
 

 

Study of Darcy-Brinkman gravity modulated Thermal Bio-Convection Under 

Internal Heating Effect in a Casson Fluid Saturated Porous Medium 

Patil Mallikarjun B1,* Akhila P A1 and Ali J. Chamkha2 

1Department of Studies and Research in Mathematics, Tumkur University, Tumakuru-572103, 

India 

2Faculty of Engineering, Kuwait College of Science and Technology, Doha- 35004, Kuwait. 

Email: *mbp1007@yahoo.com (+91 9916907191), pa.akhila.1993@gmail.com, 

achamkha@yahoo.com 

Abstract 

In the present study, microorganisms whose stimulus is influenced by gravity and viscosity is taken 

for consideration in Casson fluid saturated porous medium. The behaviour of microorganisms in 

Casson fluid due to gravitational modulation and internal heat generated in the system is studied 

analytically. Darcy-Brinkman model is implemented to analyze thermo bioconvection in 

horizontal flow of the fluid. Stationary mode of convection produces both linear and nonlinear 

stability. The threshold Rayleigh number, which addresses the initiation of bioconvection, is 

determined by linear stability analysis. This comprises parameters for which marginal stability 

curves are plotted to understand the stability and onset of convection of the system against 

wavenumber 𝑘𝑐. The equation for Nusselt number is also used to describe nonlinear stability and 

to graphically illustrate how various parameters affect heat transfer in the system. In heat transfer 

analysis, the Ginzburg-Landau equation which characterizes the modulation amplitude is 

significant. Here, the behaviour of gyrotactic microorganisms in Casson fluid due to various 

parameters under the influence of gravity modulation and internal heat is picturised. From this 

study, we find that the Casson parameter decreases the critical Rayleigh number leads to the 

advancement of onset of convection and reduces heat transfer in the system. 
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1. Introduction 

Many various fields find substantial practical applications in the study of fluid flow in a porous 

material. In particular, viscoplastic fluids are crucial in the phenomena of convection. We consider 

Casson fluid saturated porous material for our investigation. Also we are interested to discuss the 

interdisciplinary aspect by including the behaviour of microorganisms under the influence of 

various parameters in a Casson fluid saturated porous media. This study of thermal bioconvection 

is the major part of the current problem. There are several practical uses for these viscoplastic 

fluids. Casson, also known as the biviscous Bingham fluid, is one such well-known fluid. Based 

on yield stress 𝑃𝑦, this non-Newtonian fluid has two distinct natures: viscous fluid and rigid solid. 

At comparatively high shear stresses, it exhibits pseudo-plastic behavior. The primary objective 
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of the study is to analyse the stability of the system due to the presence of microorganisms in a 

non-Newtonian Casson fluid.  

E.C. Bingham [1] was the pioneer to introduce thorough mathematical model for Casson fluid 

based on its yield stress in early twentieth century. Pharmaceutical industries, coal processing 

industries, clay products and paint manufacturing industries and many such similar industries 

require Casson fluid. For the Casson fluid, Swathi et al. [2] conducted research on unstable 

twodimensional flow over stretched surfaces. Pramanik [3] investigated the Casson fluid's 

boundary layer flow. Heat transfer beneath an increasingly extending surface was involved in this. 

Imran et al. [4] studied hydromagnetic effect produced by extending wedge submerged in Casson 

fluid in steady two-dimensional flow under boundary layer theory. Exact solutions for the unstable 

Casson fluid flow in a porous media with an embedded infinite vertical oscillating plate and an 

applied MHD were discovered by Abid et al. [5]. The temperature-dependent viscosity and thermal 

conductivity of a steady incompressible Casson fluid laminar flow were examined by Animasaun 

et al. [6]. A research using both linear and nonlinear analysis was conducted on the Casson fluid 

by Keerthana et al. [7]. Saleem et al. [8] studied thermal radiation effect on non-Newtonian 

Carreau fluid with one parameter lie scaling. Then Tufail et al. [9]-[10] made an attempt to study 

joule heating and viscous dissipation on Casson fluid with two parameter lie convection and also 

a theoretical analysis of chemically reacting mixed convective Casson fluid flow. An intriguing 

addition to the study is the incorporation of a porous medium in conjunction with gravity 

modulation. While, Ali et al. [11] studied on bio-viscosity using Keller box technique. Majeed et 

al. [12] made an extensive study on numerical simulations of energy storage performance. 

