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Abstract: In naturally fractured gas reservoirs with highly heterogeneous fracture distributions, 

high-velocity non-Darcy (HVND) flow tends to occur near the wellbore, especially in fracture-

intensive zones. As flow velocity increases, inertial and nonlinear effects become significant, 

causing deviation from linear Darcy behavior. The conventional Darcy flow equation neglects 

these nonlinear factors and thus fails to represent the actual flow conditions accurately. To 

address this, a dual-porosity, dual-permeability two-region composite model is developed, 

applying Izbash’s equation to the inner HVND zone and Darcy flow to the outer zone. The 

model incorporates porosity and permeability contrasts between matrix and fractures, along 

with wellbore storage and skin effects. A semi-analytical solution is obtained using line source 

function, linearization, Laplace transform, and Stehfest inversion. Bottomhole pressure and 

derivative curves reveal seven flow stages, including non-Darcy crossflow, transition flow, and 

Darcy crossflow. The non-Darcy index quantifies HVND intensity; lower values indicate 

stronger nonlinearity. More intensive fractures enhance interregional transmissibility and 

storage, amplifying transition-stage responses. The proposed model effectively characterizes 

HVND behavior in gas reservoirs with spatially heterogeneous fractures, providing a theoretical 

basis for analyzing complex well test responses. 
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1  Introduction 

Compared to crude oil, natural gas has a lower viscosity, which makes it prone to high-

velocity non-Darcy flow during its seepage through reservoirs. This phenomenon is particularly 

pronounced in fractured reservoirs. Conducting research on high-velocity non-Darcy flow 

models in naturally fractured gas reservoirs is of significant importance, as it enhances our 

understanding of the high-velocity non-Darcy flow behavior of natural gas in such reservoirs. 

Nonlinear seepage phenomena, characterized by non-Darcy flow behavior at high 

velocities, demonstrate a nonlinear correlation between flow velocity and pressure gradient. 

Two fundamental equations describe this relationship: the binomial Forchheimer equation and 

the exponential Izbash equation. The governing partial differential equations for such flow 

systems derive systematically from mass conservation principles through infinitesimal 

element analysis, incorporating both the motion equations and the respective equations of 

state for rock-fluid systems. 

Currently, research on high-velocity non-Darcy flow based on the Forchheimer equation 

is quite extensive, including: The applicability of empirical formulas in the Forchheimer 

equation was investigated for different porous media[1]; A hydro-mechanical coupled model 

incorporating non-Darcy flow[2]; The influence of Forchheimer coefficient, fluid viscosity, 

and other parameters on inertial effects was analyzed based on Buckley–Leverett theory[3] ;a 

dual-porosity model featuring vugs (inner zone) and natural fractures (outer zone) [4], a dual-

porosity reservoir model accounting for high-velocity non-Darcy skin effects[5], homogeneous 

reservoir vertical well testing models[6]. Following Izbash's seminal 1931 experimental 

formulation of the exponential high-velocity flow equation, subsequent modeling efforts have 

produced: Quantification the effects of fracture geometry and fluid inertia on Izbash equation 

coefficients[7]; A nonlinear flow model for rough fractures that simultaneously considers 

geometric modifications and inertial effects[8]; An experimental analysis on the parameters of 

Izbash model[9]; Introducing new parameters to rectify Izbash equation[10], and 

groundwater/waterflooding models addressing high-velocity flow dynamics[11-14]. 

Both the Forchheimer equation and the Izbash equation can accurately describe non-

Darcy flow in porous media. Although various high-velocity non-Darcy flow models have 

been proposed for naturally fractured gas reservoirs, they generally neglect the heterogeneous 

distribution of fractures[15] under dual-porosity conditions. The so-called heterogeneous 

fracture development refers to the phenomenon where certain reservoir zones exhibit dense 



 

 

natural fractures while others show sparse fracture networks. To enhance single-well 

productivity, development wells are predominantly deployed in fracture-dense zones. When 

wells are located in fracture-dense zones, the distal regions exhibit lower fracture density, and 

single-well production induces planar radial flow within the formation, collectively 

manifesting radial composite characteristics centered at the wellbore. Two factors drive this 

behavior: First, the near-well fracture-dense zones possess far superior petrophysical 

properties compared to distal regions; second, the steep pressure gradient and high gas flow 

velocities near the wellbore amplify high-velocity non-Darcy effects in proximal fracture 

networks.  

To address this practical scenario, an innovative dual-porosity/dual-permeability two-

zone composite flow model was established based on Izbash’s equation, incorporating high-

velocity non-Darcy flow in the near-well zone and Darcy flow in the distal zone. Through 

model solving, characteristic wellbore pressure dynamic response curves were plotted, and 

the high-velocity non-Darcy flow behavior of natural gas in reservoirs with heterogeneous 

fracture development was systematically analyzed.  

