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Abstract: In naturally fractured gas reservoirs with highly h t.%@)us fracture distributions,
high-velocity non-Darcy (HVND) flow tends to occur ne %\Iellbore, especially in fracture-
intensive zones. As flow velocity increases, inertial nlinear effects become significant,
causing deviation from linear Darcy behavior. T xventional Darcy flow equation neglects
these nonlinear factors and thus fails to nt the actual flow conditions accurately. To
address this, a dual-porosity, dual-permeability two-region composite model is developed,
applying Izbash’s equation to the maper HVND zone and Darcy flow to the outer zone. The
model incorporates porosity; nmeability contrasts between matrix and fractures, along
with wellbore storage and s@fects. A semi-analytical solution is obtained using line source

function, linearizatior% ce transform, and Stehfest inversion. Bottomhole pressure and
derivative curves 1 @ seven flow stages, including non-Darcy crossflow, transition flow, and

Darcy crossﬁ@h non-Darcy index quantifies HVND intensity; lower values indicate

stronger wfearity. More intensive fractures enhance interregional transmissibility and

sto amplifying transition-stage responses. The proposed model effectively characterizes
behavior in gas reservoirs with spatially heterogeneous fractures, providing a theoretical

basis for analyzing complex well test responses.

Keywords: non-Darcy flow; flow model; natural fracture; dual-porosity; gas reservoir



1 Introduction

Compared to crude oil, natural gas has a lower viscosity, which makes it prone to high-
velocity non-Darcy flow during its seepage through reservoirs. This phenomenon is particularly
pronounced in fractured reservoirs. Conducting research on high-velocity non-Darcy flow
models in naturally fractured gas reservoirs is of significant importance, as it enhances our
understanding of the high-velocity non-Darcy flow behavior of natural gas in such reservgirs.

Nonlinear seepage phenomena, characterized by non-Darcy flow behavior at hi@
velocities, demonstrate a nonlinear correlation between flow velocity and press e& lent.
Two fundamental equations describe this relationship: the binomial Forchhei quation and
the exponential Izbash equation. The governing partial differential equatigns*for such flow
systems derive systematically from mass conservation principles thr%inﬁnitesimal
element analysis, incorporating both the motion equations and t‘r@pective equations of

state for rock-fluid systems. 0

Currently, research on high-velocity non-Darcy ed on the Forchheimer equation
[ ]

is quite extensive, including: The applicability of ES' iCal formulas in the Forchheimer
equation was investigated for different por% jal'l; A hydro-mechanical coupled model

incorporating non-Darcy flow!?); The influe f Forchheimer coefficient, fluid viscosity,

and other parameters on inertial effe as analyzed based on Buckley—Leverett theory®® ;a
dual-porosity model featuring vu nef zone) and natural fractures (outer zone) ), a dual-
porosity reservoir model acc ing for high-velocity non-Darcy skin effects!®!, homogeneous

reservoir vertical well. t @ models!®’. Following Izbash's seminal 1931 experimental
formulation of the &'ntial high-velocity flow equation, subsequent modeling efforts have
produced: Qua Qn the effects of fracture geometry and fluid inertia on Izbash equation
coefﬁcients[® nonlinear flow model for rough fractures that simultaneously considers

geo, etri@odiﬁcations and inertial effects!®!; An experimental analysis on the parameters of

[10

Izba odel; Introducing new parameters to rectify Izbash equation!!®), and

groundwater/waterflooding models addressing high-velocity flow dynamics!!!-14],

Both the Forchheimer equation and the Izbash equation can accurately describe non-
Darcy flow in porous media. Although various high-velocity non-Darcy flow models have
been proposed for naturally fractured gas reservoirs, they generally neglect the heterogeneous
distribution of fractures!'*! under dual-porosity conditions. The so-called heterogeneous

fracture development refers to the phenomenon where certain reservoir zones exhibit dense



natural fractures while others show sparse fracture networks. To enhance single-well
productivity, development wells are predominantly deployed in fracture-dense zones. When
wells are located in fracture-dense zones, the distal regions exhibit lower fracture density, and
single-well production induces planar radial flow within the formation, collectively
manifesting radial composite characteristics centered at the wellbore. Two factors drive this
behavior: First, the near-well fracture-dense zones possess far superior petrophysical
properties compared to distal regions; second, the steep pressure gradient and high gas flow
velocities near the wellbore amplify high-velocity non-Darcy effects in proximalfra@b
networks. x

To address this practical scenario, an innovative dual-porosity/dual-pe @[y two-
zone composite flow model was established based on Izbash’s equatign, dhcdrsporating high-
velocity non-Darcy flow in the near-well zone and Darcy flow in the&a zone. Through
model solving, characteristic wellbore pressure dynamic respons@ves were plotted, and
the high-velocity non-Darcy flow behavior of natural gas in@ﬁoirs with heterogeneous

fracture development was systematically analyzed.



