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Abstract 

Recently, the growing demand for customized products and advances in smart technologies have 

accelerated the shift toward cloud manufacturing (CMg). Although CMg offers high flexibility, its 

dynamic nature introduces major scheduling challenges, such as new task arrivals and strict delivery 

constraints, which are often overlooked in existing models. To address these limitations, this study 

formulates a dynamic scheduling problem in CMg (DSPCMg) that integrates new task arrivals with 

the objective of minimizing delivery time deviations. Given the NP-hardness of the problem, five 

well-established metaheuristic algorithms are implemented, and six hybrid algorithms are developed 

to achieve a better balance between global exploration and local exploitation. In addition to modeling 

dynamic task arrivals, the proposed framework incorporates sequence-dependent setup times, delivery 

time windows, and logistics considerations within a unified formulation. The performance of the 

proposed algorithms is evaluated using test problems and 30 benchmark instances for both the 

scheduling and rescheduling stages. Computational experiments show that the hybrid KA-TS 

algorithm achieves the best performance in the scheduling stage, whereas GA-TS performs best in 

rescheduling scenarios. Moreover, the proposed rescheduling approach reduces delivery deviation by 

up to 45% and machine idle time by up to 32% compared with fixed initial schedules. Finally, 

sensitivity analysis further highlights that increases in logistics times and the number of new tasks 

significantly raise delivery time deviations. 
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1. Introduction: 

In response to the growing demand for customized, on-demand production services, 

manufacturing systems are undergoing a significant shift toward service-oriented and 

network-based architectures. Among these innovations, cloud manufacturing (CMg) has 

gained attention as a model that virtualizes manufacturing capabilities and delivers them as 

intelligent services over a distributed network [1]. Rather than relying on fixed, factory-

centric production lines, CMg enables dynamic resource sharing and global collaboration 

across geographically dispersed service providers [2]. With such potential, CMg has started to 

attract increasing attention from the manufacturing industry. 

The report by Research and Markets indicates that 74% of manufacturers are already 

using or planning to use artificial intelligence in their operations, and 83% aim to upgrade 

their processes toward smart factories1. These trends suggest a clear shift toward smarter and 

more connected production environments such as CMg.  This rapid evolution underscores the 

urgency of addressing key operational challenges, particularly scheduling and resource 

allocation of the CMg system [3]. 

In the CMg system, customers submit manufacturing requirements to the platform, which 

then allocates the necessary manufacturing services to fulfill them [4]. The cloud platform 

must match each order’s requirements to available machines or service providers [5]. The 

matching involves solving a complex scheduling problem: deciding which machine executes 

each task and in what order [6]. This highlights not only the need for efficient scheduling but 

also for accommodating practical constraints. 

Effective scheduling in CMg must respect several realistic constraints that directly impact 

system performance and customer satisfaction [7]. These include sequence-dependent setup 

times (SDST), delivery time windows (DTW), task arrival times (TAT)[8, 9], and final 

logistics, which is often overlooked in the literature. Accurately modeling these constraints is 

essential for developing practical scheduling solutions, particularly under dynamic and 

uncertain conditions. 

CMg systems also face frequent disruptions like equipment breakdowns, task 

cancellations, and urgent task arrivals [10]. While traditional models assume static 

environments, real-world systems require reactive scheduling that dynamically adjusts plans 

in response to disruptions [11]. One common trigger for such rescheduling is the arrival of 

new tasks that must fit into the current schedule [12].  

                                                      
1 https://www.researchandmarkets.com/report/global-cloud-manufacturing-market Retrieved on April 21, 2025. 

https://www.researchandmarkets.com/report/global-cloud-manufacturing-market
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New tasks often arrive after the initial schedule has been generated and partially executed, 

making static plans inefficient or infeasible. These tasks arrive unpredictably and must be 

immediately integrated into the existing schedule. Hence, accurately modeling dynamic 

environments and designing effective rescheduling strategies is essential [13].  

This study addresses a dynamic scheduling problem in CMg systems (DSPCMg), 

considering new task arrival, delivery time windows, SDST, and final logistics. The primary 

objective is to minimize delivery window deviations to improve system performance. Due to 

NP-hard nature of DSPCMg [14], exact algorithms become computationally infeasible for 

large-scale or real-time instances. Six hybrid metaheuristic algorithms (MAs) have been 

designed and implemented to address the proposed model and deal with the identified 

challenge. The hybrid approach leverages population-based metaheuristics (PM) for global 

search abilities and single-solution-based metaheuristics (SM) for local exploitation, 

achieving a balanced and adaptive solution framework [15]. This study puts forward the 

following key contributions. 

(1) This study firstly introduces a DSPCMg that supports new task insertion and 

simultaneously integrates several constraints, including delivery time windows, SDST, 

task arrival times, and final logistics. 

(2) The study develops six hybrid MAs for the proposed model.  

(3) An experimental evaluation was carried out on well-established benchmark datasets, and 

statistical analysis using the Friedman test was conducted to validate the performance of 

the proposed algorithms. 