Later, Saleem et al. [13] and Tufail et al. [14] studied on MHD Casson fluid using Two-parameter 

Lie scaling approach and Maxwell fluid through shrinking sheet with the Lie group approach. On 

the other side, Maya et al. [15] impacted on the MHD mixed convective lid-driven cavity with 

wavy bottom surface. Rafaie et al. [16] and Ali et al. [17] made AI-based predictive approach 

using CFD-ANN and spacing effects on flows around two square cylinders respectively. With the 

same Lie group analysis, Saleem et al. [18] studied heat and mass transfer by non-Newtonian fluid 

in an irregular channel. Then, CNT-water and human blood based Casson nanofluid flow was 

studied by Alkasasbeh et al. [19]. On the same line Saleem et al. [20] made a study on Thermal 

effects of ternary Casson nanofluid flow over a stretching sheet. Also Saleem et al. [21] made a 

comparative study on Williamson and Casson fluid on exponential stretching sheet. Consequently, 

Iqbal et al. [22] studied Darcy Casson fluid flow in a vertical channel: a Lie group approach. 

Scholars and scientists have recently developed an interest in a novel field of study related to 

bioconvection in a porous media. The study of microorganisms moving through a fluid due to 

convection is known as bioconvection, and it is particularly pertinent to oil production technology. 

Thus, theoretical investigation of the connection between bioconvection and natural convection is 

needed. When self-propelled microorganisms with a density greater than that of the surrounding 

fluid medium exist, convective patterns are created. This phenomenon is known as bioconvection. 

Platt [23] coined the term bioconvection and studied the shifting polygonal patterns in 

Tetrahymena dense cultures. Rayleigh-Taylor instability has been used by Plesset and Winet [24] 

to discuss bioconvection. Pedley et al. [25] introduced the theoretical bioconvective model for 

gyrotactic bacteria. Following that, Hill et al. [26] examined the biothermal convection patterns of 

an increasing number of bacteria in a finite depth layer. 



 

 

Studying this process requires an understanding of the motion and significance of bioconvection 

in its interaction. Thermal convection in porous media has been the subject of numerous 

computational simulations developed by researchers to date. For gravitactic microorganism 

bioconvection, Chandrashekhar [27], Drazin and Reid [28], Vafai [29], and Childress et al. [30] 

are the first to model a comprehensive theory. Several academics have also developed 

mathematical models based on the idea of heat convection in porous and fluid media. 

Darcy-Brinkman equations are commonly used method for examining flow in high porosity porous 

media. Under gravity modulation, Zhao et al. [31] investigated the same. Here, the chaotic nature 

of the fluid is highlighted. In this regard, numerous problems arose with the DarcyBrinkman 

model-based study of bioconvection in high porosity media. A comprehensive study on the 

temperature-induced instability of fluid layers in porous media was carried out by Ingham and Pop 

[32]. Nield and Bejan [33] discussed internal free convection in connection to porous media. A 

comprehensive investigation of heat transfer rates related to fluid flow in rotating porous media 

was provided by Vadasz [34]. The thermal instability of the system is the main focus of the works 

mentioned above. Similar studies on free or natural convection in fluid-saturated porous 

media were carried out, taking into account a number of variables like gravitational modulation, 

rotational modulation, and magnetic field, among others. 

A gyrotactic microorganism is an organism that moves in a certain direction in response to viscous 

and gravitational forces. We shall focus on this idea in our research. The mathematical model of 

bioconvection theory describes the motile pattern formed by the microorganisms suspended in the 

fluid. Pedley et al. [35] created the linear stability theory to examine the stability of biothermal 

convection brought on by gravitactic and gyrotactic microorganisms in a shallow layer of a simple 

fluid. 

An important investigation on the kinetics of biological processes in porous media was carried out 

by Avramenko, Nield, and Kuznetsov. If the permeability is below the threshold/critical value, 

bioconvection does not occur. On the other hand, if the permeability is higher than the threshold 

or critical value, bioconvection may happen. To explore the marginal stability of the bioconvective 

system, the threshold Rayleigh numbers are found for a range of physical parameters such as cell 

eccentricity, Peclet number, and gyrotactic number. Their investigation focused on the effects of 

bioconvection in both horizontal and vertical flow on gyrotactic bacteria floating in a porous 

media. 

In their study, Hwang and Pedley [36] investigated the effects of uniform shear on instability 

caused by biothermal convection in a shallow media containing moving gyrotactic 

microorganisms. The results of the study indicate that bioconvective instability in a diluted 

solution can be caused by three distinct mechanisms: gravitational effect, cell gyrotaxis, and 

negative cross-diffusion flow. At sufficiently high velocities, shear acts as a stabilizing force, much 

like Rayleigh-Bénard convection (RBC). Sharma and Kumar [37] then used analytical and 

numerical techniques to investigate the effect of vertically vibrated high-frequency on the onset of 

biothermal convection in a diluted solution of gyrotactic bacteria. Their findings demonstrated that 

the bioconvective Peclet number and high frequency, low amplitude vertical vibration stabilize the 

system. 

