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Abstract &

Recently, the growing demand for customized pré d advances in smart technologies have
accelerated the shift toward cloud manufacturing xAlthough CMg offers high flexibility, its
dynamic nature introduces major scheduling ges such as new task arrivals and strict delivery
constraints, which are often overlooked ing existing models. To address these limitations, this study

CMg (DSPCMg) that integrates new task arrivals with

formulates a dynamic scheduling pro
the objective of minimizing dgliver e deviations. Given the NP-hardness of the problem, five
well-established metaheuristic % ithms are implemented, and six hybrid algorithms are developed
to achieve a better balance een global exploration and local exploitation. In addition to modeling
dynamic task arrivals \foposed framework incorporates sequence-dependent setup times, delivery
time windows, stics considerations within a unified formulation. The performance of the
proposed alg@\ s is evaluated using test problems and 30 benchmark instances for both the
schedulin rescheduling stages. Computational experiments show that the hybrid KA-TS
algovchleves the best performance in the scheduling stage, whereas GA-TS performs best in
rescheduling scenarios. Moreover, the proposed rescheduling approach reduces delivery deviation by
up to 45% and machine idle time by up to 32% compared with fixed initial schedules. Finally,
sensitivity analysis further highlights that increases in logistics times and the number of new tasks

significantly raise delivery time deviations.

Keywords: Cloud Manufacturing, Dynamic Scheduling, Reactive Rescheduling, Hybrid Metaheuristics,

Delivery Time Deviation, Task Insertion.
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1. Introduction:

In response to the growing demand for customized, on-demand production services,
manufacturing systems are undergoing a significant shift toward service-oriented and
network-based architectures. Among these innovations, cloud manufacturing (CMg) has
gained attention as a model that virtualizes manufacturing capabilities and delivers them as
intelligent services over a distributed network [1]. Rather than relying on fixed, factory-
centric production lines, CMg enables dynamic resource sharing and global col
across geographically dispersed service providers [2]. With such potential, CMg @ted to
attract increasing attention from the manufacturing industry.

The report by Research and Markets indicates that 74% of manu @rs are already
using or planning to use artificial intelligence in their operations, a % aim to upgrade
their processes toward smart factories'. These trends suggest a shift toward smarter and
more connected production environments such as CMg. Thi %ld evolution underscores the
urgency of addressing key operational challenges, ;@mlarly scheduling and resource
allocation of the CMg system [3].

then allocates the necessary manufacturi ices to fulfill them [4]. The cloud platform

In the CMg system, customers submit a‘f L@ng requirements to the platform, which
must match each order’s requirements\to available machines or service providers [5]. The
matching involves solving a co scheduling problem: deciding which machine executes

each task and in what order’[8]. This highlights not only the need for efficient scheduling but

also for accommodating | constraints.
Effective scheduling,in CMg must respect several realistic constraints that directly impact
system perform d customer satisfaction [7]. These include sequence-dependent setup

times (SDS ivery time windows (DTW), task arrival times (TAT)[8, 9], and final
logistics,(w QIS often overlooked in the literature. Accurately modeling these constraints is
ess?yror developing practical scheduling solutions, particularly under dynamic and
uncertain conditions.

CMg systems also face frequent disruptions like equipment breakdowns, task
cancellations, and urgent task arrivals [10]. While traditional models assume static
environments, real-world systems require reactive scheduling that dynamically adjusts plans
in response to disruptions [11]. One common trigger for such rescheduling is the arrival of

new tasks that must fit into the current schedule [12].

! https://www.researchandmarkets.com/report/global-cloud-manufacturing-market Retrieved on April 21, 2025.
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New tasks often arrive after the initial schedule has been generated and partially executed,
making static plans inefficient or infeasible. These tasks arrive unpredictably and must be
immediately integrated into the existing schedule. Hence, accurately modeling dynamic
environments and designing effective rescheduling strategies is essential [13].

This study addresses a dynamic scheduling problem in CMg systems (DSPCMg),
considering new task arrival, delivery time windows, SDST, and final logistics. The primary

objective is to minimize delivery window deviations to improve system performance. Due to

NP-hard nature of DSPCMg [14], exact algorithms become computationally infeasi or
[ J

large-scale or real-time instances. Six hybrid metaheuristic algorithms (MAs e been

designed and implemented to address the proposed model and deal wi identified

challenge. The hybrid approach leverages population-based metah ri@ PM) for global

search abilities and single-solution-based metaheuristics (SM) local exploitation,
achieving a balanced and adaptive solution framework [16@ study puts forward the
following key contributions. &

simultaneously integrates several constraints‘,&
task arrival times, and final logistics. C)
(2) The study develops six hybrid MAs fo@roposed model.
(3) An experimental evaluation was jﬂed out on well-established benchmark datasets, and
m

statistical analysis using the

the proposed algorithmsb
The structure of the @ Is as follows. Section 2 provides an overview of the relevant
literature and existig?kﬂion methods. Section 3 presents the problem definition along with

(1) This study firstly introduces a DSPCMg traé ports new task insertion and
ing delivery time windows, SDST,

test was conducted to validate the performance of

the reschedulin ork. The proposed hybrid MAs are introduced in Section 4. Section 5

discusses tr€9<perimental design, including benchmark-based evaluations and statistical

anal sis.cdstly, the study is concluded in Section 6, which also discusses directions for
futu%@éarch.