The structure of the paper is as follows. Section 2 provides an overview of the relevant 

literature and existing solution methods. Section 3 presents the problem definition along with 

the rescheduling framework. The proposed hybrid MAs are introduced in Section 4. Section 5 

discusses the experimental design, including benchmark-based evaluations and statistical 

analysis. Lastly, the study is concluded in Section 6, which also discusses directions for 

future research.  

 

2. Literature review 

The dynamic behavior of CMg systems driven by real-time changes in resource 

availability necessitates adaptive scheduling strategies. For instance, Zhang et al. [16] 

employed a game theory-based approach to address machine failures, while Ding et al. [17] 
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proposed a robust scheduling model using a two-stage Genetic Algorithm (GA) to enhance 

stability under service failure. 

Another line of research focuses on task-level variations, including deviations in task 

requirements [18], task modifications [19], urgent tasks [20], or new task insertions [21, 22]. 

These studies employed MA to adapt to these dynamic changes. Additionally, Zhang et al. 

[23] applied a learning based Markov decision framework to handle dynamic task arrival. 

Service-related changes, such as failures in services, were addressed in several works. 

Wang et al. [24] and Xiong et al. [25] employed RL-based MDPs and multi-objective MAs, 

respectively, to respond to service disruptions. Zhang et al. [26] focused on logistics cost 

optimization in a digital twin-based CMg system, while Hu et al. [27] used a game-theoretic 

model to manage both random arrivals and breakdowns. 

Further studies have explored dynamic service quality and availability. Jing et al. [9] 

applied MA to cope with service quality variations. In contrast, some papers developed RL-

based optimization methods, such as the AC algorithm [28] and PPO algorithms [29] to 

adjust service rates or respond to unavailability. 

Recent studies have introduced integrated models to address multiple dynamic factors. 

Shao and Ren [30] used a blockchain-based system and GA to minimize delays due to task 

and service variability. Similarly, Xu et al. [31] utilized a MIP model and MA to handle 

dynamic task arrivals. Same in dynamic event and different in model, Lei et al. [12] focused 

on optimization of disruption value and makespan.  

Overall, existing research emphasizes the significant impact of task- and service-level 

dynamics on CMg scheduling. Researchers implemented a variety of optimization 

techniques, including MAs, RL-based, and hybridized strategies to handle these challenges. 

These efforts underscore the increasing shift from static to dynamic scheduling models 

capable of responding to real-time changes. An overview of the modeling and applied 

solution methods in the literature is presented in Table 1. Such limitations highlight 

unresolved challenges and open the path toward identifying critical research gaps, which are 

discussed in detail in the next section. 
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2.1. Research gap 

Despite the growing body of research on DSPCMg, several critical aspects remain 

insufficiently explored. Firstly, SDST are often ignored, leading to inaccurate schedules and 

inefficient resource use [29]. Second, logistics constraints are often limited to intermediate 

stages, while neglecting final logistics can result in suboptimal plans. In recent cloud 

manufacturing studies, several models have incorporated final logistics into static scheduling 

frameworks [32]. Some works even focused specifically on logistics services and their role in 

integrated scheduling decisions [33, 34]. While these contributions have advanced the 

modeling of logistics in cloud-based production systems, they are largely confined to static 

environments. To the best of our knowledge, there is a lack of studies that explicitly address 

logistics costs and final delivery considerations in dynamic scheduling contexts. This 

limitation highlights a significant gap that our proposed model aims to fill by integrating real-

time scheduling and rescheduling mechanisms with logistics decisions. 

Additionally, delivery windows and their violations play a crucial role in customer 

satisfaction, yet they have received limited attention in existing research. Also, despite 

extensive research on DSPCMg, few studies integrate dynamic challenges such as new task 

arrivals with key constraints like SDST, final logistics, and delivery windows in a unified 

model. Finally, while MAs are commonly applied to CMg scheduling problems, hybrid 

approaches have received limited attention, an aspect this study seeks to address. Therefore, 

this study fills these gaps by proposing a dynamic optimization model and developing hybrid 

MAs. The following sections present comprehensive explanations of the model and solution 

approaches. 

 

3. Model description and formulation 

This research addresses a scheduling problem that involves 𝐼 distinct tasks, denoted as set 

T. Each task (Ti) is characterized by a defined set of operations (Oti), arrival time (ATi), 

delivery time window (DTi=[di
-, di

+ ]), and customer location (CLi). The operations r of task i 

(Oir) has an eligible machine set (ASir), indicating the machines capable of processing it (e.g., 

if operation O13 can be processed on M12, M15, and M42, then AS13 = {M12, M15, M42}). 

The manufacturing system consists of 𝑁 distributed factories 𝐹, where factory 𝐹n offers a 

set of machines Mfn located at FLn. Machine Mns in factory Fn can process operation Oir if 

Mns∈ASir, and is characterized by the setup time SeTirns and processing time PrTirns. 
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Additionally, if a task requires processing across multiple factories, middle transportation 

between factories is needed (Figure 1). The middle transportation and the final transportation 

time from the last factory to the customer, are computed using Euclidean distance (equations 

(1) and (2)). 