  



 

 

2  Physical modeling 

For naturally fractured gas reservoirs with non-uniform fracture development, 

considering the scenario where the well is drilled in a fracture-developed zone, a physical 

model of a "dual-dual" two-zone composite formation is established, as shown in Figure 1. 

The model assumes that the inner zone is the near-wellbore fracture-developed zone with 

favorable physical properties, while the outer zone has lower fracture development and poorer 

physical properties. The well produces at a constant rate scq , with the inner zone exhibiting 

high-velocity non-Darcy flow and the outer zone exhibiting Darcy flow.  

Other basic assumptions of the physical model are as follows: 

①  The gas reservoir is circular and uniform in thickness h , with an inner-zone radius

R . Both the inner and outer zones have the same initial reservoir pressure ip ； 

② In the inner zone: Matrix permeability and porosity are 1mk  and 1m  Natural 

fracture permeability and porosity are 1nfk  and 1f ； 

③ In the outer zone: Matrix permeability and porosity are 2mk  and 2m  Natural 

fracture permeability and porosity are 2nfk  and 2f ； 

④ The boundary conditions of the gas reservoir can be: An infinite-acting boundary/ 

constant-pressure boundary at distance er  /closed boundary at distance er ； 

⑤ Wellbore storage effect and skin effect are considered. 

  



 

 

3  Mathematical modeling 

3.1  The establishment of a dimensionless mathematical model. 

Based on the parameter definitions provided in the Parameter definition section and the 

derivation process detailed in Appendix A, the dimensionless mathematical model can be 

obtained. 

For the non-Darcy flow region. 
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1 12

1nfD 1nfD
1mnf D D 1mD 1nfD2

D D D

1 1

1nfD
D D 1nf D D

D

1 1
( )

1
1

n n

n n

n n

n n

n
R r

r r r n

R r r R
n t

 
  




− −

− −

 
+ + −

 


=  



  (1)

Matrix subsystem: 

 1mD
1nf 1mnf 1mD 1nfD

D

(1 ) + ( ) 0
t


   


− − =


  (2) 

For the Darcy flow region. 

Fracture subsystem: 
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Matrix subsystem: 
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Initial condition: 
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Interaction conditions. 

Pressure continuity condition: 
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Gas-rate continuity condition: 

 

D D D D

1nfD 2nfD

D 12 D

1

r R r R
r M r

 

= =

 
=

 
  (8) 

Outer boundary conditions. 

① Infinite boundary: 
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3.2  Mathematical model solutions 

The dimensionless equations are subjected to a Laplace transform with respect to tD using 

Equation(12). 
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For the non-Darcy flow region. 

Fracture subsystem: 
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Matrix subsystem: 
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For the Darcy flow region. 

Fracture subsystem: 
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Matrix subsystem: 
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Inner boundary condition: 
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Interaction conditions. 

Pressure continuity condition: 
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Gas-rate continuity condition: 
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Outer boundary conditions. 

① Infinite boundary: 
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② Constant-pressure boundary: 
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Substituting Equation(14) into Equation (13), the following can be obtained: 
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Equation (23) is a nonlinear equation. In order to obtain its general solution, we have 

linearized it, and the process is as follows: 



 

 

For Equation(23), we define: 
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Further, we define: 
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Substituting Equations(27) and (28) into Equation(26), we obtain: 
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Define ρ as： 
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Substituting Equation (30) into Equation (29), we obtain: 
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Based on the properties of the Bessel equation, the general solution to Equation(31) is: 

 ( )( ) ( )( )1 1I Kv vw A buf u B buf u = +   (32) 

Substituting Equations (25)、(27)、(30) and (32) into Equation (28) , the general solution 

for the non-Darcy region in Equation (23) is obtained as: 

 1 1
1nfD D 1 D 1 DI Kv vr A r B r   


 

    
= +    

    
  (33) 

Where: 
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The general solution for the Darcy region is: 

 ( ) ( )2nfD 2 0 2 D 2 0 2 DI KA r B r  = +   (38) 
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To determine the coefficients A1，B1，A2 and B2 in the general solution, it is necessary to 

incorporate the inner boundary condition Equation (17), the pressure continuity condition 

Equation (18), Gas-rate continuity condition (19), and the outer boundary conditions Equations 

(20) to (22)) into the general solution. This process requires the use of the following properties 

of the Bessel equation:  
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Substituting Equations (20) to (22) into Equation(38) respectively, we obtain: 
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② Constant-pressure boundary 
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③ Closed boundary: 
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For the sake of convenience in solving, the three outer boundary conditions are 

uniformly rewritten as: 
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The infinite boundary condition refers to an idealized state in which the pressure wave has 

not yet reached the reservoir boundary. A constant-pressure boundary refers to a condition 

where external energy, such as aquifers or pressure maintenance, keeps the boundary pressure 

constant. A closed boundary is one where no fluid crosses the boundary. 