2. Literature review

The dynamic behavior of CMg systems driven by real-time changes in resource
availability necessitates adaptive scheduling strategies. For instance, Zhang et al. [16]

employed a game theory-based approach to address machine failures, while Ding et al. [17]



proposed a robust scheduling model using a two-stage Genetic Algorithm (GA) to enhance
stability under service failure.

Another line of research focuses on task-level variations, including deviations in task
requirements [18], task modifications [19], urgent tasks [20], or new task insertions [21, 22].
These studies employed MA to adapt to these dynamic changes. Additionally, Zhang et al.
[23] applied a learning based Markov decision framework to handle dynamic task arrival.

Service-related changes, such as failures in services, were addressed in several works.
Wang et al. [24] and Xiong et al. [25] employed RL-based MDPs and multi-objecti ?&s,
respectively, to respond to service disruptions. Zhang et al. [26] focused on .I@Qs cost

optimization in a digital twin-based CMg system, while Hu et al. [27] use}dZ e-theoretic

model to manage both random arrivals and breakdowns.
Further studies have explored dynamic service quality and a%bllity. Jing et al. [9]
applied MA to cope with service quality variations. In contrast! e papers developed RL-

based optimization methods, such as the AC algorithm M\'nd PPO algorithms [29] to
adjust service rates or respond to unavailability.

Recent studies have introduced integrated me e@o address multiple dynamic factors.
Shao and Ren [30] used a blockchain-bas s;@n and GA to minimize delays due to task
and service variability. Similarly, Xu et al._[31] utilized a MIP model and MA to handle
dynamic task arrivals. Same in dynamic\event and different in model, Lei et al. [12] focused
on optimization of disruption vd akespan.

Overall, existing resear phasizes the significant impact of task- and service-level
dynamics on CMg s Ing. Researchers implemented a variety of optimization
techniques, includi s, RL-based, and hybridized strategies to handle these challenges.
These efforts re the increasing shift from static to dynamic scheduling models
capable of fesponding to real-time changes. An overview of the modeling and applied
solution Gﬁhods in the literature is presented in Table 1. Such limitations highlight
unre d challenges and open the path toward identifying critical research gaps, which are

discussed in detail in the next section.



2.1. Research gap

Despite the growing body of research on DSPCMg, several critical aspects remain
insufficiently explored. Firstly, SDST are often ignored, leading to inaccurate schedules and
inefficient resource use [29]. Second, logistics constraints are often limited to intermediate
stages, while neglecting final logistics can result in suboptimal plans. In recent cloud
manufacturing studies, several models have incorporated final logistics into static scheduling
frameworks [32]. Some works even focused specifically on logistics services and their@in
integrated scheduling decisions [33, 34]. While these contributions have a d the
modeling of logistics in cloud-based production systems, they are largely c@e to static
environments. To the best of our knowledge, there is a lack of studiesw i
logistics costs and final delivery considerations in dynamic @ g contexts. This
limitation highlights a significant gap that our proposed mod.el aj

citly address

to fill by integrating real-

time scheduling and rescheduling mechanisms with logisti
Additionally, delivery windows and their violati
satisfaction, yet they have received limited attent@'

y a crucial role in customer
existing research. Also, despite
extensive research on DSPCMg, few studies i dynamic challenges such as new task
arrivals with key constraints like SDST, §imallogistics, and delivery windows in a unified
model. Finally, while MAs are commonly applied to CMg scheduling problems, hybrid
approaches have received limit %n, an aspect this study seeks to address. Therefore,
this study fills these gaps b rmg a dynamic optimization model and developing hybrid
MAs. The following sect] sent comprehensive explanations of the model and solution

approaches.

3. Model @nglon and formulation

arch addresses a scheduling problem that involves I distinct tasks, denoted as set

T grzask (Ti) is characterized by a defined set of operations (Ot;), arrival time (ATi),

delivery time window (DT;=[di", di* ]), and customer location (CLi). The operations r of task i

(Oir) has an eligible machine set (ASir), indicating the machines capable of processing it (e.g.,
if operation O13 can be processed on M1z, Mis, and Maz, then AS13 = {M12, M15, Ma2}).