 

nm n mMTT FL FL   (1) 

ni i nFTT CL FL   (2) 

 

This research aims to improve operation scheduling across distributed machines by 

minimizing overall deviations from specified delivery windows, considering both early and 

late deliveries. Moreover, unexpected events can disrupt the pre-established schedules, 

rendering static scheduling approaches inadequate. To address this, the proposed model 

integrates a reactive scheduling mechanism that adjusts the production schedule in response 

to new task insertions. The detailed formulation and implementation are presented in the 

following sections. The proposed dynamic scheduling problem in cloud manufacturing 

(DSPCMg) is formulated under the following assumptions: 

 Tasks consist of sequential operations with predefined processing orders. 

 A predefined set of eligible machines is available for processing each operation. 

 Machines are continuously available and process only one operation at a time. 

 All system parameters are deterministic and known in advance. 

 New tasks may appear during the scheduling horizon, requiring schedule updates. 

 Each task has a specific delivery time window. 

 Final transportation stages are considered, which affect the actual delivery time. 

The last three practical features enhance realism by reflecting system responsiveness, 

deadlines, and delivery constraints. The following notations are used for the DSPCMg model. 

 

 

Sets: 

 1
i

T T i I    All tasks under consideration 

 1
i

F F n N    Available factories,  

 1
i ir i

Ot O r R    Operations sequence associated with Ti 

 1
n ns n

Mf M s S    Available machines in Fn 
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 ' '
1 'pT T i I    Newly arrived tasks 

 '
1

u u

p
T T i I    Incomplete tasks  

 1
u

i ir i
Ot O r R    Unprocessed operations of Ti at rescheduling time 

  

Indices: 

i, j Task index  

r, u Operation index  

n, m Factory index  

s, v Machine index  

p New task index 

q Tasks index in rescheduling problem 

 

Parameters: 

I Total tasks 

N Total factories 

Ri Total operations of Ti 

Sn Total machines in Fn 

P Total new tasks  

di
- Earliest delivery time of Ti 

δi Earliest penalty of Ti 

di
+ Latest delivery time of Ti 

λi Latest penalty time of Ti 

ATi Arrival time of Ti 

ET Entrance time of new tasks 

PrTirns Manufacturing time of the Oir on Mns 

SeTruns Setup time of Oir after Oju on Mns 

MTTnm Middle transportation time from Fn to Fm 

FTTni Final transportation time from Fn to customer i 

 

Variables: 

ADi Actual delivery time of Ti 

Eri Earliness of Ti 

Tri Tardiness of Ti 

FTir Finish time of Oir 

STir Start time of Oir 

φirnm 1 if Oir is transported between Fn and Fm; otherwise, 0 

Yirju
ns 1, if Oir precede Oju on Mns; otherwise, 0 

Zirns 1, if Oir is allocated to Mns; otherwise, 0 

Xirn 1, if Oir is allocated to the Fn; otherwise, 0 
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3.1. Objective function 

In CMg systems, timely delivery is essential for both customer satisfaction and system 

efficiency [37]. Deviations from the preferred delivery window, whether early or late, may 

cause disruptions or penalties. Thus, the model minimizes total deviation from predefined 

delivery time windows [di
- , di

+] by penalizing both earliness and tardiness, as formulated in 

Equation (3). Based on Prospect Theory, delays (tardiness) receive higher penalties than early 

deliveries (δ < λ) due to their greater negative impact on efficiency and customer satisfaction 

[38]. Importantly, the actual delivery time ADi includes both the finish time of the last 

operation and final transportation time, enabling the model to capture actual completion time 

beyond the traditional makespan. 

 

   min ( ),0 max ( ),x 0mai i i i i i

i

DP d AD AD d       (3) 

 

3.2. Constraints 

Several constraints were considered based on the operational and logistical requirements 

of the problem. Each constraint is described in detail below. Constraints (4) and (5) represent 

the machine and factory allocation constraints. These allocation constraints ensure that the 

operation Oir is assigned to exactly one machine and one factory in the system.  

 

 1, ,irn

n s

X i r   (4) 

 ,  , ,irns irn

s

Z X i r n   (5) 

 

Constraint (6) guarantees that the first operation for each task does not precede its arrival 

time. Moreover, constraint (7) integrates the middle transportation time into the scheduling of 

subsequent operations for (r > 1).     

 

 ,  , 1ir iST AT i r    (6) 

     1 1
   ,  ,  1ir nm irmvi r i r ns

n m s v

ST FT MTT Z Z i r r
 

      (7) 
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Constraints (8)-(10) enforce that if multiple operations should be executed by one 

machine, only one sequence is accepted, and the SDST between tasks is correctly accounted 

for, depending on the sequence of operations in a machine.  

 

, , , , , ,ns ns

irju juir i irnsY Y Z i r j u n s  (8) 

1 , , , , , ,ns ns

irju juir irns junsY Y Z Z i r j u n s      (9) 

(1 ), , , , , ,ns

ir ju juns runs irjuST ST PrT SeT M Y i r j u n s      (10) 

 

Constraint (11) guarantees that no task finishes before it begins or without accounting for 

its processing time. Moreover, constraint (12) represents that the actual delivery time of a 

task is not earlier than the finish time of its final operation and the associated final 

transportation time. 