Zhao et al. [38] investigated biothermal convection in a medium with high porosity while 

accounting for a suspension of gyrotactic microorganisms, therefore expanding the use of this 



 

 

model. They did a stability study to look into how biothermal convection reacts to heat applied 

from below. Using the Brinkman-Darcy model, Kopp et al. [39] examined the effects of a 

vertically vibrating magnetic field in a porous media saturated by a nanofluid containing gyrotactic 

microorganisms and water as the base fluid. A larger concentration of gyrotactic microbes has 

been demonstrated in [39] to accelerate the onset of magnetic convection. Additionally, Kopp and 

Yanovsky [40] examined how the rotational effect and the Coriolis force interacted in a layer of 

porous material that was saturated with biothermal convection and gyrotactic microorganisms. 

One of the biggest challenges in technical and engineering applications is controlling mass and 

heat transfer. Several methods of manipulating convective processes involve the application of 

modulation effects or external parametric effects to the system. Magnetic field modulation, 

rotational modulation, temperature modulation and gravity modulation are examples of frequently 

used modulation procedures. We use a convection control technique in this work that is based on 

the gravitational field modulation. Before explaining our choice of gravitational modulation, we 

give a brief synopsis of pertinent research that investigates the application of gravity modulation 

in various convective systems. Gravity modulation was initially used by Gresho and Sani [41] to 

increase the stability of a fluid layer heated from below. The authors suggest that this kind of 

gravity modulation might be accomplished by creating a vertical oscillation in a fluid layer in a 

continuous gravitational field. Malashetty and Begum [42] carried out more study on the effects 

of small-amplitude gravity modulation on the initiation of convection in fluid layers and fluid-

saturated porous surfaces, as well as additional physical features for non-Newtonian fluids. 

Govender [43] conducted research on a porous layer subjected to gravity modulation under natural 

convection. In addition to considering synchronous and subharmonic solutions, the study included 

a linear stability analysis and a weak nonlinear analysis. It was shown that as the excitation 

frequency is raised, convection swiftly stabilizes until the transition point is achieved. 

Under gravitational modulation, Kiran [44] investigated the nonlinear thermal instability in a 

viscoelastic, nanofluid-saturated porous medium. Under the same effect Kiran [45] made an 

analysis on weekly nonlinear statbility in a fluid layer bounded by rigid boundaries. In a porous 

media, Bhadauria et al. [46] investigated how gravitational modulation and internal heating affect 

oscillatory convection. Additionally, Hopf and Pitchfork bifurcations were investigated. 

The stability of thermo-bioconvection into an anisotropic porous fluid layer saturated with Jeffrey 

liquid-a substance produced by gravitactic bacteria-was recently studied by Arpan et al. [47]. Their 

findings show that the system becomes unstable as the number of bioconvection peclets and the 

concentration of bacteria rise. For low concentrations of microbes, increasing the thermal 

anisotropy strength results in the system stabilizing and the convective cell size growing. Kopp 

and Yanovsky [48] have reported the effect of g -jitter on weakly nonlinear biothermal convection 

in a porous medium. They investigated how changes in gravity affect bio-porous convection, in 

which the bio-convective cell is solely modeled as being under the influence of vertical vibrations. 

The impact of internal heating on bio-Darcy convection was recently described by Akhila et al. 

[49].  Further, along with the gravity modulation, double diffusive biothermal convection in porous 

media was investigated by Akhila et al. [50] to study weekly nonlinear stability analysis.  Chandan 

et al. [51] extended to Casson fluid under the same internal heating and gravity modulation. This 

was quite previously studied by Akhila et al. [52] in Casson fluid only under gravity modulation. 

It is found that internally heated layers even govern bioconvection in the presence of gravity 

modulations. Their findings indicate that when viscous and gravitational torques combine, 



 

 

microorganisms can swim in the direction of downwelling fluid (M.A. Bees [53]). On the other 

hand, there is no record of what happens when they cross the boundaries. Whether or not the 

convection of the swimming microorganisms could be impacted by the unequal heating at the 

boundary. The present work aims at providing an explanation of bioconvection in the presence of 

plate modulation. The literature makes it abundantly evident that there is limited number of studies 

have been found on the introduction of gravitactic microbes to a rotating porous layer that is 

responsive to gravity modulation. As a result, the above literature review motivated us to learn 

more about the interactions between gravitaxis, gyrotaxis, and thermal convection in a Casson 

fluid-saturated porous medium under the influence of internal heating and gravity modulation. 

This article's major objective is to investigate the behavior of weakly nonlinear thermal 

bioconvection in a porous media that is saturated with gyrotactic microorganism-containing 

Casson fluid.The study focuses on the effects of variation in the gravitational field modulation and 

internal heating effect using the Ginzburg-Landau (GL) model. 