Substituting Equation (46) into Equation (38), we obtain: 
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Substituting the pressure continuity condition Equation (18) into Equations (33) and (48), 

we obtain: 

  ( )
D D

D D

1 1
D 1 D 1 D 2 k 0 2 D 0 2 DI ( ) K ( ) I ( ) K ( )v v

r R

r R

r A r B r B D r r   
 

  =

=

  
+ = +  

  
  (49) 

Substituting the pressure continuity condition Equation (19) into Equations (33) and (48), 

we obtain: 
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Equations (49) and (50) can be further expressed as: 
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combining Equations(51) and (52), we obtain: 
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From Equation (57), we obtain: 
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Substituting Equations (58) and (59) into Equation (33), we obtain: 
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Taking the derivative of Equation (60), we obtain:  
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Substituting Equations (61), (62), and (63) into Equation (17), and combining the 

properties of Bessel functions, we obtain: 
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Substituting Equation (64) into Equation (60), the line source solution for the high-speed 

non-Darcy flow model of a dual-dual composite region at any location can be obtained, as 

shown in the following equation:  
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Generally, for vertical wells, the reference length Lref=rw, meaning rD=1, and when 
D

=1q ，

the bottomhole pressure solution for the high-speed non-Darcy flow model of a dual-dual 

composite reservoir can be obtained as: 
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Next, using the Duhamel principle, as shown in Equation(67), the Laplace-space solution 

for the bottomhole pressure, incorporating wellbore storage effects and skin factor, can be 

obtained: 
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  (67) 

Equation(66) represents the bottomhole pressure solution in Laplace space. By employing 

the Stehfest numerical inversion method, the Laplace-space bottomhole pseudo-pressure 

solution Equation(66) can be inverted to obtain the bottomhole pressure solution in real space.  

  



 

 

4  Characteristic curve of high-speed non-Darcy flow 

4.1 Flow stage analysis 

Using the above model, the dimensionless bottomhole pseudo-pressure in real space is 

calculated. A log-log coordinate system is plotted with 
D D/t C   as the horizontal axis and 

pseudo-pressure 
wD   and pseudo-pressure derivative 

wD D D/t C     as the vertical axes, 

forming the well-testing theoretical type curves[16-21]. The typical flow characteristics and 

parameter sensitivity of high-speed non-Darcy well-testing curves for the case where the outer 

region is a dual-porosity medium are analyzed. 

Figure 2 shows the high-velocity non-Darcy(HVND) well-testing type curves for a dual-

dual composite reservoir under three outer boundary conditions. It can be observed that the 

well-testing type curves of this model can be divided into seven main flow stages. 

Stage I: Wellbore storage effect stage. The pseudo-pressure and pseudo-pressure derivative 

curves appear as straight lines with a slope of 1. 

Stage II: Skin effect stage. Influenced by the skin factor, the pseudo-pressure derivative 

curve exhibits a hump-like characteristic. 

Stage III: Pseudo-steady-state crossflow stage. This stage is characterized by the pseudo-

steady-state flow from the matrix system to the fractures in the non-Darcy region. The 

downward concavity of the pseudo-pressure derivative curve is influenced by the fracture 

storage ratio 1nf  and the crossflow coefficient 1mnf . 

Stage IV: Transition flow stage. This stage is primarily influenced by the mobility ratio 

1nfM  and the storage ratio 12 . The pseudo-pressure derivative exhibits an upward trend in its 

shape. 

Stage V: Crossflow stage in the Darcy region. This stage represents the flow from the 

matrix system to the fractures in the Darcy region. The pseudo-pressure derivative curve shows 

a second downward concavity, controlled by the fracture storage ratio 2nf  and the crossflow 

coefficient 2mnf . 

Stage VI: Global radial flow stage. During this stage, the pseudo-pressure derivative curve 

manifests as a horizontal line. 

Stage VII: Boundary response stage. This stage is primarily influenced by the nature of 



 

 

the outer boundary. 

①: Reflects a closed boundary. Both the pseudo-pressure and pressure derivative curves 

rise and form a straight line with a slope of 1. 