2 Physical modeling

For naturally fractured gas reservoirs with non-uniform fracture development,
considering the scenario where the well is drilled in a fracture-developed zone, a physical

model of a "dual-dual" two-zone composite formation is established, as shown in Figure 1.

The model assumes that the inner zone is the near-wellbore fracture-developed zone with
favorable physical properties, while the outer zone has lower fracture development and pegrer

physical properties. The well produces at a constant rate , , with the inner zong ex@

high-velocity non-Darcy flow and the outer zone exhibiting Darcy flow. 0
Other basic assumptions of the physical model are as follows: (b

(D The gas reservoir is circular and uniform in thickness h % inner-zone radius
r

R . Both the inner and outer zones have the same initialfﬁv ir pressure p,;
]

@ Inthe inner zone: Matrix permeability and porositw{eJ\klm and ¢, Natural

fracture permeability and porosity are k,, a
3 In the outer zone: Matrix permeability a sity are k,, and ¢, Natural
fracture permeability and porosit

@ The boundary conditions of L%as reservoir can be: An infinite-acting boundary/
di

constant-pressure boun tance r, /closed boundary at distance r, ;

® Wellbore storage e@md skin effect are considered.
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3 Mathematical modeling

3.1 The establishment of a dimensionless mathematical model.

Based on the parameter definitions provided in the Parameter definition section and the

derivation process detailed in Appendix A, the dimensionless mathematical model can be

obtained. (b’
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Interaction conditions.

Pressure continuity condition:
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3.2 Mathematical model solutions C}

@ Constant-pressure boundary:

)

(11)

b=lp
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The dimensionless equations are s ject;d to a Laplace transform with respect to tp using
Equation(12).
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For the Darcy flow region.

Fracture subsystem:
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?Mituting Equation(14) into Equation (13), the following can be obtained:
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Equation (23) is a nonlinear equation. In order to obtain its general solution, we have

linearized it, and the process is as follows:



For Equation(23), we define:

1om (25)
n

Then, Equation(23) can be rewritten as:
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Substituting Equation (30) into Equatl:oE ;29) we obtain:
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Based on the propertle e Bessel equation, the general solution to Equation(31) is:

\,@ Al ( Jouf (u) )+ BlKV( buf (u)p) (32)

—muf (U)RE 1, "W =0 (26)

Substituti tions (25). (27). (30) and (32) into Equation (28) , the general solution

for the non-Rargy region in Equation (23) is obtained as:

v el

Where:



= 34
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The general solution for the Darcy region is: &
"
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To determine the coefficients A1, Bi, Az in the general solution, it is necessary to

Where:

incorporate the inner boundary condition™Equation (17), the pressure continuity condition
Equation (18), Gas-rate continuity condition (19), and the outer boundary conditions Equations

(20) to (22)) into the general so process requires the use of the following properties

of the Bessel equation: :t
1,(2) > o, IimK,(z)=0
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Substituting Equations (20) to (22) into Equation(38) respectively, we obtain:
(1) Infinite boundary

r"ﬂl Al (7215) + B Ky (7,15) =0 (43)

(2 Constant-pressure boundary



A2|0(72reD)+BzKo(72reD):O (44)
(@ Closed boundary:
Aol (7,hp) = By, Ky (7,1p) =0 (45)

For the sake of convenience in solving, the three outer boundary conditions are

uniformly rewritten as:

A, =B,D,
O(b

0 Infinite boundary &
D, = _Ko(lp) Constant-pressure boundary, (b’ (47)
lo(721e0) &
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The infinite boundary condition refers to an idealize n whlch the pressure wave has

not yet reached the reservoir boundary. A constgnt@ re boundary refers to a condition
where external energy, such as aquifers or press xamtenance keeps the boundary pressure

constant. A closed boundary is one where ¢ rosses the boundary.

