to wearable EEG devices and their impact 

on power consumption is a critical consideration. In a wearable EEG device, signals from EEG 

electrodes would need to be transmitted via Bluetooth to a portable device, such as a smartwatch, for 

analysis. In this context, the computational power and memory requirements of the employed methods 

directly affect battery life. LPC stands out as the most suitable method due to its low computational 

cost and energy efficiency, making it the most efficient option for real-time processing in wearable EEG 

devices. While DWT offers advantages in terms of accuracy, its high computation time and memory 

requirements may increase power consumption. PSDF, due to its high computational demands, can 

rapidly drain the device's battery. 

Although the selected methods have been generally successful, alternative approaches can also be 

considered. Techniques such as Wavelet Packet Decomposition (WPD) can enhance the decomposition 

of EEG signals into different frequency components, potentially improving classification accuracy. 

Empirical Mode Decomposition (EMD), due to its adaptive nature, may better capture the dynamic 

characteristics of EEG signals. Deep learning-based models, particularly Convolutional Neural 

Networks (CNN) and Long Short-Term Memory Networks (LSTM), can be effective for direct 

processing and classification of EEG data. However, these methods are characterized by high 

computational costs and low energy efficiency. Additionally, methods such as Autoencoder and 

Principal Component Analysis (PCA) can also be explored. While Autoencoder is effective for feature 

extraction, it requires significant computational resources and memory, especially when using deep 

models, leading to increased processing time and energy consumption. PCA, as a dimensionality 

reduction technique, can reduce memory usage, but its performance is highly dependent on the dataset 

size and the number of components retained, which may make it inefficient for large EEG datasets. 

Therefore, while the methods selected in this study provide the best balance between accuracy and 

energy efficiency, future research may explore alternative models, such as Autoencoder and PCA, to 

enhance classification performance, keeping in mind the trade-offs in computational and memory 

requirements. 



 

 

In this study, feature vectors extracted using LPC, DWT, and PSDF are utilized with features that 

can be considered standard. For LPC, 10th-order LPC coefficients and residual error are used, while for 

DWT, the detail coefficients D4, D3, D2, D1, along with the A4 coefficient, and statistical features (mean, 

standard deviation, skewness, and kurtosis) are employed. For PSDF, the analysis performed using the 

Welch method resulted in the extraction of the following features: Total Spectral Power, Spectral 

Entropy, Spectral Bandwidth, Spectral Skewness, Peak Frequency, Delta band power (0.5-4 Hz), Theta 

band power (4-8 Hz), and Beta band power (13-30 Hz). Higher-order LPC coefficients, residual error, 

and statistical features could have been included as additional features for LPC. For DWT, different 

statistical features and detail coefficients could have been used, and wavelet decompositions with a 

higher number of decomposition levels could have been considered. For PSDF, a high-resolution power 

spectrum analysis method could have been applied, incorporating additional spectral features in 

frequency or time domains, such as Euclidean distance, Manhattan distance, Kullback-Leibler 

Divergence, Bhattacharyya Distance, and Zero Crossing Rate. All these additions would enhance 

classification accuracy. However, each addition would increase the computation time, and thus the 

accuracy improvement is unlikely to have a positive impact on energy efficiency, and it is highly 

probable that it would have a negative effect instead. 

Additionally, the impact of the new feature vectors on memory consumption is unavoidable. In 

this context, it is essential to consider which types of classification tasks would be critical for wearable 

devices. If the classification focuses solely on binary tasks, such as the detection of epileptic seizure 

events, there will be no need for multi-class classification. In such cases, the methods proposed in this 

study, with the high accuracy values already achieved, would provide sufficient accuracy for wearable 

devices. 

LPC is typically an effective method for modeling signals over short time intervals, such as 25–30 

ms [39, 40, 41, 42]. These short durations are particularly suitable for signals with transient 

characteristics, such as speech signals. However, in our study, LPC was applied to a considerably long 

EEG signal of 11.8 seconds. This approach introduces both advantages and disadvantages. Applying 

LPC to a long-duration signal helps capture the overall structure of the signal and identify broad 



 

 

patterns. In dynamic signals like EEG, capturing long-term characteristics can be beneficial. Instead of 

segmenting the signal into short windows and computing LPC for each, processing a single long 

segment reduces computation time and memory usage. EEG signals predominantly contain low-

frequency components and may exhibit high variability in short-term analyses. Long-term analysis can 

mitigate this variability, leading to a more stable model. The results obtained from our study support 

these observations. 

However, the limitations of LPC must also be considered. EEG signals exhibit temporal variability, 

and applying LPC over a long-duration signal may fail to accurately represent these temporal changes, 

potentially missing dynamic variations within specific time intervals. This can be a drawback, 

particularly for EEG signals with sudden changes, such as seizure onset. Short-term analyses provide 

higher temporal resolution, whereas generating a single LPC model for a long signal may lead to loss 

of detail. This drawback could adversely affect applications requiring high temporal precision, such as 

epileptic seizure detection. 