②: Reflects an infinite boundary. The pseudo-pressure derivative curve appears as a 

horizontal line with a value of 0.5. 

③: Reflects a constant-pressure boundary. The pseudo-pressure derivative curve 

exhibits a downward trend. 

4.2 Impact of the parameters 

Figure 3 illustrates the influence of the high-speed non-Darcy flow index n on the well-

testing type curves for a dual-dual composite reservoir. It can be observed that the flow index 

n is a critical parameter affecting the characteristics of high-speed non-Darcy flow. When the 

value of n is larger, the curve position is lower; conversely, when n is smaller, the curve position 

is higher. This indicates that under significant high-speed non-Darcy effects, more energy is 

consumed for the same production rate. Notably, when n=1, the high-speed non-Darcy flow 

degenerates into Darcy flow, and the corresponding curve position reaches its lowest point. 

Figure 4 illustrates the influence of the radius DR   of the high-speed non-Darcy flow 

region on the well-testing type curves for a dual-dual composite reservoir. As DR  increases, 

the duration of high-speed non-Darcy flow is prolonged, and the onset of Darcy flow is delayed. 

Conversely, when DR  is smaller, the duration of high-speed non-Darcy flow is shortened, and 

Darcy flow appears earlier. Notably, when DR   takes a larger value, the model can 

approximately simulate the high-speed non-Darcy flow characteristics of the entire reservoir. 

Figure 5 illustrates the influence of the fracture storage ratio in the high-speed non-Darcy 

region on the well-testing type curves for a dual-dual composite reservoir. During the pseudo-

steady-state crossflow flow from the matrix to the fractures, the well-testing curves exhibit a 

downward concavity. When the fracture storage ratio is larger, the downward concavity 

becomes narrower and shallower, reflecting a reduced amount of gas stored in the matrix system. 

Conversely, when the fracture storage ratio is smaller, the downward concavity becomes wider 

and deeper, indicating an increased amount of gas stored in the matrix system. When the 

fracture storage ratio equals 1, the model degenerates into a high-speed non-Darcy flow model 



 

 

for a homogeneous-dual composite reservoir, and the corresponding curve represents the well-

testing curve for the homogeneous-dual composite reservoir model. 

Figure 6 illustrates the influence of the crossflow coefficient in the high-speed non-Darcy 

region on the well-testing type curves for a dual-dual composite reservoir. As the crossflow 

coefficient increases, the fluid exchange between the matrix system and the fracture system 

occurs earlier, causing the downward concavity in the pseudo-pressure derivative curve to shift 

to the left. Conversely, when the crossflow coefficient is smaller, the fluid exchange is delayed, 

and the downward concavity shifts to the right. 

Figure 7 illustrates the influence of the mobility ratio 12M  on the high-speed non-Darcy 

well-testing type curves for a dual-dual composite reservoir. The mobility ratio directly affects 

the shape of the curves in the Darcy flow region. 

When the mobility ratio is larger, it indicates poorer reservoir properties in the Darcy flow 

region, resulting in a relatively higher position of the well-testing curves. 

Conversely, when the mobility ratio is smaller, it signifies better reservoir properties in the 

Darcy flow region, leading to a lower position of the well-testing curves.  

Figure 8 illustrates the influence of the Storage Coefficient 12  on the high-speed non-

Darcy well-testing type curves for a dual-dual composite reservoir. The storage coefficient 

reflects the difference in storage capacity between the high-speed non-Darcy flow region and 

the Darcy flow region. When the storage coefficient is larger, the storage capacity of the high-

speed non-Darcy region is higher than that of the Darcy flow region, causing the pseudo-

pressure derivative curve to rise and form a "hump" characteristic. Conversely, when the storage 

coefficient is smaller, the storage capacity of the high-speed non-Darcy region is lower than 

that of the Darcy flow region, resulting in a downward concavity in the pseudo-pressure 

derivative curve. 

Figure 9 illustrates the influence of the fracture storage ratio 2nf   in the Darcy flow 

region on the high-speed non-Darcy well-testing type curves. During the pseudo-steady-state 

crossflow gas permeates from the matrix to the fracture system, the curves exhibit a distinct 

downward concavity. As the fracture storage ratio increases, the second downward concavity 

becomes narrower and shallower, indicating a reduced amount of gas stored in the matrix 

system of the Darcy region. Conversely, when the fracture storage ratio decreases, the second 

downward concavity becomes wider and deeper, reflecting an increased amount of gas stored 

in the matrix system. Notably, when the fracture storage ratio equals 1, the model simplifies to 

a high-speed non-Darcy flow model for a dual-homogeneous composite reservoir, and the 



 

 

corresponding curve represents the well-testing curve for the dual-homogeneous composite 

reservoir model.  