Substituting Equation (46) into Equatio we obtain:
A%PAMQQ+K(nDH @)

Substituting the pressu contl;:hty condition Equation (18) into Equations (33) and (48),

we obtain:

+BK(”ﬁ)j =(B,[Ds(roR) +Ko(ol)])|, ,  49)
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Equations (49) and (50) can be further expressed as:
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combining Equations(51) and (52), we obtat N

N
C, = B A p _ D lo (7:Rp) + Ko (7,Rp) (57)

AR+ K |\7/|/2 [Dkll(VzRD)_K1(72RD)]

12
From Equation (57)in:

N
Where: @Q
C)O G:[RSKV(ER@—CKR{(} -

?” ckR:—RSIV(gRéJ

Substituting Equations (58) and (59) into Equation (33), we obtain:

l/71nfD = Blr[(; |:Kv (% rDﬂJ—i_ G ’ Iv (% rDﬂ ]:| (60)

A =GB, (58)

Taking the derivative of Equation (60), we obtain:
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Substituting Equations (61), (62), and (63) into Equation (17), and C(.)&bgng the
properties of Bessel functions, we obtain: 0

Where:

1-n

B, =(l-)Ry Gy ,Sv (64)
Substituting Equation (64) into Equation (60), the line sour olution for the high-speed
non-Darcy flow model of a dual-dual composite region a atlon can be obtained, as

shown in the following equation:

Vi = qD (1 a)R”r @w M rﬁ } (65)

Generally, for vertical wells, the reference length Lref=rw, meaning rp=1, and when aD =1,

the bottomhole pressure solutlon f hlgh speed non-Darcy flow model of a dual-dual

composite reservoir can be o tam

<) (1- a)R (%}+G 1, (%m (66)

Next, usin@hamel principle, as shown in Equation(67), the Laplace-space solution

for the bott pressure, incorporating wellbore storage effects and skin factor, can be
obtainedo
‘ /77’ _ Uy,p +S
Co.S,u)= 67
V/WD( D ) u+cDu2(ulpWD+S) ( )

Equation(66) represents the bottomhole pressure solution in Laplace space. By employing

the Stehfest numerical inversion method, the Laplace-space bottomhole pseudo-pressure

solution Equation(66) can be inverted to obtain the bottomhole pressure solution in real space.



4 Characteristic curve of high-speed non-Darcy flow

4.1 Flow stage analysis

Using the above model, the dimensionless bottomhole pseudo-pressure in real space is

calculated. A log-log coordinate system is plotted with t /C_ as the horizontal axis and
pseudo-pressure y  and pseudo-pressure derivative Vo 1 /Cy 23S the Xertefmzs,

forming the well-testing theoretical type curves!!®2!l. The typical flow cha %stics and

parameter sensitivity of high-speed non-Darcy well-testing curves for the c ere the outer

region is a dual-porosity medium are analyzed.

Figure 2 shows the high-velocity non-Darcy(HVND) well-test&)e curves for a dual-
dual composite reservoir under three outer boundary conditi s(k can be observed that the
well-testing type curves of this model can be divided int@v& main flow stages.

I

Stage I: Wellbore storage effect stage. The psgud@ ure and pseudo-pressure derivative

curves appear as straight lines with a slope of 1. \v
Stage II: Skin effect stage. Inﬂuence@@
curve exhibits a hump-like characteristic.

Stage III: Pseudo-steady-state

skin factor, the pseudo-pressure derivative

ow stage. This stage is characterized by the pseudo-
steady-state flow from the jmatriX.8ystem to the fractures in the non-Darcy region. The
downward concavity of the@udo-pressure derivative curve is influenced by the fracture
storage ratio @, an&@ossﬂow coefficient A, -

Stage 1V: Tra@n flow stage. This stage is primarily influenced by the mobility ratio
M, and th@ efatio @, . The pseudo-pressure derivative exhibits an upward trend in its

shape. O

W V: Crossflow stage in the Darcy region. This stage represents the flow from the
matriX system to the fractures in the Darcy region. The pseudo-pressure derivative curve shows

a second downward concavity, controlled by the fracture storage ratio @, and the crossflow
coefficient A, .

Stage VI: Global radial flow stage. During this stage, the pseudo-pressure derivative curve
manifests as a horizontal line.