 

  ,  ,ir ir irns irns

n s

FT ST PrT Z i r    (11) 

  , 
i ii R in i ini R s

n s

AD FT FTT Z i    (12) 

 

The linearized model is provided in follow which equation (13) is the objective function, 

equations (14)-(28) are the linearized version of equations (4)-(12), and equations (29)-(31) 

illustrate that the variables are binary and positive. 

 

( ) ( )min i i i i

i

DP Er Tr    (13) 

s.t:  

 1, ,irn

n s

X i r   (14) 

 ,  , ,irns irn

s

Z X i r n   (15) 

 ,  , 1ir iST AT i r    (16) 

   1
1,  , , , , , ,  1irnm irmvi r ns

Z Z i r n m s v r


      (17) 

   1
,  , , , , , ,  1irnm i r ns

Z i r n m s v r


    (18) 

 ,  , , , , , ,  1irnm irmvZ i r n m s v r     (19) 
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   1
  ,  ,  1ir nm irnmi r

n m s v

ST FT MTT i r r


     (20) 

, , , , , ,ns ns

irju juir i irnsY Y Z i r j u n s  (21) 

1 , , , , , ,ns ns

irju juir irns junsY Y Z Z i r j u n s      (22) 

(1 ), , , , , ,ns

ir ju juns runs irjuST ST PrT SeT M Y i r j u n s      (23) 

  ,  ,ir ir irns irns

n s

FT ST PrT Z i r    (24) 

  , 
i ii R in i ini R s

n s

AD FT FTT Z i    (25) 

,i i iEr d AD i    (26) 

,i i iTr AD d i    (27) 

, , 0, i i iAD Er Tr i   (28) 

, 0,  ,ir irFT ST i r   (29) 

 , 0,1 ,  , , , ,irnm irnsZ i r n s m    (30) 

  , , , ,0,1 , ,ns

irju iY i j r u n s  (31) 

 

4. Reactive scheduling strategies 

In dynamic manufacturing systems like CMg, the arrival of new tasks is frequent and can 

significantly disrupt preplanned [20]. Ignoring such dynamic events and fixed static 

schedules often leads to inefficient production outcomes. Therefore, reactive strategies are 

essential to ensure responsiveness, reduce disruptions, and maintain efficient resource 

utilization under uncertainty [21, 22]. To integrate newly arrived tasks into the existing 

schedule, two reactive strategies are proposed.  

 

Strategy 1 (fixed initial schedule): This approach aims to minimize disruption to the 

original schedule while accommodating new tasks as efficiently as possible within the 

available capacity. This strategy maintains the original schedule (ADi
*, FTir

*, and STir
*) and 

machine allocations (Zirns
*, Xirn

*) and assigns new tasks to machines based on machine 

availability (MATns) after the finish time of current operations (equations (32) and (33)). The 

new tasks are considered by incorporating equations (32)-(34) into the initial model which 

replace (i ∈ T) with (q ∈ T') in original scheduling and allocation constraints. Although this 

approach stabilizes the schedule, it may compromise resource efficiency. 
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 *

,
max , ,

i

ns qr qrns
q T r Ot

MAT FT Z n s
 

    (32) 

0,  ,nsMAT n s   (33) 

 
,

max , , , , , , ( ')
q

qr ns qrns
q T r Ot

ST ET MAT Z q r n s q T
 

    (34) 

 

Strategy 2 (rescheduling): This model just maintains the original factory allocation 

(Xirn
*) but allows resequencing and reassignment of machines for a combined set of 

operations of the unprocessed operations and operations of newly arrived tasks (Otq ∈ {Oti
u ⋃ 

Otp}). The rescheduling process solves a new scheduling optimization problem over (Oqr). In 

this model, equations (35)-(36) are added into the initial model to consider the machine 

available time at arrival time of new tasks. Moreover, Equation (37) defines the operation 

start times involved in the rescheduling problem and Equation (38) maintains original factory 

assignments for current operations in the initial schedule.  

 

 max , , , , , ( , ( ))u

ns qr qrns i iMAT FT Z q r n s q T r Ot Ot      (35) 

0,  , , , , ,nsMAT q r n m s v   (36) 

 max , , , , , , ( ( ' ), )u

qr ns qrns qST ET MAT Z q r n s q T T r Ot     (37) 

* , , , ( , )qrn qrn qX X q r q T r Ot     (38) 

 

These two strategies offer distinct trade-offs between schedule stability and 

responsiveness. A detailed comparison of their impacts on performance indicators is 

presented in the following sections. 

 

5. Solution methodology 

MAs are well-suited for combinatorial optimization problems, such as the proposed 

scheduling problem, by combining global exploration with local exploitation to navigate 

large search spaces and obtain high-quality solutions [39]. Accordingly, five MAs are employed 

and six hybrid approaches are developed in this work. This section describes the representation 

strategy and key features of the metaheuristics. 
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5.1. Solution representation 

Effective solution encoding is essential in metaheuristic optimization [40]. For 

permutation-based combinatorial problems, a widely used approach is the Random-Key 

method [41, 42]. This study employs this method to encode both machine assignment and 

operation sequencing. The decoding process consists of two main stages: machine allocation 

and operation sequencing.  