Performing LPC analysis over shorter time intervals (e.g., 256 or 512 samples) would increase the 

number of processing windows by 8 and 4 times, respectively, significantly extending the overall 

computation time. This approach would require generating a separate model for each segment, leading 

to a substantial increase in computational load and energy consumption. Additionally, since feature 

vectors must be computed for each window separately, memory usage would also rise considerably. 

Therefore, in applications requiring low power consumption, such as portable and wearable EEG 

systems, the computational efficiency and energy savings provided by long-duration LPC analysis offer 

a significant advantage. Our study suggests that this approach can provide a practical and sustainable 

solution for applications such as epileptic seizure detection. 

On the other hand, studies on epileptic seizure detection for clinical systems have reported near 

100% accuracy rates for different classification tasks, using various feature extraction and classification 

techniques [43, 44, 45, 46, 47, 48]. However, these studies have generally focused solely on accuracy 

performance, without considering factors such as processing time, computational cost, and energy 



 

 

efficiency. Aghazadeh et al. (2020) conducted a study that is one of the rare works in the literature 

focusing on energy efficiency [49]. In this study, compressive sensing (CS) and Lomb-Scargle 

periodogram were used for feature extraction, and an energy-efficient United Dual Linear SVM 

(UDLSVM) classifier was proposed. The performance and energy consumption trade-off were 

evaluated for different compression ratios (1–64x) across 24 patients, and hardware optimization was 

performed. However, with accuracy values of 96–93% and energy efficiency of 18.4μJ, it falls 

significantly behind the LPC method. 

Our experimental results confirm the hypothesis that applying LPC to an extended time window 

significantly improves energy efficiency. LPC demonstrated the lowest energy consumption across all 

classification tasks, averaging 2.73 µJ/% for RF, 2.63 µJ/% for SVM, and 2.78 µJ/% for MLP. This 

efficiency is attributed to the reduced number of computations required compared to short-segment 

processing. These finding highlights that applying LPC to long-duration EEG signals effectively 

balance energy efficiency and classification performance, making it an optimal choice for wearable 

seizure detection applications. 

4. Conclusions 

In this study, three different feature extraction methods, LPC, DWT and PSDF were compared in 

terms of energy efficiency, memory consumption and processing time for epileptic seizure detection. 

The Bonn University EEG dataset, with its inclusion of different patient groups and provision of cleaned 

signals, offers advantages; however, the lack of long-duration EEG recordings presents limitations. The 

feature extraction, data preprocessing, and classification processes were evaluated separately, and 

processing time measurements were taken. 

The results strongly support our hypothesis that applying LPC to long EEG segments increases 

energy efficiency while maintaining classification accuracy. Due to its low computational cost, LPC 

stands out as the most suitable method for portable EEG devices and low-power systems. While DWT 

produces successful results in terms of accuracy, it is less energy-efficient than LPC due to its high 



 

 

processing time and memory consumption. PSDF, on the other hand, is limited for portable systems 

due to its high processing time. 

This study’s contribution to the literature lies in its focus not only on accuracy rates but also on 

processing time, memory consumption, and energy efficiency in epileptic seizure detection. 

Considering the battery life and processing capacity of wearable EEG devices, algorithms with low 

energy consumption are critical. In this context, LPC emerges as the most suitable method, while 

methods requiring high computational power, such as DWT and PSDF, need to be integrated with 

cloud-based systems or optimized using hardware acceleration techniques. 

Moreover, our findings confirm our hypothesis and demonstrate that LPC is a promising 

alternative for low-power, real-time epilepsy detection. Future research could focus on developing 

hybrid feature extraction methods and deep learning-based models that further reduce processing time. 

For instance, combining LPC with low-computation methods like PCA could optimize energy 

consumption while increasing accuracy. The selection of the most distinctive features from EEG signals 

using AI-based optimization techniques could make epilepsy detection in portable EEG devices more 

efficient. 

In conclusion, this study contributes to identifying the most energy-efficient feature extraction 

method for epileptic seizure detection. LPC is determined to be the most efficient method, while DWT 

is considered a potential alternative. Future research should focus on methods that further optimize 

processing time and develop low-energy, real-time EEG analysis systems.   

References 

1. Milligan, T. A. “Epilepsy: A Clinical Overview.” The American Journal of Medicine, vol. 134, 

no. 7, pp. 840-847, (2021), https://doi.org/10.1016/j.amjmed.2021.01.038. 

2. Asadi-Pooya, A., Brigo, F., Lattanzi, S., et al. “Adult Epilepsy.” The Lancet, vol. 402, no. 

10399, pp. 412-424, (2023), https://doi.org/10.1016/S0140-6736(23)01048-6. 

https://doi.org/10.1016/j.amjmed.2021.01.038
https://doi.org/10.1016/S0140-6736(23)01048-6


 

 

3. Ahmad, I., Yao, C., Li, L., et al. “An Efficient Feature Selection and Explainable Classification 

Method for EEG-Based Epileptic Seizure Detection.” Journal of Information Security and 

Applications, vol. 80, p. 103654, (2024), https://doi.org/10.1016/j.jisa.2023.103654. 