Stage VII: Boundary response stage. This stage is primarily influenced by the nature of



the outer boundary.

(1): Reflects a closed boundary. Both the pseudo-pressure and pressure derivative curves

rise and form a straight line with a slope of 1.

(2): Reflects an infinite boundary. The pseudo-pressure derivative curve appears as a

horizontal line with a value of 0.5.

(3): Reflects a constant-pressure boundary. The pseudo-pressure derivative curve (b’
exhibits a downward trend. . ( : )

4.2 Impact of the parameters (§’

Figure 3 illustrates the influence of the high-speed non—Darci flow index n on the well-

. . . . .
testing type curves for a dual-dual composite reservoir. It cin served that the flow index

n is a critical parameter affecting the characteristics of 1@ ed non-Darcy flow. When the
value of n is larger, the curve position is lower; conver, hen n is smaller, the curve position

is higher. This indicates that under significant hi mpeed non-Darcy effects, more energy is

consumed for the same production rate. hen n=1, the high-speed non-Darcy flow
degenerates into Darcy flow, and the cogresponding curve position reaches its lowest point.

Figure 4 illustrates the in% the radius R, of the high-speed non-Darcy flow
c

region on the well-testing (‘y&u ¢s for a dual-dual composite reservoir. As R, increases,

the duration of high-spee arcy flow is prolonged, and the onset of Darcy flow is delayed.

Conversely, when &smaller, the duration of high-speed non-Darcy flow is shortened, and
Darcy flow ap@r arlier. Notably, when R, takes a larger value, the model can

approxima mulate the high-speed non-Darcy flow characteristics of the entire reservoir.
iguCJj illustrates the influence of the fracture storage ratio in the high-speed non-Darcy
region on the well-testing type curves for a dual-dual composite reservoir. During the pseudo-
steady-state crossflow flow from the matrix to the fractures, the well-testing curves exhibit a
downward concavity. When the fracture storage ratio is larger, the downward concavity
becomes narrower and shallower, reflecting a reduced amount of gas stored in the matrix system.
Conversely, when the fracture storage ratio is smaller, the downward concavity becomes wider

and deeper, indicating an increased amount of gas stored in the matrix system. When the

fracture storage ratio equals 1, the model degenerates into a high-speed non-Darcy flow model



for a homogeneous-dual composite reservoir, and the corresponding curve represents the well-
testing curve for the homogeneous-dual composite reservoir model.

Figure 6 illustrates the influence of the crossflow coefficient in the high-speed non-Darcy

region on the well-testing type curves for a dual-dual composite reservoir. As the crossflow
coefficient increases, the fluid exchange between the matrix system and the fracture system
occurs earlier, causing the downward concavity in the pseudo-pressure derivative curve to shift
to the left. Conversely, when the crossflow coefficient is smaller, the fluid exchange is d%d,
and the downward concavity shifts to the right. R

Figure 7 illustrates the influence of the mobility ratio M,, on the high-s %on-Darcy
well-testing type curves for a dual-dual composite reservoir. The mobility rectly affects
the shape of the curves in the Darcy flow region. &

When the mobility ratio is larger, it indicates poorer reservoirproperties in the Darcy flow
region, resulting in a relatively higher position of the well- t& rves.

Conversely, when the mobility ratio is smaller, it sng

Darcy flow region, leading to a lower position of the

etter reservoir properties in the
sting curves.

Figure 8 illustrates the influence of the St@&oefﬁcient @,, on the high-speed non-

Darcy well-testing type curves for a dua composite reservoir. The storage coefficient

reflects the difference in storage capaci: between the high-speed non-Darcy flow region and

the Darcy flow region. When t ge poefficient is larger, the storage capacity of the high-
speed non-Darcy region is n that of the Darcy flow region, causing the pseudo-
pressure derivative curve nd form a "hump" characteristic. Conversely, when the storage

coefficient is smaller,% orage capacity of the high-speed non-Darcy region is lower than
that of the Darc region, resulting in a downward concavity in the pseudo-pressure
derivative ¢ eé

Figyre 9 1llustrates the influence of the fracture storage ratio w,,, in the Darcy flow

regi the high-speed non-Darcy well-testing type curves. During the pseudo-steady-state
crosstlow gas permeates from the matrix to the fracture system, the curves exhibit a distinct
downward concavity. As the fracture storage ratio increases, the second downward concavity
becomes narrower and shallower, indicating a reduced amount of gas stored in the matrix
system of the Darcy region. Conversely, when the fracture storage ratio decreases, the second
downward concavity becomes wider and deeper, reflecting an increased amount of gas stored
in the matrix system. Notably, when the fracture storage ratio equals 1, the model simplifies to

a high-speed non-Darcy flow model for a dual-homogeneous composite reservoir, and the



corresponding curve represents the well-testing curve for the dual-homogeneous composite

reservoir model.