The manufacturing system consists of N distributed factories F, where factory F, offers a

set of machines Mf, located at FL,. Machine Mys in factory Fn can process operation Oir if

Mns€ASir, and is characterized by the setup time SeTims and processing time PrTirms.



Additionally, if a task requires processing across multiple factories, middle transportation
between factories is needed (Figure 1). The middle transportation and the final transportation
time from the last factory to the customer, are computed using Euclidean distance (equations
(1) and (2)).

MTT,, =|FL, —FL,| )

FTT, =[cL, —FL,| (Nz)
O

This research aims to improve operation scheduling across distribute }hines by
minimizing overall deviations from specified delivery windows, conside th early and
late deliveries. Moreover, unexpected events can disrupt the p&e@gblished schedules,
rendering static scheduling approaches inadequate. To address, this,” the proposed model
integrates a reactive scheduling mechanism that adjusts th%p}%' ion schedule in response
to new task insertions. The detailed formulation and i entation are presented in the
following sections. The proposed dynamic sched@ﬁgoblem in cloud manufacturing

(DSPCMg) is formulated under the following at) ions:

e Tasks consist of sequential operatlon th predefined processing orders.
e Anpredefined set of eligible mﬂ es is available for processing each operation.

e Machines are continuous le and process only one operation at a time.

e All system paramete deterministic and known in advance.

e New tasks ma @r during the scheduling horizon, requiring schedule updates.
e Each task }Q ecific delivery time window.

o Fmal tr ion stages are considered, which affect the actual delivery time.

The @three practical features enhance realism by reflecting system responsiveness,
dea%and delivery constraints. The following notations are used for the DSPCMg model.

Sets:

T ={T, |1£i <1} All tasks under consideration
F={F|i<n<N} Available factories,

ot ={o, |1<r <R} Operations sequence associated with T

Mf ={M_|1<s<S } Available machines in Fy



T = {Tp |1si < } Newly arrived tasks

Ti<i <1 “} Incomplete tasks

ot = {Oir |1 <r<R } Unprocessed operations of T; at rescheduling time

Indices:

ij Task index

nLu Operation index

n, m Factory index

S,V Machine index (b
p New task index y O

q Tasks index in rescheduling problem QN
Parameters: (b

I

N

Ri

Sn

P

di'

Oi

di*

Ji

AT;

ET
PrTins
SeTruns
MTTam
FTThi

Total tasks '&&
Total factories

Total operations of T; e (b

Total machines in F, &N

Total new tasks Q
Earliest delivery time of T; . @

Earliest penalty of T; '\,

Latest delivery time of T;
Latest penalty time of T;
Avrrival time of T;

Entrance time of new tasks
Manufacturing time of the Oj,

Setup time of Oj, after O; ns
Middle transportation.ti m Fn to Fn

Final transportat& from F, to customer i

Variables:

AD;i Actual tige of Ti
Ti

Er; E

S o
Tri Tardiness of T;

FTirWh time of Oj
STir )Start time of Oy,

@irnm 1

if O is transported between F, and Fn; otherwise, O

Yir™ 1, if Oir precede Oj, on Mys; otherwise, 0

Zims 1, if Oj is allocated to Mys; otherwise, 0

Ximn 1, if Oy is allocated to the Fy; otherwise, 0



3.1. Objective function

In CMg systems, timely delivery is essential for both customer satisfaction and system
efficiency [37]. Deviations from the preferred delivery window, whether early or late, may
cause disruptions or penalties. Thus, the model minimizes total deviation from predefined
delivery time windows [di", di*] by penalizing both earliness and tardiness, as formulated in
Equation (3). Based on Prospect Theory, delays (tardiness) receive higher penalties than early
deliveries (6 < ) due to their greater negative impact on efficiency and customer satis@m
[38]. Importantly, the actual delivery time AD; includes both the finish tinfe e last

operation and final transportation time, enabling the model to capture actual tion time

beyond the traditional makespan. &(b
minDP =35 max {(d; —AD;),0}+4 max{(AD, —d;"),0} (b,x 3

3.2. Constraints . Q

Several constraints were considered basgd @} operational and logistical requirements
of the problem. Each constraint is describ etail below. Constraints (4) and (5) represent
the machine and factory allocation constraints. These allocation constraints ensure that the

operation Oir is assigned to exa chine and one factory in the system.

anzxim =1 Vi,r b’

@ @)
> Ziwe <X ,ViQ\' )
| <

Constraint (6) guarantees that the first operation for each task does not precede its arrival
tim over, constraint (7) integrates the middle transportation time into the scheduling of
subsequent operations for (r > 1).

ST, 2AT, Vi, (r=1) (6)

r —

STir > I_—I-i(r—l) +ZZZZMTTnm Zi(r—l)ns X Zirmv ’VI T (r >1) (7)



Constraints (8)-(10) enforce that if multiple operations should be executed by one
machine, only one sequence is accepted, and the SDST between tasks is correctly accounted

for, depending on the sequence of operations in a machine.