This work can be used to relevant fields in the biotechnological, medical, geoscientific, and 

environmental sciences. It is based on Brinkman and Darcy gravity modulated thermal 

bioconvection model for gyrotactic microorganisms in porous media saturated by Casson fluid in 

the presence of an internal heat source. This is an interdisciplinary field with a broad application 

in biomathematics. 

2. Problem Statement and Formulation 

The physical interpretation of the problem is as shown in Fig 1. Infinite horizontal parallel plates 

between which Casson fluid saturated porous medium of thickness h  is considered. The walls of 

the horizontal plates are completely thermal conducting and perfectly impermeable. As shown in 

the geometry, there exist a temperature difference between lower and upper plates whose 

temperatures are given by 0T T  and 0T  respectively.  Gyrotactic microorganisms present in the 

porous medium layer experience gravity modulation and undergo thermal bioconvection. The 

gravity modulation is given by  2

0 1 ( )geg Cos t    that is acting vertically downwards parallel 

to z -axis. Here, e  is the unit vector along z  direction, 
0g  is the magnitude of the mean 

gravitational field vector, amplitude and frequency of the gravity modulation are denoted by   

and g , respectively, whereas   is a minor dimensionless parameter. Here, we assume the pores 

of the porous medium are sufficiently large enough to accommodate gyrotactic microorganisms 

and allow them to swim. The Darcy-Brinkman model for the considered geometry are governing 

the problem as follows: [40], [48], [49] 
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Here, DV
V


, where  is the porosity of porous media, connects the fluid velocity V and the 

Darcy velocity ( , , )DV u v w . The viscosity of the Casson fluid is denoted by   and 
c  consists 

of the Brinkman effective viscosity and dynamic viscosity. The porous media permeable nature is 

indicated by K , while the fluid's density at the reference temperature 
0T  is indicated by 

0 . 

Further, ,P  and g  are pressure, thermal expansion coefficient and gravitational acceleration 

respectively. A unit vector in the direction of z -axis is denoted by (1,0,0)e  . The fluid heat 

capacity is ( ) fc , whereas its effective heat capacity is ( )mc  with effective thermal conductivity 

given by 
mk . Furthermore, the difference in density between microorganisms and a base fluid is 

represented by m f    . The concentration of microorganisms in the fluid is n . Microbes 

have a diffusivity of mD  and an average volume of  . Lastly, the average swimming velocity of 

an individual microorganism is (0)cW I , ( 
cW  is constant). The direction of motion of 

microorganisms with temperature are represented by the unit vector ( )I t . The stress tensor for 

Casson fluid is modelled as [7] 
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B  is dynamic viscosity. Since the Casson fluid is viscoplastic, the 

rate of deformation   of a non-Newtonian fluid (NNF) model surpasses its threshold value c . 

This is referred to as yield stress and is represented by yP . The Casson parameter denoted by   

is defined as [7] 
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The boundary conditions for the above governing equations are given as follows: [40], [48], [49] 
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 is the flux of the microorganisms through the system. The non-

dimensional parameters that are to be included in analysing the problem is as follows: [40], [48], 

[49] 



 

 

              * * *( , , ) ( , , )x y z h x y z ,  
*

D D

m

h
V V


 ,  

*

2

( )

( )

mt
t

h




 ,   

* ( )

( )

u

d u

T T
T

T T





 

 
*

m

PK
P


 ,  

( )

( )

m

f

c

c




  ,   *n n  ,   

2
*

g g

m

h
 




  (10) 

where, 
( )

m

f

mk

c



  is thermal diffusivity coefficient. On non-dimensionalising Eq. (1) to Eq. (4) 

using (8) and on removing the asterisks, we get the system of non-dimensional equations that 

follows: 
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where, 
21 ( )m gf Cos t   . The corresponding non-dimensional boundary conditions are given 

by [40], [48], [49] 
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Each above mentioned parameter has their significance in heat transfer phenomena of the system. 

 



 

 

2.1 Basic State (Conduction State): 

Since the fundamental state preceeding the onset of convection is known as the conduction state. 

Thus, we presume the fundamental (conduction) state is totally time independent and is as below 

by [40], [48], [49] 

                                      ( )bP P z ,   ( )bT T z , 0D bV V  ,   ( )bn n z .         (17) 

In order to obtain the stable profiles of microbe concentration ( )bn z , temperature ( )bT z , and 

pressure variation ( )bP z  in the conduction state, the following equations must be solved: 
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The temperature distribution ( )bT z  is obtained by integrating Eq. (18) and taking into account the 

boundary conditions in Eqs. (15)-(16). The result is as shown below: 
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where, (0)bn  is the density of the Casson fluid at the bottom of the layer. The (0)bn  (constant) is 

found as 
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Since, Peclet number Pe  is thought to be extremely small, 0( )bn z n , indicating that ( )bn z  is 

roughly constant in the layer, according to Eq. (22). This case is considered to simplify the 

convective analysis. 