Figure 10 illustrates the influence of the crossflow coefficient A, in the Darcy flow

region on the well-testing type curves. The magnitude of the crossflow coefficient directly

affects the timing of the pseudo-steady-state crossflow. When the crossflow coefficient is larger,

the fluid exchange between the matrix and fracture systems occurs earlier, causing the second

downward concavity in the pseudo-pressure derivative curve to shift to the left. Conv‘?a'ly,
0

when the crossflow coefficient is smaller, the fluid exchange is delayed, and tlfe nd

downward concavity shifts to the right. &
4.3 Field application @

Well GS3 in a carbonate gas reservoir of the Sichuan Basin first put into production
in 2014. A pressure buildup test was conducted from May 4&% 24,2016, with a pre-shut-
in production rate of 3.43%10° m?/d, pre-shut-in tubing e of 54.99 MPa, and a shut-in
duration of 167 hours. The measured pressure dati ﬁv‘vell were plotted on a log-log

curve Figure 11, which exhibited two disti c@ve—downward segments. The data were

fitted using both the dual-porosity/dual-permeability two-zone composite high-velocity non-
Darcy flow model (DPDP-HVND mm%and the Darcy model. The Curve reflects five main
flow stages: Stage I: Wellbore sef ct stage; Stage II: Skin effect stage; Stage I1I:
Pseudo-steady-state crossﬂo@ge; Stage IV: Transitional flow stage; Stage V: Darcy-region
crossflow stage. Under l@r ow conditions, the pressure drop is linearly related to the flow
rate. However, in hi ocity non-Darcy flow, inertial forces appear alongside viscous
forces, resulting/A Qgssure drop that is proportional to the square of the flow rate.
Consequently, fpr the same flow rate, the pressure drop is larger, which manifests as a higher
curve 0n®d0uble-logarithmic plot. It is worth noting that due to constraints imposed by
ﬁechtion requirements, long-duration testing on the case well was not feasible;
therefore, only five flow regimes are observed in the curve. The reliability of the model has
been validated through the preceding five flow regimes.

Based on the characteristics of the log-log curve and the geological conditions of the

well's location, the proposed "dual-dual" composite flow model considering high-velocity

non-Darcy flow was applied. Based on preliminary parameters Table 1, the results show good

agreement between the theoretical curve and actual measured data points, with the



interpretation results as follows Table 2.



5 Conclusions

(1) The high-speed non-Darcy flow characteristic curve of the dual-dual composite
reservoir can be divided into seven distinct flow stages: Stage I Wellbore Storage Effect
Stage; Stage II Skin Effect Stage; Stage III Crossflow Stage in the Non-Darcy Region; Stage
IV Transition Flow Stage; Stage V Crossflow Flow Stage in the Darcy Region; Stage VI
Global Radial Flow Stage; Stage VII Boundary Response Stage

(2) The flow index 7 is a critical parameter influencing the characteristics of; highespeed
non-Darcy flow, primarily reflecting the intensity of the high-speed non-Darcy mo gas in
natural fractures. The smaller the value of n, the more pronounced the high-spedd non-Darcy
effect of gas in the near-well fracture development zone, and the higher e(h'ition of the
flow characteristic curve. When n=1, the gas flow transitions from h&peed non-Darcy
flow to Darcy flow. e (b’

(3) The radius Rp of the high-speed non-Darcy ﬂo&y ion significantly affects the
duration of high-speed non-Darcy flow and the onset o flow: The larger the value of Rp,
the longer the duration of high-speed non-Darcy. wand the later the appearance of Darcy
flow. When Rp is sufficiently large, the mogdél c proximate the high-speed non-Darcy flow
characteristics of the entire reservoir. %

(4) The larger the storage ratio mﬂthe stronger the elastic storage capacity of fractures

in the near-well fracture develop zohe, resulting in a shallower and narrower downward
concavity in the derivative of the flow characteristic curve. The larger the crossflow
coefficient Aimnf, the earlf ¢ crossflow from the matrix to the fractures occurs, causing the

downward concavit &é derivative curve to shift to the left. The influence of the storage ratio
and crossflow nt in the far-well region with low fracture development on the flow
characteristi@rve 1s similar to that in the near-well fracture development zone.