In the first stage, each gene in the chromosome represents an operation and holds a value 

(ωij) in [0,1), which determines the assigned machine from its eligible set using the formula 

⌊CMir×ωij ⌋+1, where 𝐶𝑀𝑖𝑟 is number of available machines for operation 𝑂𝑖𝑟. For instance, 

if the third operation of the first task has a candidate machine set AS13 = {M12, M15, M42, 

M33}, and the corresponding gene value is 0.361, the selected index is ⌊4×0.361⌋+1=2, and 

thus the machine M15 is allocated to the operation (Figure 2).  

In the sequencing stage, given the sequential nature of the tasks, operations with higher 

priority are scheduled first, and operations assigned to the same resource are prioritized based 

on gene values, with smaller values scheduled earlier.  

 

5.2. Applied metaheuristic algorithms 

To establish the baseline for our hybrid framework, three single-solution metaheuristics, 

Tabu Search (TS) [43], Simulated Annealing (SA) [44], and the Social Engineering Optimizer 

(SEO) [45], are employed. TS uses adaptive memory to avoid revisiting solutions and 

escapes local optima via a tabu list [46]. SA explores neighbors and accepts worse solutions 

based on Boltzmann probability to escape local optima [47]. SEO, inspired by social 

manipulation, iteratively updates a defender under an attacker’s influence, with roles 

exchanged to enhance exploration [48]. These algorithms excel at refining solutions and 

maintaining strong local search. 

In parallel, two population-based metaheuristics, the Keshtel Algorithm (KA) [49] and 

Genetic Algorithm (GA) [50], are applied for global search. KA models Keshtel ducks’ 

foraging by dividing solutions into elite, intermediate, and randomly regenerated groups [51]. 

GA improves populations through selection, crossover, and mutation, maintaining diversity 

and improving quality [52]. These methods provide complementary exploration and 

exploitation mechanisms for complex combinatorial optimization problems. Algorithm steps 

appear in Supplementary material, Appendix A, Figures A.1-A5.  
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Following the description of the applied metaheuristics, it is essential to justify their 

selection based on evidence from existing literature in the scheduling domain. GA, TS, and 

SA are widely recommended for complex scheduling [53, 54], while KA and SEO have 

shown strong performance in combinatorial scheduling problems [49, 51].  Accordingly, these 

metaheuristics were combined to develop efficient hybrid algorithms for scheduling and 

rescheduling tasks. 

 

5.3. Hybrid Algorithms 

MAs are guided by two complementary goals: exploration (global search) and 

exploitation (local refinement) [39]. PMs like GA and KA are effective in exploration due to 

stochastic operators and population diversity, yet they often lack sufficient intensification. In 

contrast, SMs such as SA, TS, and SEO excel in exploitation, enhancing local search 

efficiency.  

To leverage the strengths of both, this study adopts the Low-Level Teamwork Hybrid 

(LTH) approach [15], wherein SMs are integrated into PMs at the algorithmic operation level 

to strengthen local search without compromising global diversity. This research employed the 

LTH approach and presents six developed hybrid MAs, which are applied for the first time to 

the addressed DSPCMg. The detailed explanations of hybrid algorithms are provided in the 

following subsections. 

 

5.3.1.  Hybrid algorithms with KA 

The KA, with its structured population-based search and subgroup classifications, offers 

strong exploration through population diversity and swirling mechanisms [49]. However, its 

local search capabilities remain limited when tackling complex scheduling landscapes. To 

enhance intensification, this study integrates local search MAs, SA, SEO, and TS into KA’s 

framework. The integration is performed within the N1 subgroup, responsible for fine-tuning 

high-quality candidates. These hybrid structures, namely KASA, KATS, and KASEO, 

capitalize on KA’s broad exploration while leveraging SMs’ targeted exploitation abilities to 

intensify promising regions of the search space. As a result, these hybrids strike an effective 

balance between global diversification and local convergence. Detailed pseudocodes are 

provided in Supplementary material, Appendix A, Figures A6-A8. 

 



 

14 

 

5.3.2.  Hybrid algorithms with GA 

GA is widely known for its robust diversification mechanisms, utilizing crossover and 

mutation to explore the search space [41]. Despite GA's strong abilities, its performance tends 

to slow down in the absence of effective local search. To overcome this, the proposed hybrids 

introduce SA, TS, and SEO into GA’s workflow, forming GASA, GATS, and GASEO. These 

GA-based hybrids incorporate SMs as local search strategies during offspring evaluation. 

This enables the GA to maintain diversity while enhancing search intensity within high-

potential areas [55]. The synergy between stochastic global search and strategic local 

refinement results in improved performance on the DSPCMg problem. The corresponding 

pseudocode is presented in Supplementary material, Appendix A, Figures A9-A11. 

 

6. Computational results 

 Computational experiments were performed to both assess the performance of the hybrid 

MAs and validate the extended scheduling model. In the following subsections, the 

generation of the numerical instances, algorithm tuning, statistical analyses of algorithms, 

development of benchmark instances, and sensitivity analyses are discussed. Additional 

technical materials are provided in Supplementary material to support the experimental 

analysis. Appendix B details the structure of problem instances and parameter settings and 

Appendix C reports extended computational results. 