Y. Y S <Z.

Ir]LI ]UII’I - ims ?

vi,r,j,u,n,s (8)

Yo 4Y S +1>Z, +7

IFJU Juir juns !

vi,r,j,u,n,s 9)

e s Vi, T JLun,
5, Virju,ns .O(@

Constraint (11) guarantees that no task finishes before it begins or without(a %nting for

ST, >ST,, +PrT ,, +SeT . —M (1-Y

ir — juns

its processing time. Moreover, constraint (12) represents that the actu {e ery time of a
associated final

task is not earlier than the finish time of its final operation “d

transportatlon time. . (b
FT, >ST, +ZZPrT Z. Vi, AQ (12)

AD; 2FT, +Y D FTT, Z ipins Vi

O\ (12)

The linearized model is provided in\follow which equation (13) is the objective function,
equations (14)-(28) are the line&giZed version of equations (4)-(12), and equations (29)-(31)
illustrate that the variables @ary and positive.

minDP = > &, (Er, r)

s.t: @
;;x OG)V' o (14)

(13)

Z X, Vi, r,n (15)
ST, >AT,,Vi,(r =1) (16)
P 2 L 1yt Limy —LVI,T,NM SV, (1 >1) (17)
P < Zi gy V1,70, M5V, (r>1) (18)
Poom < Zimy, Vi, T,0,M,sV, (1 >1) (19)



ST, 2FT,, , + DS L SMTT,. g, i1 (1>1) @)

YII;'E +erl]?riSzims’Vi’r’j’u1n'S (21)
Yir';j +Yjﬂfr+1zzims+Zjuns,Vi,r,j,u,n,s (22)
ST, >ST,, +PrT, +SeT . —M (1-Y ir?j),Vi ,r,j,u,n,s (23)
FT, 2ST, +> > PIT,  Z, .. Vi,r (24)

AD; 2FT o + D> > FTT, Z Vi . (g
Er, >d, —AD,,Vi ,& (26)

Tr, >AD, —d,, Vi (27)

AD, Er,,Tr, 20,Vi x& (28)

FT.,ST, 20,Vi,r 0& (29)
@irnm'zirns e{O,l},Vi,r,n,s,m ,Q&J (30)
[ J

Yr‘IS

ifui \
4. Reactive scheduling strategies %

In dynamic manufacturing syst e CMg, the arrival of new tasks is frequent and can

e{0,1},vi,j,r,u,n,s (31)

significantly disrupt preplanned ]. Ignoring such dynamic events and fixed static
schedules often leads to in%ent production outcomes. Therefore, reactive strategies are
essential to ensure K@iveness, reduce disruptions, and maintain efficient resource
utilization under tainty [21, 22]. To integrate newly arrived tasks into the existing
schedule, two r@v trategies are proposed.

O

atg 1 (fixed initial schedule): This approach aims to minimize disruption to the
original schedule while accommodating new tasks as efficiently as possible within the

available capacity. This strategy maintains the original schedule (ADi", FTir", and STir") and
machine allocations (Zims, Xim ) and assigns new tasks to machines based on machine
availability (MATys) after the finish time of current operations (equations (32) and (33)). The
new tasks are considered by incorporating equations (32)-(34) into the initial model which
replace (i €T) with (g € T") in original scheduling and allocation constraints. Although this

approach stabilizes the schedule, it may compromise resource efficiency.

10
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MAT, > max {FT,xZ.. 1,vns (32)

qms

gel ,relt;
MAT . >0,vn,s (33)
ST, > max {ET,MAT xZ. }.vq,r.n;s, (el (34)

qr — ,
qer ,reth

Strategy 2 (rescheduling): This model just maintains the original factory oqb’on
(Xim") but allows resequencing and reassignment of machines for a com.bﬁmet of
operations of the unprocessed operations and operations of newly arrived ta q €{Ot" U
Otp}). The rescheduling process solves a new scheduling optimizati over (Ogr). In
this model, equations (35)-(36) are added into the initial model&@nsider the machine
available time at arrival time of new tasks. Moreover, Equati@?) defines the operation
start times involved in the rescheduling problem and Equat ) maintains original factory

assignments for current operations in the initial schedulé®

o
MAT Zmax{l——l'qr qumS},Vq,r,n,s,(q 5; ,@i -0t")) (35)

MAT  =0,vq,r,n,m,s,v (36)

ST, =max{ET ,MAT  =xZ r,s,s,(q e( UT"),reot,) 37)

Xm =X gm VA, 1,(q ETé 7) (38)
These two gies offer distinct trade-offs between schedule stability and

responsiven(@@d tailed comparison of their impacts on performance indicators is
presente@ following sections.