Given the assumption that 0P P  at 1z  , the pressure distribution can be determined in the 

conduction state as follows: 
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2.2 Perturbed state: 

Perturbation is the small disturbance arises in the fluid layer on heating from below. Velocity, 

pressure, temperature and concentration of microorganisms and pressure of the perturbed state is 

stated as follows: 

       ' ( )bn n n z  ,   ' ( )bT T T z  ,   'DV V ,     ' ( )bP P P z  ,    ( ) '( )I t e m t                   (25) 

The following equation can be used to determine the perturbation of the unit vector, which 

represents the direction in which the microorganisms are swimming, when taking gravity 

modulation into account. ([40], [48], [49]) 
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  represents the dimensionless parameter, in the absence of modulation, that 

indicates the reorientation of microorganisms owing to the action of a gravitational moment in 

relation to viscous resistance. 

In Eq. (26) the parameters   and   in the x and y  components of vector 'm  are 
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Here, 0  is the cell eccentricity defined as 2 2 2 2

0 ( ) / ( )M m M mr r r r    , where the semi-major and 

semi-minor axes of the spherical cell are denoted by the numbers Mr  and 
mr , respectively. The 

following are the equations for the variables ', 'V T  and 'n  if we replace (25) into Eqs. (11)-(14): 
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The nondimensional orientation parameter in the absence of modulation is 2

0 0 /mG D B h . For the 

2D flow model, we introduce   as the stream function to determine the velocities as follows: 
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 (32) 

The dimensionless governing equations that follow (after asterisks are removed) are obtained by 

transferring Eq. (32) into Eqs. (29)-(31), applying the outcomes for the fundamental state, and 

eliminating the pressure term. 
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We rescale the system, concentrating on the stationary mode of thermal bioconvection, by 

establishing 2t   with a little time variation. The nonlinear system of equations (33)-(35) can 

be expressed in matrix form as shown below: 
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  (36) 

To solve the system shown in Eq. (36), impermeable boundary conditions need to be considered 

as follows: 

2 0T n       at   0z     and  1z     (37) 

3. Weakly nonlinear instability analysis 

We employ the subsequent asymptotic expansions to Eq. (36) in order to investigate the stationary 

instability: 
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The critical Rayleigh number, 
cRa , denotes the temperature at which convection begins in the 

absence of gravity modulation. 

3.1 Stability analysis in lowest order system 

At the first order, the system simplifies to a linear model with negligible nonlinear effects. The 

following is an expression for the system: 
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Subject to the boundary constraints provided by Eq. (37), the first order system's solution is as 

follows: 
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The following is the expression for the critical (threshold) Rayleigh number 
cRa : 
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Wave number 𝑘𝑐 is obtained by minimizing 
cRa  with respect to 2

ck . This is used to determine the 

onset of convection. It is possible to differentiate 
cRa  with respect to 2

ck  and then set the derivative 

to zero. By resolving this equation, we may get the associated wave number for the convection's 

beginning. 

But regular bioconvection, which is induced by the movement of bacteria, occurs when the system 

is not internally heated. In this instance, the bioconvection-governing parameter is the 

bioconvective Rayleigh number bR . 

3.2 Stability analysis in second order system 

The Jacobian terms in the right-hand side of Eq. (36) introduce the nonlinear effects at this order 

and explain how fluid velocity, temperature, and microbiological diffusivity interact. The system 

of the resulting equations in second order can be represented alternatively as follows: 
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where, 
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The first-order solutions given in Eqs. (43) can be used to generate the second-order solutions. The 

subsequent expressions represent the second-order solutions that take boundary conditions (37) 

into account. 
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where, 2 2

0 0 0 0((1 ) (1 ) )b cPeG n L k       . 

To evaluate the heat transfer using the stationary convective mode and the Nusselt number 

( )Nu  , we make use of the following expression. 
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It is possible to compute the heat transfer quotient ( )Nu   after obtaining the expression for the 

amplitude ( )A  . The asymptotic expansion established in Eqs. (38)-(41) demonstrates that the 

gravity modulation is important only at the third order in terms of  . For gravity modulation on 

heat transfer, the mean Nusselt number Nu  is defined across a suitable interval (0, 2 ) . 
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Mean Nusselt number Nu  is quantitatively assessed in relation to many parameters, and Fig. 6 

presents an equivalent graphical analysis. 