4. Shoeibi, A., Khodatars, M., Ghassemi, N., et al. “Epileptic Seizures Detection Using Deep 

Learning Techniques: A Review.” International Journal of Environmental Research and 

Public Health, vol. 18, no. 11, pp. 5780, (2021), https://doi.org/10.3390/ijerph18115780. 

5. Siddiqui, M. K., Menendez, R., Huang, X., et al. “A Review of Epileptic Seizure Detection 

Using Machine Learning Classifiers.” Brain Informatics, vol. 7, no. 1, p. 5, (2021), 

https://doi.org/10.1186/s40708-020-00105-1. 

6. Sameer, M., and Gupta, B. “Time–Frequency Statistical Features of Delta Band for Detection 

of Epileptic Seizures.” Wireless Personal Communications, vol. 122, pp. 489-499, (2022), 

https://doi.org/10.1007/s11277-021-08909-y. 

7. Amiri, M., Aghaeinia, H. and Amindavar H. “Automatic Epileptic Seizure Detection in EEG 

Signals Using Sparse Common Spatial Pattern and Adaptive Short-Time Fourier Transform-

Based Synchrosqueezing Transform.” Biomedical Signal Processing and Control, vol. 79, p. 

104022, (2023), https://doi.org/10.1016/j.bspc.2022.104022. 

8. Liu, S., Wang, J., Li, S., et al. “Epileptic Seizure Detection and Prediction in EEGs Using 

Power Spectra Density Parameterization.” IEEE Transactions on Neural Systems and 

Rehabilitation Engineering, vol. 31, pp. 3884-3894, (2023), 

https://doi.org/10.1109/TNSRE.2023.3317093. 

9. Canyurt, C., and Zengin, R., “Epileptic Activity Detection Using Mean Value, RMS, Sample 

Entropy, and Permutation Entropy Methods.” The Journal of Cognitive Systems, vol. 8, no. 1, 

pp. 16-27, (2023), https://doi.org/10.52876/jcs.1226579. 

10. Fıçıcı, C., Telatar, Z. and O. Eroğul. “Automated Temporal Lobe Epilepsy and Psychogenic 

Nonepileptic Seizure Patient Discrimination from Multichannel EEG Recordings Using DWT-

Based Analysis.” Biomedical Signal Processing and Control, vol. 77, p. 103755, (2022), 

https://doi.org/10.1016/j.bspc.2022.103755. 

https://doi.org/10.1016/j.jisa.2023.103654
https://doi.org/10.3390/ijerph18115780
https://doi.org/10.1186/s40708-020-00105-1
https://doi.org/10.1007/s11277-021-08909-y
https://doi.org/10.1016/j.bspc.2022.104022
https://doi.org/10.1109/TNSRE.2023.3317093
https://doi.org/10.52876/jcs.1226579
https://doi.org/10.1016/j.bspc.2022.103755


 

 

11. Rizki, I., Subekti, S., Indriyanto S., et al. “Epileptic Seizure Detection Using DWT Based on 

MRMR Feature Selection Method.” Proceedings of the 2024 International Conference on 

Electrical and Information Technology (IEIT), IEEE, pp. 84-89, (2024), 

https://doi.org/10.1109/IEIT64341.2024.10763220. 

12. Yousefi, M. R., Dehghani, A., Golnejad, S., & Hosseini, M. M. “Comparing EEG-Based 

Epilepsy Diagnosis Using Neural Networks and Wavelet Transform.” Applied Sciences, vol. 

13, no. 18, p. 10412, (2023), https://doi.org/10.3390/app131810412 

13. Zeng, W., Shan, L., Su, B., and Du, S. “Epileptic Seizure Detection with Deep EEG Features 

by Convolutional Neural Network and Shallow Classifiers.” Frontiers in Neuroscience, vol. 

17, p. 1145526, (2023), https://doi.org/10.3389/fnins.2023.1145526. 

14. Bhattacherjee, I. “Real-Time Epileptic Seizure Detection Using Machine Learning 

Techniques.” Proceedings of the 2022 9th International Conference on Computing for 

Sustainable Global Development (INDIACom), IEEE, pp. 1-7, (2022), 

https://doi.org/10.23919/INDIACom54597.2022.9763176. 

15. Sharma, R. and Meena, H. K.  “Enhanced Epileptic Seizure Detection Through Graph Spectral 

Analysis of EEG Signals.” Circuits, Systems, and Signal Processing, vol. 43, no. 8, pp. 5288-

5308, (2024), https://doi.org/10.1007/s00034-024-02715-0. 

16. Hilal, A. M., Albraikan, A. A., Dhahbi, S., et al. “Intelligent Epileptic Seizure Detection and 

Classification Model Using Optimal Deep Canonical Sparse Autoencoder.” Biology, vol. 11, 

no. 8, p. 1220, (2022), https://doi.org/10.3390/biology11081220. 

17. Shoeibi, A., Ghassemi, N., Khodatars, M., et al. “Detection of Epileptic Seizures on EEG 

Signals Using ANFIS Classifier, Autoencoders and Fuzzy Entropies.” Biomedical Signal 

Processing and Control, vol. 73, p. 103417, (2022), 

https://doi.org/10.1016/j.bspc.2021.103417. 