5. glution methodology

MAs are well-suited for combinatorial optimization problems, such as the proposed
scheduling problem, by combining global exploration with local exploitation to navigate
large search spaces and obtain high-quality solutions [39]. Accordingly, five MAs are employed
and six hybrid approaches are developed in this work. This section describes the representation

strategy and key features of the metaheuristics.

11



5.1. Solution representation

Effective solution encoding is essential in metaheuristic optimization [40]. For
permutation-based combinatorial problems, a widely used approach is the Random-Key
method [41, 42]. This study employs this method to encode both machine assignment and
operation sequencing. The decoding process consists of two main stages: machine allocation
and operation sequencing.

In the first stage, each gene in the chromosome represents an operation and holds (@u
(wij) in [0,1), which determines the assigned machine from its eligible set using rmula
|CMirxwij |41, where C M, is number of available machines for operation 0, SI
if the third operation of the first task has a candidate machine set AS ﬁ Mis, May,
Ms3}, and the corresponding gene value is 0.361, the selected inde {txo.361j+1:2, and
thus the machine Mys is allocated to the operation (Figure 2).

In the sequencing stage, given the sequential nature o }@'S operations with higher

priority are scheduled first, and operations assigned to t e resource are prioritized based

nstance,

on gene values, with smaller values scheduled eamer@

5.2. Applied metaheuristic algorithms %

To establish the baseline for our4~%rid framework, three single-solution metaheuristics,
Tabu Search (TS) [43], Sim IatMea ing (SA) [44], and the Social Engineering Optimizer
(SEO) [45], are employed@
escapes local optlma bu list [46]. SA explores neighbors and accepts worse solutions
based on Boltzm Q bability to escape local optima [47]. SEO, inspired by social

t1vel

y updates a defender under an attacker’s influence, with roles

uses adaptive memory to avoid revisiting solutions and

mampulatlon
exchange hance exploration [48]. These algorithms excel at refining solutions and
ma amé)strong local search.

hallel, two population-based metaheuristics, the Keshtel Algorithm (KA) [49] and
Genetic Algorithm (GA) [50], are applied for global search. KA models Keshtel ducks’
foraging by dividing solutions into elite, intermediate, and randomly regenerated groups [51].
GA improves populations through selection, crossover, and mutation, maintaining diversity
and improving quality [52]. These methods provide complementary exploration and
exploitation mechanisms for complex combinatorial optimization problems. Algorithm steps
appear in Supplementary material, Appendix A, Figures A.1-A5.

12



Following the description of the applied metaheuristics, it is essential to justify their
selection based on evidence from existing literature in the scheduling domain. GA, TS, and
SA are widely recommended for complex scheduling [53, 54], while KA and SEO have
shown strong performance in combinatorial scheduling problems [49, 51]. Accordingly, these
metaheuristics were combined to develop efficient hybrid algorithms for scheduling and

rescheduling tasks.

5.3. Hybrid Algorithms . O(b

MAs are guided by two complementary goals: exploration (glob rch) and
exploitation (local refinement) [39]. PMs like GA and KA are eﬁectivﬁ@noraﬁon due to
stochastic operators and population diversity, yet they often lack sﬁN’e{ intensification. In
contrast, SMs such as SA, TS, and SEO excel in explgita@'@ enhancing local search
efficiency. &x

To leverage the strengths of both, this study ado Low-Level Teamwork Hybrid
(LTH) approach [15], wherein SMs are integrated 'n&z the algorithmic operation level
to strengthen local search without compromisin &al diversity. This research employed the
LTH approach and presents six developed MAs, which are applied for the first time to

the addressed DSPCMg. The detailed éxplanations of hybrid algorithms are provided in the

following subsections. @
5.3.1. Hybrid algorithms wij b

The KA, with j &ctured population-based search and subgroup classifications, offers
strong explorati gh population diversity and swirling mechanisms [49]. However, its
local sear G@babilities remain limited when tackling complex scheduling landscapes. To
enhance &nsification, this study integrates local search MAs, SA, SEO, and TS into KA’s
fran%vm(k. The integration is performed within the N1 subgroup, responsible for fine-tuning
high-quality candidates. These hybrid structures, namely KASA, KATS, and KASEO,
capitalize on KA’s broad exploration while leveraging SMs’ targeted exploitation abilities to
intensify promising regions of the search space. As a result, these hybrids strike an effective
balance between global diversification and local convergence. Detailed pseudocodes are

provided in Supplementary material, Appendix A, Figures A6-A8.