(5) changes in the mobility ratio Mi> and storage coefficient wi> between the near-
well\AraCture development zone and the far-well region affect the shape of the flow
characteristic curve. The larger the value of M2, the poorer the reservoir properties in the far-
well region and the less developed the fractures, resulting in a higher position of the flow
characteristic curve. The larger the value of w12, the greater the storage capacity of the near-
well fracture development zone compared to the far-well region, leading to a larger upward

amplitude of the derivative curve during the transition flow stage.



(6) Based on the sensitivity analysis results, the curves are qualitatively classified,
providing a theoretical explanation for the changes in the type curves caused by variations in
well-testing parameters during the production process.

(7) In the field application section, the model demonstrates a good fit with the measured
data from Well GS3 on a log-log plot, and relevant formation parameters are obtained. This
model can be applied to simulate gas reservoirs with non-uniform fracture development where

high-velocity non-Darcy flow occurs.



Parameter definition

Dimensionless Pseudo-Pressure:

7k, hT .
Vip=—"—%(;—y;)  (j=1m,1nf,2m, 2nf) (1)
pSCqSCT
Dimensionless Time:
tD — klnf t 2)
,ng (¢1nf 1nft + ¢lm 1mt) I-ref

Dimensionless Distance:
T
Lref &
. N

R, =— 4

0=T Q> @

r

o= :Q (5)
ref @

Dimensionless Wellbore Storage Coefﬁcie:@

o T 2 o+ Con L ©
Dimensionless Line Source F1 te:
< _4
b dp = o (7)
The deﬁmtlons parameters are as follows:
Fracture Stora o in the Non-Darcy Region:
Q Pt ®)

1nf =
¢1mClmt + ¢1nf 1nft

Cro@w Coefficient in the Non-Darcy Region:
k m

E ﬂ1mnf = 1m kl Lfef (9)
1nf

Fracture Storage Ratio in the Darcy Region:

n C n
a)an — ¢2f 2nft (10)
¢2mC2m + ¢2nf C2nft
Crossflow Coefticient in the Darcy Region:
k
ﬂ'Zmnf = aZm — Lfef (11)

k2nf



Mobility Ratio:

M M, Kin / £ (12)
2= K
M, onf / Hog
Storativity Ratio:
®,= ¢lmC1mt + ¢lnf Clnft (13)
¢2mC2mt + ¢2nf C2nft



Symbol Notation

A, A, , A —Undetermined Coefficients;
b, B,, B,, B —Undetermined Coefficients;

C —Empirical Constants; CK —Parameter; CD —Dimensionless wellbore storage constant;

D, —Undetermined Coefficients; (b,
'
G .G, ,G,, —Undetermined Coefficients; x

h —Formation thickness; (b
| ,—First Kind, Zero-Order Modified Bessel Function; |, —First Kind, First-Order Mod&ﬂ%&ml Function; |, ;—

First Kind, v-1-Order Modified Bessel Function; |V—First Kind, v-Order Modified@%l Function; |v+1 —First Kind,
o
v+1-Order Modified Bessel Function;

K,,, —Inner Region Matrix Permeability; K . —Inner Region Natural F@Permeability; K., —Outer Region

Matrix Permeability; K, . —Outer Region Natural Fracture Permeab@ o —Second Kind, Zero-Order Modified

Bessel Function; Kl—Second Kind, First-Order Modified Be¢ tion; Kv-1 —Second Kind, v-1-Order Modified
I

Bessel Function; KV —Second Kind, v-Order Modifi unction; K\,Jrl —Second Kind, v+1-Order Modified

Bessel Function;
m —Parameter; M, —Mobility Ratio;w >
N —Empirical Constants; b

P —Original Formation Pre@

(. —Surface flow r@QDimensionless Line Source Flow Rate; (, —Dimensionless Line Source Flow Rate in