18. Wang, Y., Yuan, S., Liu, J. X., et al. “Combining EEG Features and Convolutional 

Autoencoder for Neonatal Seizure Detection.” International Journal of Neural Systems, vol. 

34, no. 8, p. 2450040, (2024), https://doi.org/10.1142/s0129065724500400. 

https://doi.org/10.1109/IEIT64341.2024.10763220
https://doi.org/10.3390/app131810412
https://doi.org/10.3389/fnins.2023.1145526
https://doi.org/10.23919/INDIACom54597.2022.9763176
https://doi.org/10.1007/s00034-024-02715-0
https://doi.org/10.3390/biology11081220
https://doi.org/10.1016/j.bspc.2021.103417
https://doi.org/10.1142/s0129065724500400


 

 

19. Jiwani, N., Gupta, K., Sharif, M. H. U.,  et al. “A LSTM-CNN Model for Epileptic Seizures 

Detection Using EEG Signal.” Proceedings of the 2022 2nd International Conference on 

Emerging Smart Technologies and Applications (eSmarTA), IEEE, pp. 1-5, (2022), 

https://doi.org/10.1109/eSmarTA56775.2022.9935403. 

20. Sameer, M. and Gupta, B. “CNN-Based Framework for Detection of Epileptic Seizures.” 

Multimedia Tools and Applications, vol. 81, no. 12, pp. 17057-17070, (2022), 

https://doi.org/10.1007/s11042-022-12702-9. 

21. Sopic, D., Aminifar, A. and Atienza, D. “e-glass: A Wearable System for Real-Time Detection 

of Epileptic Seizures.” Proceedings of the IEEE International Symposium on Circuits and 

Systems (ISCAS), IEEE, pp. 1-5, (2018), https://doi.org/10.1109/ISCAS.2018.8351728. 

22. Yu, S., El Atrache, R., Tang, J., et al. “Artificial Intelligence-Enhanced Epileptic Seizure 

Detection by Wearables.” Epilepsia, vol. 64, no. 12, pp. 3213-3226, (2023), 

https://doi.org/10.1111/epi.17774. 

23. Huang, X., Sun, X., Zhang, L.,  et al. “A Novel Epilepsy Detection Method Based on Feature 

Extraction by Deep Autoencoder on EEG Signal.” International Journal of Environmental 

Research and Public Health, vol. 19, no. 22, p. 15110, (2022), 

https://doi.org/10.3390/ijerph192215110. 

24. Tran, L. V., Tran, H. M., Le, T. M.,  et al. “Application of Machine Learning in Epileptic 

Seizure Detection.” Diagnostics, vol. 12, no. 11, p. 2879, (2022), 

https://doi.org/10.3390/diagnostics12112879. 

25. Jeppesen, J., Fuglsang‐Frederiksen, A., Johansen, P., et al. “Seizure Detection Based on Heart 

Rate Variability Using a Wearable Electrocardiography Device.” Epilepsia, vol. 60, no. 10, 

pp. 2105-2113, (2022), https://doi.org/10.1111/epi.16343. 

26. Andrzejak, R. G., Lehnertz, K., Mormann, F., et al. “Indications of Nonlinear Deterministic 

and Finite-Dimensional Structures in Time Series of Brain Electrical Activity: Dependence on 

Recording Region and Brain State.” Physical Review E, vol. 64, no. 6, p. 061907, (2001), 

https://doi.org/10.1103/PhysRevE.64.061907. 

https://doi.org/10.1109/eSmarTA56775.2022.9935403
https://doi.org/10.1007/s11042-022-12702-9
https://doi.org/10.1109/ISCAS.2018.8351728
https://doi.org/10.1111/epi.17774
https://doi.org/10.3390/ijerph192215110
https://doi.org/10.3390/diagnostics12112879
https://doi.org/10.1111/epi.16343
https://doi.org/10.1103/PhysRevE.64.061907


 

 

27. Ikizler, N. and Ekim, G. “Investigating the Effects of Gaussian Noise on Epileptic Seizure 

Detection: The Role of Spectral Flatness, Bandwidth, and Entropy.” Engineering Science and 

Technology, an International Journal, vol. 64, p. 102005, (2025), 

https://doi.org/10.1016/j.jestch.2025.102005. 

28. Spratling, M. W. “A Review of Predictive Coding Algorithms.” Brain and Cognition, vol. 112, 

pp. 92-97, (2017), https://doi.org/10.1016/j.bandc.2015.11.003. 

29. Shah, S. Y., Larijani, H., Gibson, R. M., et al. “Epileptic Seizure Classification Based on 

Random Neural Networks Using Discrete Wavelet Transform for Electroencephalogram 

Signal Decomposition.” Applied Sciences, vol. 14, no. 2, p. 599, (2024), 

https://doi.org/10.3390/app14020599. 

30. Abdullayeva, E. and Örnek, H. K. “Diagnosing Epilepsy from EEG Using Machine Learning 

and Welch Spectral Analysis.” Traitement Du Signal, vol. 41, no. 2, pp. 971-977, (2024), 

https://doi.org/10.18280/ts.410237. 