3.3 Stability analysis of the system in its third order 

To study the stability analysis at this order, we get a matrix as below: 
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The solvability condition given below can be used to extract the Ginzburg-Landau equation of 

amplitude for the stationary mode of convection with time-periodic coefficients from the third 

ordered solution. 
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where, 𝜓1
∗, 𝑇1

∗ and 𝑛1
∗ are obtained by taking the adjoint of Eq.(43). On solving Eq. (58), we obtain 

ampitude equation which is given by 
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There is no autonomy in the amplitude equation given by Eq. (58). The numerical solution has 

been obtained using the built-in Mathematica function NDSolve. The problem is solved by using 

the beginning condition 
0(0)A A , where 

0A  is the chosen initial condition for the amplitude 

of convection. We assume 
2 cRa Ra  since we are interested in the nonlinearity approaching the 

critical stage of convection. Thus, in this theory of weakly nonlinear convective instability, a 

modest expansion parameter 2  is the relatively small deviation of the Rayleigh number Ra  from 

its critical value 
cRa , as shown by 
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
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As a result, the analytical solution for the unmodulated case of the aforementioned Eq. (58) is as 

follows: 
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where the unmodulated amplitude of convection is represented by ( )uA  .  
1B  and 

3B  are as given 

in Eqs. (59) and (61), whereas 
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4. Observations and Discussion 

The Ginzberg-Landau equation for amplitude in stationary mode of biothermal convection along 

with gravity modulation in Casson fluid saturated porous medium has been derived by the use of 

perturbation approach in the inquiry. For given initial values, a numerical solution to the GL 

problem is found. The obtained amplitude is used to calculate heat transfer parameter called 

Nusselt number Nu  which describes heat transmission rate in the system. For the corresponding 

wave number ck , the linear theory yields the critical or threshold Rayleigh number cRa , which 

provides a clear picture of the commencement of convection. In the current investigation, we 

encounter a number of characteristics that affect the system's heat transmission and 

commencement of convection. The transition point we observe in the curves represents critical 

Rayleigh number. In Fig. 2, the relationship between cRa  and ck  is plotted for a range of parameter 

values. We can see how the Darcy number affects the beginning of convection in Fig. 2(a). The 

critical Rayleigh number increases in proportion to the growing value of aD . As a result, 

convection takes longer to start, stabilizing the system for a longer period of time. Whereas, in 

Figs. 2(b,c,d and e) we observe the common nature. We detect decreasing values in the critical 



 

 

Rayleigh number with increasing values of the Casson parameter ( ) , internal Rayleigh number 

iR , cell eccentricity ( 
0  ), and modified bioconvection Rayleigh number 

BRa . In other words, 

higher values of the aforementioned parameters cause convection to begin earlier and cause the 

system to become unstable. Therefore, in addition to gravity modulation and the internal heating 

impact, all the study's characteristics determine when biothermal convection begins in a porous 

medium saturated with Casson fluid. For our study, the range of   is taken to be between 0.1 and 

0.3 . In Fig. 2(e), we observe that the threshold Rayleigh number decreases with increasing  . 

The system becomes unstable as a result of the early development of convection. This viscoelastic 

fluid plays some significant role in the commencement of bioconvection which leads to various 

prominent applications in the current scenario. Oil drilling is one such important application where 

microorganism motility comes into action. The presence of Casson fluid may help in better 

improvement in convection. 

Table 1 presents a novel observation and it displays the critical Rayleigh number 
cRa  and the 

associated wavenumber 
ck  for all available parameters. These values are in good agreement with 

the graphical values. 

The next set of graphs are exhibited in Fig.3. These graphs explain the heat transfer rates with 

respect to timescale   in the system due to variation in the existing various parameters. Heat 

transfer in the system is governed by Nusselt number Nu  given in Eq. (51). Modified Vadasz 

number 
a  is varied between 0.5 and 1.5 in equal interval to notice the variation in the graph. This 

parameter increases the heat transfer rate for small timescale. As time increases, there is least 

variation in heat transfer rates in the system which is seen in Fig. 3(a). Whereas in Fig. 3( b), the 

effect of variation of modified bioconvection Rayleigh number 0 0( )B bRa PeG n R  is exhibited. 

The values for BRa  is taken as (0,3,6)  for the investigation of heat transfer. As the value of BRa  

increases, there is a decrease in Nusselt number throughout the timescale  . Hence there is a 

decrease in heat transfer in the system. This depends on gyrotactic number 0G  and concentration 

of microorganism 0n . Cell eccentricity 0 is one such important parameter which describes the 

shape of the microorganisms which has an impact on bioconvection. The value 0 =0 indicates 

the spheroidal shape of microorganism which helps in easy convection leads to increase in heat 

transfer. As the value of 0  increases, there exist irregularity in the shape of microorganisms. This 

leads to disturbance in convective quality. Hence, there is a decrease in the value of Nusselt 

number which is clearly shown in Fig. 3(c). Some significant fact can be observed in Fig. 3(d) 

which has the variation in the value of  . Irrespective of the value of  , the maximum and 

minimum value of Nusselt number remains uniform throughout the timescale. Only the frequency 

of increase and decrease in heat transfer varies. Fig. 3(e) showcases the variation of   i.e., 

variation of amplitude in the system. The value of   is taken between 0.1 and 0.3 . As we can 

notice in the graph, for smaller   values, there exist smaller values of Nusselt number. As the 

value of   increases, there is an increase in heat transfer in the system. Fig. 3(f) shows the impact 

of variation in internal Rayleigh number iR  on Nusselt number Nu . Internal Rayleigh number is 

varied between 0.2 and 0.6 in equal intervals. There is a natural increase in temperature due to 

increase in iR  due to which there is an increase in heat transer in the system. The results are in 

good agreement with [48] and [49]. Finally, Fig. 3(g) is an important part of the current problem. 