Laplace Space O

Ih —Dimeésiopless Radial Distance; I, —Boundary Radial Distance; F,; —Dimensionless Reservoir Boundary Radial

el

Distance’ —Inner Region Radius; RD —Dimensionless Inner Region Radius; R,' , R,'( —Parameter;

S —skin Factor;
t, —Dimensionless Time;

U —Laplace Variable;
V —Seepage Velocity;

W —Parameter;



a , f —Substitution Variable;
V1, Y, —Substitution Variable;

Aot —Crossflow Coefficient in the Inner Region; A, .. —Crossflow Coefficient in the Outer Region;
P —Parameter;

@, ., —Inner Region Matrix Porosity; ¢, —Inner Region Fracture Porosity; ¢, —Outer Region Matrix Porosity; ¢,

—Outer Region Fracture Porosity; (b

Wintq —Dimensionless Natural Fracture System Pseudo-Pressure in the Inner Region; 1/, <, —Dimensiohles ral

Fracture System Pseudo-Pressure in the Outer Region; ¥/, ., —Dimensionless Matrix System Pseudo; in the Inner

Region; ¥/ ,,,q —Dimensionless Matrix System Pseudo-Pressure in the Outer Region; ¥/} ¢4 — ionless Natural
Fracture System Pseudo-Pressure in Laplace Space in the Inner Region; l,/72nfd —Dimen ss Natural Fracture System
Pseudo-Pressure in Laplace Space in the Outer Region; l/7lmd —Dimensionless MatrixgSystem Pseudo-Pressure in Laplace
Space in the Inner Region; 1/72md —Dimensionless Matrix System Pseudo-Pri '{ép':ace Space in the Outer Region;

¥ o —Dimensionless Bottomhole Pseudo-Pressure in Laplace Space Q

@, —Inner Region Fracture Storage Ratio; @, ; —Outer Regfm&@re Storage Ratio; @), —Inner Region Matrix

Storage Ratio; @, —Outer Region Matrix Storage Ratig, 9 orage coefficient.

O

&
QQ’Q
¢



Appendix A

Non-Darcy flow region seepage control equation derivation is as follows:

Basic assumptions: The entire flow process is assumed to be isothermal (i.e., other
parameters are unaffected by temperature); the fluid is a single-phase ideal gas, with its density
dependent solely on pressure; both the reservoir and the gas are slightly compressible, and the
compressibility coefficients of the fractures and the matrix are considered constant.

(1) According to the principle of mass conservation for gas flow, the continuity eWn
for the natural fracture system can be obtained as: . Q

10 0
Fa(rpgvg)+a(pg¢lnf)_qmg =0 Q,X( (A'l)
(2) The continuity equation for the matrix system**!:

%(pg@m)'i_qmg =0 x&( (A—2)

(3) The pseudo-steady-state crossflow equation from ﬂ&ix system to the natural
fracture system: &

n
plnf

s or (&-4)

(5) Equation of state.
The equation of state fo gN
M
6 Py = P M (A-5)

ZRT
Equation of sta &;rock.

(O The na cture system:
O ¢1nf :¢1nf0 |:1+ Clnf ( plnf - po ):I (A'6)
@ ix system:
¢lm :¢1m0 [1+ Clm ( Pim — Po )] (A-7)
(5) Natural gas compressibility factor:
C = _i G_V - 1 — ia_z A-8
° viep) p Zop (A-8)

Substituting Equations (A-4) and (A-5) into Equation (A-1), the left-hand side of the

equation is:



ror or Z RT

:nc(aplnfj * M pyy o’ pznf +EC Punt M(aplnf jn
or RT Z or rZ RT\ or

YN ALY C(apm)(apmj”‘l
rz? op or or

a 2
when the values of C and P are small, aap—” 0 (aap—lfj the third term on the{ﬁ’lt_

10 _10 OPunt yn Pint.
E L (vt 2 oy B

(A-9)

ar r r

hand side of Equations. (A.9) can be ignored. Equations. (A.9) can be rewritten a's&
n-1
l a ( rv )= nc apll’]f plnf 82 plnf 1 plnf aplnf
’ RT

o A-10
ror P or Z o rizRT (A-10)