31. Ikizler, N. and Ekim, G. “High-Resolution Power Spectral Density Approaches for Epileptic 

Seizure Detection.” Politeknik Dergisi, vol. 1, no. 1, (2025), 

https://doi.org/10.2339/politeknik.1605362. 

32. Wijayanto, I., Rizal, S. and Hadiyoso, S. “Epileptic Electroencephalogram Signal 

Classification Using Wavelet Energy and Random Forest.” AIP Conference Proceedings, vol. 

2654, no. 1, AIP Publishing, (2023), https://doi.org/10.1063/5.0116298. 

33. Guido, R., Ferrisi, S., Lofaro D., et al. “An Overview on the Advancements of Support Vector 

Machine Models in Healthcare Applications: A Review.” Information, vol. 15, no. 4, p. 235, 

(2024), https://doi.org/10.3390/info15040235. 

34. Mouleeshuwarapprabu, R. and Kasthuri, N. “Feature Extraction and Classification of EEG 

Signal Using Multilayer Perceptron.” Journal of Electrical Engineering & Technology, vol. 

18, no. 4, pp. 3171-3178, (2023), https://doi.org/10.1007/s42835-023-01508-w. 

35. Naidu, G., Zuva T. and Sibanda, E. M.  “A Review of Evaluation Metrics in Machine Learning 

Algorithms.” Computer Science On-Line Conference, Springer International Publishing, pp. 

15-25, (2023), https://doi.org/10.1007/978-3-031-35314-7_2. 

https://doi.org/10.1016/j.jestch.2025.102005
https://doi.org/10.1016/j.bandc.2015.11.003
https://doi.org/10.3390/app14020599
https://doi.org/10.18280/ts.410237
https://doi.org/10.2339/politeknik.1605362
https://doi.org/10.1063/5.0116298
https://doi.org/10.3390/info15040235
https://doi.org/10.1007/s42835-023-01508-w
https://doi.org/10.1007/978-3-031-35314-7_2


 

 

36. Tripathy, P., Jena,  P. K. and Mishra, B. R.  “Systematic Literature Review and Bibliometric 

Analysis of Energy Efficiency.” Renewable and Sustainable Energy Reviews, vol. 200, p. 

114583, (2024), https://doi.org/10.1016/j.rser.2024.114583. 

37. Handa, P., Mathur, M. and Goel, N. “Open and Free EEG Datasets for Epilepsy Diagnosis.” 

arXiv Preprint, arXiv:2108.01030, (2021), https://doi.org/10.48550/arXiv.2108.01030. 

38. Shegog, R., Braverman, L. and Hixson, J. D. “Digital and Technological Opportunities in 

Epilepsy: Toward a Digital Ecosystem for Enhanced Epilepsy Management.” Epilepsy & 

Behavior, vol. 102, p. 106663, (2020), https://doi.org/10.1016/j.yebeh.2019.106663. 

39. Altunay, S., Telatar, Z. and Erogul, O. “Epileptic EEG Detection Using the Linear Prediction 

Error Energy.” Expert Systems with Applications, vol. 37, no. 8, pp. 5661-5665, (2010), 

https://doi.org/10.1016/j.eswa.2010.02.045. 

40. Anjum, M. F., Dasgupta, S., Mudumbai, R., et al. “Linear Predictive Coding Distinguishes 

Spectral EEG Features of Parkinson's Disease.” Parkinsonism & Related Disorders, vol. 79, 

pp. 79-85, (2020), https://doi.org/10.1016/j.parkreldis.2020.08.001. 

41. Xu, J., Davis, M. and Fréin; R. “A Linear Predictive Coding Filtering Method for the Time-

Resolved Morphology of EEG Activity.” 32nd Irish Signals and Systems Conference (ISSC), 

pp. 1-6, (2021), https://doi.org/10.1109/ISSC52156.2021.9467851. 

42. Spratling, M. W. “A Review of Predictive Coding Algorithms.” Brain and Cognition, vol. 112, 

pp. 92-97, (2017), https://doi.org/10.1016/j.bandc.2015.11.003. 

43. Li, M., Sun, X., Chen, W., et al. “Classification of Epileptic Seizures in EEG Using Time-

Frequency Image and Block Texture Features.” IEEE Access, vol. 8, pp. 9770-9781, (2019), 

https://doi.org/10.1109/ACCESS.2019.2960848. 

44. Zhao, X., Zhang, R., Mei, Z., et al. “Identification of Epileptic Seizures by Characterizing 

Instantaneous Energy Behavior of EEG.” IEEE Access, vol. 7, pp. 70059-70076, (2019), 

https://doi.org/10.1109/ACCESS.2019.2919158. 