 

 

The effect of presence of Casson parameter  on heat transfer in biothermal convection is shown 

in this plot. Increase in the value of   in ten's and hundred's, there is a slight variation in heat 

transfer in the system. As   is found as a reciprocal term in governing equations, we can conclude 

that increase in   leads to small decrease in heat transfer in the system. 

Figs. 4 and 5 show a set of remarkable graphs that represent streamlines and isotherms, 

respectively. When the Rayleigh number rises over the critical Rayleigh number in the Rayleigh-

Benard experimental setup, convection cells gradually form as the bottom layer heats up. 

Isothermal lines and streamlines serve as visual representations of such cells. We discuss these 

lines for different periods. Streamlines travel in two directions: one in a clockwise direction and 

the other in an anticlockwise way. Temperature variations with respect to the variable time scale 

  give rise to isotherms. All of the aforementioned graphs describe the effects of parameters, 

gravity modulation, and internal heat source. 

The following series of graphs, displayed in Fig. 6, examine the mean Nusselt number in relation 

to various parameters. Nu  against   is plotted for different modified Vadasz numbers in Fig. 

6(a). The mean Nusselt number decreases with an increase in 
a . Figs 6(b,c) and 6(e) show the 

same behavior, but in different ways. For altering BRa , respectively, Nu  is plotted against 0  and 

bR  in these graphs. However, Fig. 6(d) shows a different nature from the ones mentioned before. 

Plotting the mean Nusselt number against 
iR  in this case shows that it increases as 

aD  increases. 

The effect of Casson parameter   on mean Nusselt number against internal Rayleigh number 
iR  

is observed in Fig. 6(e). Increasing values of  decreases mean Nusselt number which is the 

significant nature of Casson parameter. 

The comparison of the analytical and numerical Nusselt number values derived for an 

unmodulated case of the amplitude equation is shown in Fig. 7. The coincidence of the heat transfer 

data shown here indicates a fair agreement between the numerical and analytical validations. 

5. Conclusions 

In our study, Darcy-Brinkman model is employed on Casson fluid under the effect of internal 

heating and gravity modulation in porous medium to study thermal bioconvection of gyrotactic 

microorganism. In the first stage, we developed a theory of linear stability on stationary mode of 

bioconvection to derive critical Rayleigh number which is used to analyse the onset of 

bioconvection by plotting marginal stability curves. In the second stage, nonlinear instability 

analysis is done to study heat transfer analysis in the system. The numerous parameters of the 

problem are visually displayed to demonstrate how they affect the system's heat transport and 

marginal stability. We apply perturbation theory to analyze the data, paying particular attention to 

the tiny parameter  , which denotes the divergence from the threshold Rayleigh number. We have 

drawn several inferences from the results of our numerical study. These results shed light on the 

relationship between thermal bioconvection in porous medium saturated with Casson fluid and 

gravity modulation as well as internal heating effects. The following significant findings are 

derived from our findings: 



 

 

1. The parameter Darcy number ( )aD  leads to stabilize the system as we find delayed onset 

of convection. 

2. The parameters namely, modified bioconvection Rayleigh number ( )BRa , cell eccentricity 

0( ) , internal Rayleigh number ( )iR  and Casson parameter ( )  helps in destabilizing the 

system as advancement in onset of convection can be noticed. 

3. As modified Vadasz number ( )a  is raised for a short interval of time, an increase in heat 

transfer is observed. 

4. Because of internal heating effects and gravity modulation in Casson fluid-saturated porous 

media, an increase in the ( )BRa  number reduces heat transfer. 

5. The spherical form of the microbe aids in increasing the efficiency of heat transmission 

mechanism. The more asymmetrical the shape, the less heat is transferred by the system. 

6. An increase in the modulation frequency   has no effect on heat transport. The rate of 

heat transmission only rises with frequency. 

7. Increasing the modulation amplitude   improves heat transmission. 

8. One important feature of the internal Rayleigh number 
iR  is that as

iR  increases, heat 

transmission is improved. 

9. The Casson parameter  diminishes heat transfer on its increasing values due to its 

reciprocal behavior. 