Substituting Equations (A-5) and (A-6) into Equation (A-1), n&

hand side of the equation is:
'O

plnf
a(pg¢1nf) - 6( Z RT ¢1nf0 (1 C1nf (p]_nf po))) &

a a 'Q
RT ( plnf ¢1nf0 (1+C1nf (plnf pO%

1nf

. 6\J ot (A-11)
M ( 5oc P, 1 oz Dapm
1nf0 1nf Z

d term on the left-

RT 1hfo (1+C1nf (plnf - po)){ plnf Z aplnf ot

M Py Py,
= ¢1nf0 - lnf (1+C1nf (plnf po))) nf
RT
In the above equatien,here ¢inp and po are reference values, taken as ¢inr and pinf

i
respectively, Equatio Q) can be further expressed as:

o) M - py, Py _ M Py, P,
:ﬁ@nf éf (Clnf+Cg)) G;f RT éf ¢1nf 1nft Gif (A'lz)

Basa quations (A-3), (A-10), and (A-12), it can be obtained that:

1-n
Inf 82 pénf _l_m plnf aplnf +a1m klm plnf (aplnfj (plm _ plnf)
Z or r Z or une 2\ or

. (A-13)
11 Py | Puoy P
. 0 r,<r<R
nC 1nft¢1nf( 8', j Z 8’[ w
Based on Equations (A-2), (A-3), (A-4), (A-5), and (A-8), it can be obtained that:
¢lmC1mt p%nf g:::m +alm k:lm plnf (plm plnf) O (A-14)

g
Then, Equations (A-13) and (A-14) are the seepage control equations for the non-Darcy
flow region considering the exponential equation. However, Equation (A-13) is a nonlinear



equation, and to obtain its analytical solution, the equation is processed.
From Equation (A-4), it can be seen that:

Py | _ 1 9By
nf | = A-15
( or c\ 2zrh ( )
Substituting Equation (A-15) into Equation (A-13), we can obtain:

1-n
P 82 pénf _l_w Pint aplnf +a klm Prns qscBg ! (plm _ plnf)
Z or r Z or unc Z \ 2zrhe

l—in
:%%Clnﬁ¢lnf( %5, J " Puns Oy , < %&Q%w

2zrhe

Z ot
Here, referencing the solution method for non-Newtonian fluid Qby Ikuko-
Ramey!?* 24, the characteristic permeability k1 and apparent permea h& re defined, with
the relationship as follows:

BBy 5 (A-17)

2z chrW &\
( )”n Q (A-18)

The purpose of the above treatment is to equate’the inertial resistance during high-speed

k= uc(

non-Darcy seepage to the change in appar cability k1a. Due to the high gas velocity near

in the region far from the wellbore, t

the wellbore, the inertial resistance is large, andthe apparent permeability is smaller. Conversely,
%s velocity is relatively slower, the inertial resistance

is small, and the apparent permeabi rger. At the interface between the non-Darcy seepage
region and the Darcy seepag@yegion, the high-speed non-Darcy effect is very weak, and the

apparent permeability ap s the formation permeability. Therefore, the permeability at the

interface is: &
1-n
— * n

k1nf 1a|r R kR ™" (A-19)
To mm@@e solution of the model, the definition of pseudo-pressure is introduced

here!® O

?’ (p) = | 2P (A-20)
s LA

Using dimensionless parameters (refer to the parameter definition section), the
dimensionless control equation for the non-Darcy flow region can ultimately be obtained as:

82l/jlnfD l/n al/jlnfD -
2 + //ilmnf
o r, ory,

1-n n-1

" (Wimp ~ Yanin)

(A-21)
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Figure 1 Dual-dual composite gas reservoir model with high-velocity non-Darcy flow
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Figure 5 Influence of the fracture storage ratio
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Figure 7 Influence of the mobility ratio
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Figure 9 Influence of the fracture storage ratio in the Darcy region
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Figure 11 Well GS3 test fitting comparison
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Table 1 The basic parameters of ample well.
o )
Gas reservoir
wellbore radius . ! Por Middle depth . .
thickness Relative density
(m) Y (m)
(m)
0.062 28.5 4 00583 5037.6 0.61
Table 2 The fﬁ results of the example well.
Well bore
. . Crossflow Crossflow . .
storage Skin factor, ical L .. Storage ratio, | Storage ratio,
coefficient, | coefficient,
constant, C S @ stant, n p s ®1nf Wanf
(m3/MPa) 1mnf 2mnf
3.27 0.91 6.35X10° 1.32X10° 0.082 0.16
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