 

6.1. Experimental setup 

 To comprehensively assess the model's scalability, a diverse set of fifteen problem 

instances in three categories: small, medium, and large sizes, was randomly generated. 

Instances are characterized by the number of tasks (𝐼), factories (𝑁), all operations (𝑅 =

∑ 𝑅𝑖𝑖 ), all machines (𝑆 = ∑ 𝑆𝑛𝑛 ), the maximum number of operation types (𝑂), and the 

number of new tasks (𝑃). In Supplementary material, Appendix B, Table B1 summarizes the 

structure and size of each generated problem instance. The generation process is based on  

[14] and detailed in Supplementary material, Appendix B, Table B2.  

In addition, to enhance solution quality, the parameters of the metaheuristic algorithms 

were optimized using the Taguchi method, which allows efficient tuning of multiple 

parameters through minimal experimentation [56, 57]. An appropriate orthogonal array was 

selected based on parameter counts and levels, and three representative instances (Problems 
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3, 8, and 13) were used to reflect different problem scales. Objective function (OF) values 

were normalized through Relative Percentage Deviation (RPD), as defined in Equation (39), 

and the average value was used as the performance indicator. Final parameter levels for each 

algorithm are provided in Supplementary material, Appendix B, Table B3. 
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6.2. Statistical comparison of metaheuristic algorithms 

A detailed examination of the experimental findings derived from the proposed 

algorithms is provided in this section. To assess the performance of the metaheuristic 

approaches, each method was independently executed 30 times per instance, with average OF 

and RPD values serving as the key evaluation metrics. Results across different instance sizes 

are summarized in Supplementary material, Appendix B, Tables B4–B6, with visual 

comparisons shown in Figures 3 and 4, distinguishing performance across small, medium, 

and large instances as well as problem types (scheduling vs. rescheduling).  

The results indicate that KATS exhibited the best performance in scheduling tasks, 

whereas GATS outperformed others in rescheduling scenarios. Interval plots of RPD values 

(Figure 5) further illustrate algorithmic behavior across different problem categories. The 

results indicate that among the baseline algorithms (SMs and PMs), SMs consistently yielded 

better results than population-based methods. However, when hybrid algorithms were 

introduced, significant improvements were observed. KATS, GATS, and KASA led the 

scheduling category, while GATS, KATS, and TS performed best in rescheduling. Notably, 

KA consistently produced the weakest results. To ensure the statistical validity of these 

observations, additional analysis was conducted. 

Moreover, these findings underscore the effectiveness of hybridization, where the 

exploratory strength of PMs (GA, KA) is complemented by the intensification power of SMs 

(SA, TS, SEO). Hybrids such as GATS and KATS outperformed their respective standalone 

components; GATS and KATS surpassed TS; GASA and KASA exceeded SA; and GASEO 

and KASEO outperformed SEO.  

First, Levene’s Test was applied to assess homogeneity of variances. Due to the violation 

of this assumption, the non-parametric Friedman test was used to rank algorithm 

performance. As shown in Table 2, KATS ranked highest for scheduling problems, followed 
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by GATS, while this order was reversed in rescheduling problems. When considering all 

instances, GATS emerged as the overall best performer, offering a balanced approach across 

both problem types. 

In summary, while KATS is the best choice for pure scheduling problems, the hybrid 

approach employed in GATS makes it an effective method for solving the rescheduling 

problems. Moreover, the general applicability and adaptability of GATS suggest that it may 

be the preferred algorithm when a single method is to be employed for solving both 

scheduling and rescheduling problems.  

 

6.3. Algorithm evaluation on benchmarks 

To address the lack of suitable benchmarks for the proposed scheduling problem, 

characterized by delivery time windows, SDST, logistics considerations, and task arrival 

time, a new benchmark set (BMT01–BMT30) was developed based on [58]. These instances, 

divided into small, medium, and large sizes, vary in the number of tasks, factories, 

operations, and machines (i × n × r × s). Detailed structures are provided in Supplementary 

material, Appendix C, Table C1.  

Besides, for parameters not explicitly defined in the original benchmark, such as 

intermediate and final logistics times, SDST, and task arrival times, relevant ranges reported 

in  [14], which addresses similar production settings, were used. The SeTruns, MTTnm, and 

FTTni follow uniform distributions over the intervals [5, 15], [30,180], and [30, 300], 

respectively. Furthermore, task arrival times were modeled using an exponential distribution 

with a mean of 120. Finally, the number of new tasks was assigned up to {1, 2}, {2, 3}, and 

{3, 4, 5, 6} for small-, medium-, and large-sized instances, respectively. 