10. Convective cells are displayed in streamlines in a clockwise and counterclockwise pattern. 

11. Convection increases with time scale with respect to temperature, as shown by isotherms. 

12. Numerical and analytical results for Nusselt number are in good agreement with each other. 

Our study sheds light on the relationship between stationary thermal bioconvection in a porous 

media saturated with non-Newtonian Casson fluid and internal heating and gravitational 

modulation. By analyzing the impacts of different factors on a , BRa , 0 ,  ,  , iR  and  , we 

can comprehend the convection process better. Acquiring this understanding will assist in 

efficiently managing and regulating the system's heat transfer. By modifying the above listed 

parameters, heat transfer in a system with a non-Newtonian fluid (NNF) in a porous media 

containing gyrotactic microorganisms can be enhanced or controlled. This knowledge could lead 

to the development of convection control methods, more efficient heat transfer systems, and 

improved thermal management across a range of applications. Casson fluid is often used to model 

blood flow in the human body. In the polymer industry, Casson fluid models are used to study the 

flow of polymer melts and solutions. This helps in optimizing the manufacturing processes of 

plastic products. Casson fluid models are applied to study the flow of food products like chocolate, 

ketchup, and honey. These fluids exhibit shear-thinning behavior, which is essential for processing 

and packaging. 

Nomenclature 

h  thickness of the porous layer 



 

 

dT  temperature at lower boundaries 

uT  temperature at upper boundaries 

0g  Mean gravity 

g  acceleration due to gravity 

e  unit vector in the direction of 𝑧 – axis 

  amplitude of gravity modulation 

g  frequency of gravity modulation 

  non-dimensional frequency of gravity modulation 

  small dimensionless parameter 

DV  Darcy velocity 

 porosity of the porous medium 

T  Temperature 

0T  reference temperature 

0  density of the fluid at reference temperature 

K  permeability of the porous medium 

P  pressure 

  thermal expansion coefficient 

c  Brinkman effective viscosity and dynamic viscosity 

  fluid viscosity 

( ) fc  heat capacity of the fluid 

  Casson parameter 

( )mc  effective heat capacity 

mk  effective thermal conductivity 

n  concentration of microorganisms 



 

 

  density difference 

  average microorganism volume 

mD  diffusivity of microorganisms 
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Figure 1: Physical interpretation of the problem 

 

 

 

 

 



 

 

 

 

 

 

Table I: Numerical analysis of critical Rayleigh number Ra𝑐 with respect to respective 

wavenumbers 𝑘𝑐 for variable parameters: 

Fixed Parameters Variable Parameter Ra𝑐 𝑘𝑐 

Ra𝐵 = 15, 𝛼0 = 0.8 

𝜒 = 1, R𝑖 = 0.2 
𝐷𝑎 =

0.3
0.5
0.8

 

154.012 2.34041 

414.12 2.29041 

808.673 2.26195 

𝐷𝑎 = 0.5, 𝛼0 = 0.4, 

𝜒 = 1, R𝑖 = 0.2 
Ra𝐵 =

0.0
15
25

 

692.299 2.24928 

440.365 2.37519 

269.106 2.47756 

𝐷𝑎 = 0.8, Ra𝐵 = 15 

𝜒 = 1, R𝑖 = 0.2 
𝛼0 =

1.0
2.0
3.0

 

789.447 2.2385 

714.081 2.13535 

632.832 2.05069 

𝐷𝑎 = 0.3, Ra𝐵 = 15 

𝛼0 = 0.8, 𝜒 = 1 
R𝑖 =

1.0
5.0
8.0

 

145.861 2.32738 

104.387 2.23292 

71.5258 2.08295 

𝐷𝑎 = 0.3, Ra𝐵 = 15 

𝛼0 = 0.8, R𝑖 = 8 
𝜒 =

0.1
0.3
0.6

 

803.156 1.6875 

400.495 1.7532 

128.175 1.95338 

 

 

 

 

 

 



 

 

 

 

Figure 2: Stationary Rayleigh number Ra𝑐 against wave number 𝑘𝑐 

 

 

 

 

 

 

 

 

 



 

 

Figure 3: Graphical representation of the Nusselt number Nu versus time 𝜏 with respect to various 

parameters. 

 

 

 



 

 

 

Figure 4: Streamlines : (a) 𝜏 = 0.0, (b) 𝜏 = 0.1, (c) 𝜏 = 0.4 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 5: Isotherm images at : (a) 𝜏 = 0.0, (b) 𝜏 = 0.1, (c) 𝜏 = 0.4 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Figure 6: The graphical representation of the mean (average) Nusselt number Nu with respect to 

various parameters. 

 

 

 

 

 



 

 

 

 

 

 

Figure 7: Analysis between analytical and numerical results of Nusselt number. 

 