13



5.3.2. Hybrid algorithms with GA

GA is widely known for its robust diversification mechanisms, utilizing crossover and
mutation to explore the search space [41]. Despite GA's strong abilities, its performance tends
to slow down in the absence of effective local search. To overcome this, the proposed hybrids
introduce SA, TS, and SEO into GA’s workflow, forming GASA, GATS, and GASEO. These
GA-based hybrids incorporate SMs as local search strategies during offspring evaluation.
This enables the GA to maintain diversity while enhancing search intensity withi igh-
potential areas [55]. The synergy between stochastic global search and s Iocal
refinement results in improved performance on the DSPCMg problem. Th spondmg

pseudocode is presented in Supplementary material, Appendix A, Flgures

\,

Computational experiments were performed to bot @e performance of the hybrid

6. Computational results

MAs and validate the extended scheduling mo the following subsections, the
generation of the numerical instances, algorlthm , Statistical analyses of algorithms,
development of benchmark instances, ivity analyses are discussed. Additional
technical materials are provided in Su:%%zntary material to support the experimental
analysis. Appendix B details the str e of problem instances and parameter settings and

Appendix C reports extended co%@ti al results.

6.1. Experimental sei{ie

To compre ly assess the model's scalability, a diverse set of fifteen problem
instances in categories: small, medium, and large sizes, was randomly generated.
Instance@ characterized by the number of tasks (1), factories (N), all operations (R =
Vi machines (S = ), S,,), the maximum number of operation types (0), and the
num new tasks (P). In Supplementary material, Appendix B, Table B1 summarizes the
structure and size of each generated problem instance. The generation process is based on
[14] and detailed in Supplementary material, Appendix B, Table B2.

In addition, to enhance solution quality, the parameters of the metaheuristic algorithms
were optimized using the Taguchi method, which allows efficient tuning of multiple
parameters through minimal experimentation [56, 57]. An appropriate orthogonal array was

selected based on parameter counts and levels, and three representative instances (Problems

14



3, 8, and 13) were used to reflect different problem scales. Objective function (OF) values
were normalized through Relative Percentage Deviation (RPD), as defined in Equation (39),
and the average value was used as the performance indicator. Final parameter levels for each
algorithm are provided in Supplementary material, Appendix B, Table B3.

_ (SOIAIg _SOImin) (39)

- (sol_,, —Sol_. )
<
>

A detailed examination of the experimental findings derived the proposed

RPD

6.2. Statistical comparison of metaheuristic algorithms

algorithms is provided in this section. To assess the performanCe, of the metaheuristic
approaches, each method was independently executed 30 tim.es instance, with average OF
and RPD values serving as the key evaluation metrics. Resy{i oss different instance sizes
are summarized in Supplementary material, Appen , Tables B4-B6, with visual
comparisons shown in Figures 3 and 4, distinguish@ erformance across small, medium,
and large instances as well as problem types (scEd)u g vs. rescheduling).

The results indicate that KATS exhibit€d the best performance in scheduling tasks,
whereas GATS outperformed others irfrescheduling scenarios. Interval plots of RPD values
(Figure 5) further illustrate algeri %behavior across different problem categories. The

m; algorithms (SMs and PMs), SMs consistently yielded

introduced, significanfimprovements were observed. KATS, GATS, and KASA led the
hile GATS, KATS, and TS performed best in rescheduling. Notably,

oduced the weakest results. To ensure the statistical validity of these

results indicate that among m
better results than % ased methods. However, when hybrid algorithms were

observati

?yver, these findings underscore the effectiveness of hybridization, where the
exploratory strength of PMs (GA, KA) is complemented by the intensification power of SMs
(SA, TS, SEO). Hybrids such as GATS and KATS outperformed their respective standalone
components; GATS and KATS surpassed TS; GASA and KASA exceeded SA; and GASEO
and KASEO outperformed SEO.

ditional analysis was conducted.

First, Levene’s Test was applied to assess homogeneity of variances. Due to the violation
of this assumption, the non-parametric Friedman test was used to rank algorithm

performance. As shown in Table 2, KATS ranked highest for scheduling problems, followed

15



by GATS, while this order was reversed in rescheduling problems. When considering all
instances, GATS emerged as the overall best performer, offering a balanced approach across
both problem types.

In summary, while KATS is the best choice for pure scheduling problems, the hybrid
approach employed in GATS makes it an effective method for solving the rescheduling
problems. Moreover, the general applicability and adaptability of GATS suggest that it may
be the preferred algorithm when a single method is to be employed for solving_both

scheduling and rescheduling problems. O

6.3. Algorithm evaluation on benchmarks ‘D’Q

To address the lack of suitable benchmarks for the proposetl seheduling problem,
characterized by delivery time windows, SDST, logistics co ations, and task arrival
time, a new benchmark set (BMT01-BMT30) was develop d on [58]. These instances,
divided into small, medium, and large sizes, vary ainthe number of tasks, factories,
operations, and machines (i x n x r x s). Detaile@tures are provided in Supplementary
material, Appendix C, Table C1. O

Besides, for parameters not explici fined in the original benchmark, such as
intermediate and final logistics times, SDST, and task arrival times, relevant ranges reported
in [14], which addresses simi ﬁtion settings, were used. The SeTruns, MTThm, and
FTTni follow uniform dist mover the intervals [5, 15], [30,180], and [30, 300],
respectively. Furthermor arrival times were modeled using an exponential distribution
with a mean of 120. @the number of new tasks was assigned up to {1, 2}, {2, 3}, and
{3, 4, 5, 6} for Wedium-, and large-sized instances, respectively.