Summary results are presented in Supplementary material, Appendix C, Tables C2 and C3 

and visualized in Figures 6 and 7. Figure 6 compares the performance of algorithms for 30 

scheduling-stage benchmark instances, while Figure 7 presents the corresponding results for 

30 rescheduling-stage instances, both based on average objective function values computed 

over 30 independent runs. The findings confirm the algorithmic trends previously discussed 

that KATS excels in scheduling scenarios due to its effective use of the tabu mechanism, 

while GATS outperforms others in rescheduling problems, highlighting its balanced search 

dynamics under dynamic conditions. To assess the effectiveness of the rescheduling strategy, 

the next section compares rescheduling strategies described in section 3.3.  
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6.4. Dynamic scheduling 

The evaluation of the performance of the proposed rescheduling strategy (Strategy 2) 

against a first reactive approach (Strategy 1) is summarized in Supplementary material, 

Appendix D, Table D1. As seen in Figures 8 and 9, Strategy 2 significantly outperforms 

Strategy 1 by enabling dynamic machine reassignment and resequencing. On average, it 

reduces total delivery deviation and average machine idle time by 45.45% and 32.48%, 

respectively. In contrast, the rigidity of Strategy 1 leads to underutilized resources and longer 

idle periods. These results highlight the advantages of rescheduling problems in improving 

overall system efficiency and responsiveness. 

 

6.5. Sensitive analysis 

The robustness of the proposed models is assessed against changes in the delivery time 

window, logistics durations, and the number of newly arriving tasks. Figure 10 illustrates, a 

±30% variation in delivery time window, logistics times significantly impact delivery 

deviation and logistics duration. An increase in the delivery time window reduces deviation to 

nearly zero at +30% by offering greater scheduling flexibility. In contrast, a -30% reduction 

raises deviation above 1600 units due to tighter constraints. Meanwhile, logistics times 

increase with higher parameter values, growing from about 100 units at -30% to over 700 

units at +30%, indicating longer delivery durations and greater difficulty in meeting 

deadlines. 

Figure 11 shows the effect of increasing newly added tasks on model performance. A 

sharp, nonlinear increase in the OF is observed, from under 500 with 2 new tasks to nearly 

5000 when the number reaches 12. As the number of new tasks increases, the complexity of 

scheduling and resource allocation also rises and leading to a significant increase in delivery 

deviation, especially when resources are limited or variable. This behavior underlines the 

system’s sensitivity to this dynamic event and the importance of adaptable scheduling 

mechanisms. 

 

6.6. Managerial insights   

Insights from the sensitivity analysis provide practical guidance for improving operational 

efficiency and minimizing delivery deviations in distributed environments such as CMg and 

shared manufacturing. The results suggest that a greater delivery window makes it easier to 
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coordinate the operations across various machines in different factories and reduces the 

chances of delays. For instance, increasing the delivery time window by 30% led to a sharp 

decrease in delivery deviation, from over 1600 units to nearly zero, demonstrating the 

significant scheduling flexibility it provides. Conversely, tighter windows (+30% to −30%) 

impose rigid constraints, increasing delivery deviation by over 1600 units. Managers should 

therefore identify high-risk, tight-deadline orders early and allocate extra logistical or 

scheduling buffers to prevent failures in delivery targets.  

Moreover, the findings showed that delivery deviation increases approximately from 100 

to 800 when logistics times rise by 30%. This negative impact of underscore the need for 

stable and efficient transportation strategies, such as optimizing distribution hubs or 

collaborating with reliable transportation providers. Additionally, the arrival of new tasks 

intensifies scheduling complexity, potentially leading to resource conflicts and delivery 

delays. Hence, prioritization mechanisms and task classification based on urgency can 

mitigate these effects. Finally, due to the system's inherent sensitivity to dynamic changes, 

static scheduling proves inadequate. Reactive rescheduling strategies are essential for 

maintaining performance under uncertainty, enabling timely adjustments and better resource 

utilization. 

 

7. Conclusion  

This study presents a DSPCMg, incorporating practical constraints such as delivery time 

windows, SDST, final logistics, and task arrival times. To address the model's NP-hard 

nature, six hybrid MAs were developed by integrating GA and KA with SMs (SA, TS, SEO), 

and benchmarked against five baseline methods.  

Experimental evaluations based on benchmark instances and Friedman test revealed that 

hybridization significantly improves algorithms’ performance. Specifically, KATS was most 

effective for scheduling problems, while GATS excelled in rescheduling scenarios. Notably, 

the proposed rescheduling approach outperformed the Strategy 1, with fixed initial schedule, 

by reducing total delivery time deviation by up to 45% and machine idle time by 32%, 

emphasizing the value of adaptive scheduling strategies in dynamic environments. 

The findings underscore the importance of reactive scheduling in dynamic CMg 

environments. Future research could focus on enhancing the proposed dynamic scheduling 

framework by incorporating stochastic elements to better capture uncertainties in processing 

times and logistics operations. Additionally, integrating machine learning techniques to guide 
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adaptive metaheuristic hybridization can improve search efficiency and responsiveness in 

highly dynamic cloud manufacturing environments. Moreover, expanding the model to multi-

objective formulations would allow simultaneous optimization of delivery time, energy 

consumption, and operational costs, aligning with sustainable manufacturing goals. Besides, 

exploring alternative reactive scheduling strategies, including hybrid reactive-predictive 

approaches and decentralized decision-making, could further improve flexibility and 

scalability. Finally, validating the proposed methods through real-world industrial 

implementations would provide critical insights for practical deployment and continuous 

improvement. 
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Figure 1. A typical CMg environment. 