45. Sharmila, A. and Mahalakshmi, P. “Wavelet-Based Feature Extraction for Classification of 

Epileptic Seizure EEG Signal.” Journal of Medical Engineering & Technology, vol. 41, no. 8, 

pp. 670-680, (2017), https://doi.org/10.1080/03091902.2017.1394388. 

https://doi.org/10.1016/j.rser.2024.114583
https://doi.org/10.48550/arXiv.2108.01030
https://doi.org/10.1016/j.yebeh.2019.106663
https://doi.org/10.1016/j.eswa.2010.02.045
https://doi.org/10.1016/j.parkreldis.2020.08.001
https://doi.org/10.1109/ISSC52156.2021.9467851
https://doi.org/10.1016/j.bandc.2015.11.003
https://doi.org/10.1109/ACCESS.2019.2960848
https://doi.org/10.1109/ACCESS.2019.2919158
https://doi.org/10.1080/03091902.2017.1394388


 

 

46. Eltrass, A. S., Tayel, M. B. and EL-qady, A. F. “Automatic Epileptic Seizure Detection 

Approach Based on Multi-Stage Quantized Kernel Least Mean Square Filters.” Biomedical 

Signal Processing and Control, vol.70, p.103031, (2021), 

https://doi.org/10.1016/j.bspc.2021.103031. 

47. Wang, Z., Na, J. and Zheng, B. “An Improved k-NN Classifier for Epilepsy Diagnosis.” IEEE 

Access, vol. 8, pp. 100022-100030, (2020), https://doi.org/10.1109/ACCESS.2020.2996946. 

48. Harpale, V. and Bairagi, V. “An Adaptive Method for Feature Selection and Extraction for 

Classification of Epileptic EEG Signal in Significant States.” Journal of King Saud University 

- Computer and Information Sciences, vol. 33, no. 6, pp. 668-676, (2021), 

https://doi.org/10.1016/j.jksuci.2018.04.014. 

49. Aghazadeh, R., Frounchi, J. and Montagna, F. “Scalable and Energy-Efficient Seizure 

Detection Based on Direct Use of Compressively-Sensed EEG Data on an Ultra-Low Power 

Multi-Core Architecture.” Computational Biology and Medicine, vol. 125, p. 104004, (2020), 

https://doi.org/10.1016/j.compbiomed.2020.104004. 

 

 

 

Biography: Nuri İkizler received his B.S. degree from Dokuz Eylul University, Faculty of 

Engineering, Department of Electronics Engineering in 1990. He received the M.S. degree and 

the Ph.D.  degree from Karadeniz Technical University, Institute of Science, Department of 

Electronics Engineering in 1996 and 2002, respectively. He joined Department of Electronics 

and Automation, Trabzon Vocational School, Karadeniz Technical University, where he is 

currently an Asst. Prof. and  the head of department. His areas of research interest include the 

applications of digital signal processing, biosignal processing, speech recognition, speech 

signal analysis, epileptic seziure detection, machine learning and eyeblink to speech. 

https://doi.org/10.1016/j.bspc.2021.103031
https://doi.org/10.1109/ACCESS.2020.2996946
https://doi.org/10.1016/j.jksuci.2018.04.014
https://doi.org/10.1016/j.compbiomed.2020.104004


 

 

List of Figures 

Figure 1. The average amplitude-sample value representation of EEG signals [27]. 

 

 

 

 

 

 

 



 

 

Figure 2. Flow diagram of proposed work. 

 

 

 

 

 

 

 

 



 

 

Figure 3. Accuracy (Acc) graph for the feature vectors created using LPC, DWT and PSDF evaluated 
with RF, SVM, and MLP classifiers, for 14 different tasks. Task numbers correspond to the classification 
cases listed in Table 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 4. Energy efficiency graph for the feature vectors created using LPC, DWT and PSDF evaluated 
with RF, SVM, and MLP classifiers, for 14 different tasks. Task numbers correspond to the classification 
cases listed in Table 4 
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Table 1. General descriptions of the Bonn University EEG dataset 

Feature Value 

Source University of Bonn, Department of Epileptology 

Sampling Frequency/Band 173.61 Hz / 0.53-40Hz 

Samples/Segments 4097 samples per segment / 100 segments per set 

Duration 23.6 seconds per set 

Total Channels 128 → Reduced to a single channel 

Recording System 12-bit, recorded using the International 10-20 sys. 

Artifact Removal Cleaned from eye and muscle movement artifacts 

Set A (Healthy-Eyes Open) 5 healthy volunteers, recorded from the scalp 

Set B (Healthy-Eyes Closed) 5 healthy volunteers, recorded from the scalp 

Set C (Seizure-Free) 5 epileptic patients, recorded from inside the skull 

Set D (Seizure-Free) 5 epileptic patients, recorded from inside the skull 

Set E (During Seizure) 5 epileptic patients, recorded from inside the skull 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Table 2. Statistical values of Bonn University EEG dataset (presented as mean and standard deviation) 

Feature Set A Set B Set C Set D Set E 

Mean Amplitude (µV) -6.26 ± 24.78 -12.51 ± 30.6 -8.88 ± 24.07 -6.20 ± 23.68 -4.74 ± 27.18 

Median Amplitude -6.27 ± 24.74 -13.03 ± 30.7 -8.41 ± 24.17 -8.75 ± 30.30 6.54 ± 83.18 

Min / Max Amplitude -9.3 ± 42.90 -6.0 ± 66.00 -15.1 ± 78.97 10.5 ± 214.59 -24.7 ± 462.1 