Summary«reSults are presented in Supplementary material, Appendix C, Tables C2 and C3
and visu@ In Figures 6 and 7. Figure 6 compares the performance of algorithms for 30
schedUhpg-stage benchmark instances, while Figure 7 presents the corresponding results for
30 mming-stage instances, both based on average objective function values computed
over 30 independent runs. The findings confirm the algorithmic trends previously discussed
that KATS excels in scheduling scenarios due to its effective use of the tabu mechanism,
while GATS outperforms others in rescheduling problems, highlighting its balanced search
dynamics under dynamic conditions. To assess the effectiveness of the rescheduling strategy,

the next section compares rescheduling strategies described in section 3.3.
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6.4. Dynamic scheduling

The evaluation of the performance of the proposed rescheduling strategy (Strategy 2)
against a first reactive approach (Strategy 1) is summarized in Supplementary material,
Appendix D, Table D1. As seen in Figures 8 and 9, Strategy 2 significantly outperforms
Strategy 1 by enabling dynamic machine reassignment and resequencing. On average, it
reduces total delivery deviation and average machine idle time by 45.45% and 32.48%,
respectively. In contrast, the rigidity of Strategy 1 leads to underutilized resources and %er
idle periods. These results highlight the advantages of rescheduling problems ‘I&@oving
overall system efficiency and responsiveness. Q

6.5. Sensitive analysis x&

The robustness of the proposed models is assessed agaih t%ges in the delivery time
window, logistics durations, and the number of newly arti %sks. Figure 10 illustrates, a
+30% variation in delivery time window, logisti s significantly impact delivery
deviation and logistics duration. An increase in th&@

nearly zero at +30% by offering greater x% g flexibility. In contrast, a -30% reduction
to

ery time window reduces deviation to

raises deviation above 1600 units due ighter constraints. Meanwhile, logistics times

increase with higher parameter val rowing from about 100 units at -30% to over 700
units at +30%, indicating lon elivery durations and greater difficulty in meeting
deadlines.

Figure 11 shows ct of increasing newly added tasks on model performance. A
sharp, nonlinear i igin the OF is observed, from under 500 with 2 new tasks to nearly
5000 when the Q reaches 12. As the number of new tasks increases, the complexity of
schedulin esource allocation also rises and leading to a significant increase in delivery
devj tior,&%pecially when resources are limited or variable. This behavior underlines the
syst%? sensitivity to this dynamic event and the importance of adaptable scheduling

mechanisms.

6.6. Managerial insights

Insights from the sensitivity analysis provide practical guidance for improving operational
efficiency and minimizing delivery deviations in distributed environments such as CMg and

shared manufacturing. The results suggest that a greater delivery window makes it easier to
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coordinate the operations across various machines in different factories and reduces the
chances of delays. For instance, increasing the delivery time window by 30% led to a sharp
decrease in delivery deviation, from over 1600 units to nearly zero, demonstrating the
significant scheduling flexibility it provides. Conversely, tighter windows (+30% to —30%)
impose rigid constraints, increasing delivery deviation by over 1600 units. Managers should
therefore identify high-risk, tight-deadline orders early and allocate extra logistical or
scheduling buffers to prevent failures in delivery targets.

Moreover, the findings showed that delivery deviation increases approximately %0
to 800 when logistics times rise by 30%. This negative impact of underscore.&ed for
stable and efficient transportation strategies, such as optimizing distgi n hubs or
collaborating with reliable transportation providers. Additionally, the rf(h{ of new tasks
intensifies scheduling complexity, potentially leading to resour&icts and delivery
delays. Hence, prioritization mechanisms and task classificatjon based on urgency can
mitigate these effects. Finally, due to the system's inhereMXitivity to dynamic changes,
static scheduling proves inadequate. Reactive res ng strategies are essential for

maintaining performance under uncertainty, enab ely adjustments and better resource

utilization. % C)
7. Conclusion /%

This study presents a D Mg, incorporating practical constraints such as delivery time
windows, SDST, final legi
nature, six hybrid M

, and task arrival times. To address the model's NP-hard
e developed by integrating GA and KA with SMs (SA, TS, SEO),
and benchmarke st five baseline methods.