 

 
Figure 2. An example of the applied Random-Key representation. 
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Figure 3. The objective values for different problem sizes before and after rescheduling. 

 

 
Figure 4. The PRD values for scheduling and rescheduling problems. 
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Figure 5. Interval Plot of algorithms for scheduling and rescheduling problems. 

 

 

 
Figure 6. Comparison of applied metaheuristic algorithms on 30 benchmark instances in the scheduling stage, based on 

average objective function values. 

 

 
Figure 7. Performance comparison of the applied algorithms on 30 benchmark instances in the rescheduling stage, based on 

the average objective function values. 
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Figure 8. The comparison of delivery time deviation across rescheduling strategies. 

 

 
Figure 9. The comparison of machine idle time across rescheduling strategies. 

 

 
Figure 10. The impact of logistics time and delivery window on OF. 
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Figure 11. The effect of the number of newly assigned tasks on OF. 
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Table 1. Model characteristics and solution methodologies of DSPCMg. 

Paper 
Model characteristics  Dynamic event(s) Solution approach 

Objective(s) MIP AT MTT SeT FTT DT  SR OT 

[16] Utilization rate *      SB Game 

theory 

 

[17] Combination of cost, time, 

reliability, robustness, & stability 

*      SB  GA 

[35] Makespan     *   SeT change  GA 
[18] Weighted sum of time, cost, 

quality, & capability 

*  *    Requirement deviation  Hybrid of GA-ACO 

[36] Weighted sum of completion 
time, utilization, & task overhead 

 *    * DTA RL  

[19] Completion time & cost *  *    Delay or early 

completion & task 
change 

 GA 

[21] Completion time, cost, & 

reliability 

* * * *   NT   MPBBO 

[20] Makespan, cost, & reliability *  * *   NT & materials delay  GA 

[22] Total cost *  *    NT  GA 

[23] Average tardiness  * *   * DTA  RL-based MDP 
[24] Total makespan   *    SB, new service  RL-based MDP 

[25] Weighted sum of time, cost, & 

quality 
Sum of flexibility & user 

evaluation 

Provider profit 

  *    SB, NT, service 

preemption 

 Hybrid of HHO and 

NSGA-II 

[27] 

 

Weighted sum of time, cost, 

quality & utilization 

 *     DTA, SB, & 

maintenance 

 PSO 

[14] Completion time 
Resource utilization 

 * *   * DTA RL  

[26] Weighted sum of cost of vehicle 
rent, power, & maintenance 

*  *    Demand change  TLBO 

[9] Weighted sum of quality, 

reliability, & total cost 
& due time deviation 

*  *   * Service quality change  MTMC 

[28] Makespan & cost   *    Service rate change  AC 

[29] Weighted sum of time, cost, & 
reliability 

*  * *  * Service unavailability  PPO 

[30] Finish time deviation  *     * Service & task change  GA 

[12] Makespan 
Total disturbances 

 * *    NT  BHDDE 

[31] Total tardiness * *    * DTA  MPCEA 

This 
work 

Total delivery deviation * * * * * * NT  KATS, GATS, KASA, 
GASA, KASEO, 

GASEO 

* Mix integer programming (MIP), optimization technique (OT), task arrival (TA), middle transportation time (MTT), setup time (SeT), 

final transportation time (FTT), due date or delivery time (DT), Service breakdown (SB), Dynamic task arrival (DTA), New task (NT), 
scheduling rules (SR), Genetic algorithm (GA), meta-knowledge transfer based multi-population co-evolution (MTMC), particle swarm 

optimization (PSO), teaching -learning based optimization (TLBO), multi-objective elitist Jaya (MOEJ), multi-population biogeography-

based optimization (MPBBO), ant colony optimization (ACO), non-dominated sorting GA-II (NSGA-II), harris hawks optimization (HHO), 
multi-population cooperative evolutionary algorithm (MPCEA), bi-objective hybrid discrete differential evolution (BHDDE), actor-critic 

(AC), proximal policy optimization (PPO), Markov decision process (MDP), reinforcement learning (RL).  

 

Table 2. Results of ranking the algorithms based on the Friedman test. 

Algorithm 
All problems  Scheduling problem  Rescheduling problem 

Median Rank  Median Rank  Median Rank 

GA 0.597 7 
 

0.669 8 
 

0.547 5 

GASA 0.404 4 
 

0.310 4 
 

0.555 6 

GASEO 0.575 8 
 

0.734 9 
 

0.540 4 

GATS 0.025 1 
 

0.071 2 
 

0.018 1 

KA 0.900 11 
 

0.996 11 
 

0.830 10 

KASA 0.330 5 
 

0.126 3 
 

0.728 9 

KASEO 0.453 6 
 

0.406 6 
 

0.603 8 

KATS 0.052 2 
 

0.000 1 
 

0.197 2 

SA 0.677 10 
 

0.424 7 
 

1.000 11 

SEO 0.645 9 
 

0.798 10 
 

0.595 7 

TS 0.275 3 
 

0.347 5 
 

0.241 3 

 