Skewness -0.02 ± 0.16 0.06 ± 0.15 -0.15 ± 0.31 0.07 ± 0.76 -0.06 ± 0.77 

Kurtosis 3.21 ± 0.34 3.20 ± 0.34 3.56 ± 0.77 4.25 ± 2.65 3.38 ± 1.22 

Zero Crossing Rate 228.5 ± 85.36 244.2 ± 77.00 138.3 ± 45.79 130.0 ± 47.23 167.0 ± 48.72 

Mean Power (dB/Hz) -1.24 ± 2.79 -0.28 ± 3.47 -3.46 ± 4.21 -3.27 ± 4.19 9.35 ± 5.80 

Spectral Entropy 3.52 ± 0.73 3.42 ± 0.64 3.05 ± 0.46 3.06 ± 0.42 3.45 ± 0.47 

Delta Band Power (%) 29.06 ± 12.33 15.34 ± 9.50 51.18 ± 15.87 47.59 ± 18.23 23.70 ± 20.92 

Theta Band Power (%) 13.68 ± 6.26 10.02 ± 4.73 16.58 ± 7.74 19.42 ± 10.29 39.60 ± 22.60 

Alpha Band Power (%) 17.22 ± 7.63 37.10 ± 20.84 5.66 ± 3.65 8.05 ± 6.67 16.80 ± 8.05 

Beta Band Power (%) 14.17 ± 7.74 16.30 ± 11.79 3.36 ± 3.03 3.17 ± 2.16 16.57 ± 14.81 

Gamma Band Pow (%) 0.71 ± 0.75 0.44 ± 0.40 0.20 ± 0.21 0.15 ± 0.13 0.35 ± 0.43 

Wavelet Entropy 5.82 ± 0.03 5.83 ± 0.03 5.65 ± 0.08 5.59 ± 0.16 5.72 ± 0.11 

Spectral Roll-off (Hz) 12.87 ± 4.98 13.05 ± 3.31 5.95 ± 2.42 6.33 ± 2.06 12.32 ± 3.41 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Table 3. Accuracy (Acc) and F1-score (F1) values for RF, SVM, and MLP classifiers trained with 

feature vectors extracted using LPC, DWT and PSDF across 14 different tasks. 

Classification # 

&Task 

Classif. 

Method 

LPC DWT PSDF 

Acc (%) F1 Acc (%) F1 Acc (%) F1 

1.A-B-C 

RF 90.83 0.908 92.66 0.927 93.83 0.939 

SVM 88.50 0.886 86.33 0.864 87.50 0.875 

MLP 95.00 0.950 92.67 0.927 93.00 0.930 

2.A-B-C-D-E 

RF 82.80 0.826 89.40 0.894 86.10 0.860 

SVM 70.60 0.707 58.20 0.568 64.30 0.619 

MLP 81.80 0.818 78.70 0.787 76.20 0.760 

3.A-B-C-E 

RF 93.00 0.930 93.87 0.939 94.50 0.945 

SVM 86.50 0.866 67.25 0.668 77.62 0.775 

MLP 95.50 0.955 86.87 0.870 90.87 0.910 

4.A-B-E 

RF 92.00 0.920 93.83 0.938 94.16 0.942 

SVM 92.50 0.925 79.00 0.783 80.83 0.808 

MLP 95.66 0.957 88.66 0.887 88.83 0.889 

 RF 97.00 0.970 98.00 0.980 98.50 0.985 

5.A-C SVM 92.50 0.925 94.00 0.940 96.00 0.960 

 MLP 99.25 0.992 99.00 0.990 99.00 0.990 

6.A-D 

RF 96.50 0.965 97.50 0.975 98.75 0.987 

SVM 88.50 0.885 92.75 0.927 92.25 0.922 

MLP 100.0 1.000 98.50 0.985 98.50 0.985 

7.A-E 

RF 99.25 0.992 99.75 0.997 100.0 1.000 

SVM 99.25 0.992 98.50 0.985 95.25 0.952 

MLP 99.75 0.997 99.25 0.992 98.75 0.987 

8.B-C 

RF 98.00 0.980 97.25 0.972 98.50 0.985 

SVM 98.25 0.982 97.00 0.970 97.00 0.970 

MLP 99.50 0.995 96.25 0.962 98.75 0.987 

9.B-C-D-E 

RF 83.75 0.836 90.87 0.909 97.62 0.875 

SVM 74.75 0.748 66.75 0.643 71.75 0.689 

MLP 81.75 0.816 78.62 0.786 79.12 0.785 

10.B-D 

RF 97.25 0.972 98.75 0.987 99.25 0.992 

SVM 95.00 0.950 97.00 0.970 97.75 0.977 

MLP 99.50 0.995 98.00 0.980 99.00 0.990 

11.B-E 

RF 99.50 0.995 98.75 0.987 99.25 0.992 

SVM 99.00 0.990 97.00 0.970 96.75 0.967 

MLP 99.50 0.995 98.75 0.987 98.25 0.983 

12.C-D-E 

RF 80.50 0.804 90.16 0.902 83.33 0.837 

SVM 71.00 0.705 68.83 0.648 66.83 0.630 

MLP 76.67 0.765 76.66 0.767 73.33 0.731 

 RF 98.75 0.987 98.75 0.987 98.25 0.982 

13.C-E SVM 98.75 0.987 97.00 0.970 96.25 0.962 

 MLP 98.50 0.985 99.00 0.990 99.75 0.997 

14.D-E 

RF 95.50 0.955 99.00 0.990 97.75 0.977 

SVM 93.50 0.935 95.50 0.955 94.50 0.945 

MLP 95.50 0.955 97.25 0.972 96.50 0.965 

Average 

RF 93.18 0.931 95.61 0.956 95.70 0.949 

SVM 89.18 0.891 85.36 0.847 86.75 0.860 

MLP 94.13 0.941 92.01 0.920 92.13 0.920 

 