Experim aluations based on benchmark instances and Friedman test revealed that
hybridiz@x significantly improves algorithms’ performance. Specifically, KATS was most
effe or scheduling problems, while GATS excelled in rescheduling scenarios. Notably,
the med rescheduling approach outperformed the Strategy 1, with fixed initial schedule,
by reducing total delivery time deviation by up to 45% and machine idle time by 32%,
emphasizing the value of adaptive scheduling strategies in dynamic environments.

The findings underscore the importance of reactive scheduling in dynamic CMg
environments. Future research could focus on enhancing the proposed dynamic scheduling
framework by incorporating stochastic elements to better capture uncertainties in processing
times and logistics operations. Additionally, integrating machine learning techniques to guide
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adaptive metaheuristic hybridization can improve search efficiency and responsiveness in
highly dynamic cloud manufacturing environments. Moreover, expanding the model to multi-
objective formulations would allow simultaneous optimization of delivery time, energy
consumption, and operational costs, aligning with sustainable manufacturing goals. Besides,
exploring alternative reactive scheduling strategies, including hybrid reactive-predictive
approaches and decentralized decision-making, could further improve flexibility and
scalability. Finally, validating the proposed methods through real-world ind@t:ial

implementations would provide critical insights for practical deployment and c@ us
[ J
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Table 1. Model characteristics and solution methodologies of DSPCMg.

Model characteristics

Dynamic event(s)

Solution approach

Paper  ~Spiective(s) MIP AT MTT SeT FTT DT SR oT
[16] Utilization rate * SB Game
theory
[17] Combination of cost, time, * SB GA
reliability, robustness, & stability
[35] Makespan * SeT change GA
[18] Weighted sum of time, cost, * * Requirement deviation Hybrid of GA-ACO
quality, & capability
[36] Weighted sum of completion * *  DTA RL
time, utilization, & task overhead
[19] Completion time & cost * * Delay or early GA
completion & task
change
[21] Completion time, cost, & * * oo * NT MPBBO (b
reliability
[20] Makespan, cost, & reliability * * * NT & materials delay GA ®
[22] Total cost * * NT GA N
[23] Average tardiness *oox *  DTA RLFbased MDP
[24] Total makespan * SB, new service R ;%‘ MDP
[25] Weighted sum of time, cost, & * SB, NT, service d of HHO and
quality preemption GA-II
Sum of flexibility & user &(
evaluation
Provider profit
[27] Weighted sum of time, cost, * DTA, SB, & PSO
quality & utilization maintenance® (b
[14] Completion time *o* *  DTA '\ RL
Resource utilization &
[26] Weighted sum of cost of vehicle * * Deman n TLBO
rent, power, & maintenance
[9] Weighted sum of quality, * * * S lity change MTMC
reliability, & total cost '
& due time deviation &
[28] Makespan & cost * rvice rate change AC
[29] Weighted sum of time, cost, &  * * * > ¢ Service unavailability PPO
reliability
[30] Finish time deviation * *  Service & task change GA
[12] Makespan * oo NT BHDDE
Total disturbances
[31] Total tardiness * * *  DTA MPCEA
This  Total delivery deviation * * * * NT KATS, GATS, KASA,
work GASA, KASEO,
GASEO

* Mix integer programming (MIP), opti

final transportation time (FTT), due
scheduling rules (SR), Genetic algo
optimization (PSO), teaching -léafni
based optimization (MPBBO)
multi-population cooperativgl

i

A), meta-knowledge transfer based multi-population co-evolution (MTMC), particle swarm
sed optimization (TLBO), multi-objective elitist Jaya (MOEJ), multi-population biogeography-
ant ny optimization (ACO), non-dominated sorting GA-11 (NSGA-II), harris hawks optimization (HHO),
tionary algorithm (MPCEA), bi-objective hybrid discrete differential evolution (BHDDE), actor-critic
(PPO), Markov decision process (MDP), reinforcement learning (RL).

(AC), proximal policy (@
Table 2. Resultsﬁrq ng the algorithms based on the Friedman test.

Algorithm ) blems Schgduling problem Resc_heduling problem
QRlan Rank Median Rank Median Rank
GA 597 7 0.669 8 0.547 5
GAS 0.404 4 0.310 4 0.555 6
GASE 0.575 8 0.734 9 0.540 4
GATS 0.025 1 0.071 2 0.018 1
KA 0.900 11 0.996 11 0.830 10
KASA 0.330 5 0.126 3 0.728 9
KASEO 0.453 6 0.406 6 0.603 8
KATS 0.052 2 0.000 1 0.197 2
SA 0.677 10 0.424 7 1.000 11
SEO 0.645 9 0.798 10 0.595 7
TS 0.275 3 0.347 5 0.241 3
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