 

 



 

 

Table 4. Total processing time and energy efficiency values for the feature vectors created using LPC, 

DWT and PSDF, evaluated with RF, SVM, and MLP, for 14 different tasks. 

 

Classification 

# &Task 

 

Classifi.

Method 

LPC DWT PSDF 

Total time 

(ms) 

Energy 

eff. (µJ/%) 

Total time 

(ms) 

Energy 

eff. (µJ/%) 

Total time 

(ms) 

Energy 

eff. (µJ/%) 

1.A-B-C 

RF 2.50 2.7523 5.21 5.6227 11.91 12.6931 

SVM 2.32 2.6214 4.97 5.7569 11.74 13.4171 

MLP 2.62 2.7578 5.59 6.0321 11.95 12.8494 

2.A-B-C-D-E 

RF 2.65 3.2004 5.39 6.0290 12.08 14.0302 

SVM 2.36 3.3427 5.01 8.6082 11.78 18.3203 

MLP 2.91 3.5574 6.20 7.8780 12.18 15.9842 

3.A-B-C-E 

RF 2.56 2.7526 5.25 5.5928 11.96 12.6560 

SVM 2.34 2.7052 4.99 7.4200 11.76 15.1507 

MLP 2.70 2.8272 5.87 6.7572 12.09 13.3047 

4.A-B-E 

RF 2.48 2.6956 5.16 5.4993 11.88 12.6168 

SVM 2.32 2.5081 4.98 6.3037 11.75 14.5366 

MLP 2.65 2.7702 5.59 6.3049 12.00 13.5089 

 RF 3.22 3.3195 5.07 5.1734 11.82 12.0000 

5.A-C SVM 2.32 2.5081 4.95 5.2659 11.73 12.2187 

 MLP 2.50 2.5188 5.39 5.4444 11.88 12.0000 

6.A-D 

RF 2.42 2.5077 5.08 5.2102 11.82 11.9696 

SVM 2.30 2.5988 4.95 5.3369 11.73 12.7154 

MLP 2.52 2.5200 5.38 5.4619 11.91 12.0913 

7.A-E 

RF 2.38 2.3979 5.04 5.0526 11.79 11.7900 

SVM 2.30 2.3173 4.96 5.0355 11.73 12.3149 

MLP 2.48 2.4862 5.38 5.4206 11.89 12.0405 

8.B-C 

RF 2.40 2.4489 5.07 5.2133 11.81 11.9898 

SVM 2.30 2.3409 4.97 5.1237 11.73 12.0927 

MLP 2.49 2.5025 5.38 5.5896 11.91 12.0607 

9.B-C-D-E 

RF 2.65 3.1641 5.32 5.8545 12.10 12.3950 

SVM 2.33 3.1170 4.99 7.4756 11.76 16.3902 

MLP 2.76 3.3761 5.88 7.4790 12.08 15.2679 

10.B-D 

RF 2.40 2.4678 5.07 5.1341 11.81 11.8992 

SVM 2.30 2.4210 4.95 5.1030 11.73 12.0000 

MLP 2.51 2.5226 5.39 5.5000 11.91 12.0303 

11.B-E 

RF 2.39 2.4020 5.07 5.1341 11.80 11.8891 

SVM 2.32 2.3434 4.96 5.1134 11.74 12.1343 

MLP 2.51 2.5226 5.37 5.4379 11.95 12.1628 

12.C-D-E 

RF 2.59 3.2173 5.19 5.7564 11.98 14.3765 

SVM 2.34 3.2957 4.97 7.2206 11.74 17.5669 

MLP 2.61 3.4041 5.59 7.2919 11.97 16.3234 

 RF 2.39 2.4202 5.04 5.1037 11.80 12.0101 

13.C-E SVM 2.29 2.3189 4.95 5.1030 11.73 12.1870 

 MLP 2.51 2.5482 5.36 5.4141 11.88 11.9097 

14.D-E 

RF 2.41 2.5235 5.05 5.1010 11.81 12.0818 

SVM 2.30 2.4598 4.95 5.1832 11.72 12.4021 

MLP 2.48 2.5968 5.40 5.5526 11.89 12.3212 

Average 

RF 2.53 2.7335 5.14 5.3912 11.88 12.4569 

SVM 2.31 2.6355 4.96 6.0035 11.74 13.8176 

MLP 2.58 2.7793 5.55 6.1117 11.96 13.1325 

 

 