Figure 10 illustrates the influence of the crossflow coefficient 2mnf  in the Darcy flow 

region on the well-testing type curves. The magnitude of the crossflow coefficient directly 

affects the timing of the pseudo-steady-state crossflow. When the crossflow coefficient is larger, 

the fluid exchange between the matrix and fracture systems occurs earlier, causing the second 

downward concavity in the pseudo-pressure derivative curve to shift to the left. Conversely, 

when the crossflow coefficient is smaller, the fluid exchange is delayed, and the second 

downward concavity shifts to the right. 

4.3 Field application 

Well GS3 in a carbonate gas reservoir of the Sichuan Basin was first put into production 

in 2014. A pressure buildup test was conducted from May 4 to May 24, 2016, with a pre-shut-

in production rate of 3.43×10⁵ m³/d, pre-shut-in tubing pressure of 54.99 MPa, and a shut-in 

duration of 167 hours. The measured pressure data from this well were plotted on a log-log 

curve Figure 11, which exhibited two distinct concave-downward segments. The data were 

fitted using both the dual-porosity/dual-permeability two-zone composite high-velocity non-

Darcy flow model (DPDP-HVND model) and the Darcy model. The Curve reflects five main 

flow stages: Stage I: Wellbore storage effect stage; Stage II: Skin effect stage; Stage III: 

Pseudo-steady-state crossflow stage; Stage IV: Transitional flow stage; Stage V: Darcy-region 

crossflow stage. Under Darcy flow conditions, the pressure drop is linearly related to the flow 

rate. However, in high-velocity non-Darcy flow, inertial forces appear alongside viscous 

forces, resulting in a pressure drop that is proportional to the square of the flow rate. 

Consequently, for the same flow rate, the pressure drop is larger, which manifests as a higher 

curve on the double-logarithmic plot. It is worth noting that due to constraints imposed by 

field production requirements, long-duration testing on the case well was not feasible; 

therefore, only five flow regimes are observed in the curve. The reliability of the model has 

been validated through the preceding five flow regimes. 

Based on the characteristics of the log-log curve and the geological conditions of the 

well's location, the proposed "dual-dual" composite flow model considering high-velocity 

non-Darcy flow was applied. Based on preliminary parameters Table 1, the results show good 

agreement between the theoretical curve and actual measured data points, with the 



 

 

interpretation results as follows Table 2. 

 

  



 

 

5  Conclusions 

(1) The high-speed non-Darcy flow characteristic curve of the dual-dual composite 

reservoir can be divided into seven distinct flow stages: Stage I Wellbore Storage Effect 

Stage; Stage II Skin Effect Stage; Stage III Crossflow Stage in the Non-Darcy Region; Stage 

IV Transition Flow Stage; Stage V Crossflow Flow Stage in the Darcy Region; Stage VI 

Global Radial Flow Stage; Stage VII Boundary Response Stage 

(2) The flow index n is a critical parameter influencing the characteristics of high-speed 

non-Darcy flow, primarily reflecting the intensity of the high-speed non-Darcy effect of gas in 

natural fractures. The smaller the value of n, the more pronounced the high-speed non-Darcy 

effect of gas in the near-well fracture development zone, and the higher the position of the 

flow characteristic curve. When n=1, the gas flow transitions from high-speed non-Darcy 

flow to Darcy flow. 

(3) The radius RD of the high-speed non-Darcy flow region significantly affects the 

duration of high-speed non-Darcy flow and the onset of Darcy flow: The larger the value of RD, 

the longer the duration of high-speed non-Darcy flow, and the later the appearance of Darcy 

flow. When RD is sufficiently large, the model can approximate the high-speed non-Darcy flow 

characteristics of the entire reservoir. 

(4) The larger the storage ratio ω1nf, the stronger the elastic storage capacity of fractures 

in the near-well fracture development zone, resulting in a shallower and narrower downward 

concavity in the derivative curve of the flow characteristic curve. The larger the crossflow 

coefficient λ1mnf, the earlier the crossflow from the matrix to the fractures occurs, causing the 

downward concavity in the derivative curve to shift to the left. The influence of the storage ratio 

and crossflow coefficient in the far-well region with low fracture development on the flow 

characteristic curve is similar to that in the near-well fracture development zone. 

(5) The changes in the mobility ratio M12 and storage coefficient ω12 between the near-

well fracture development zone and the far-well region affect the shape of the flow 

characteristic curve. The larger the value of M12, the poorer the reservoir properties in the far-

well region and the less developed the fractures, resulting in a higher position of the flow 

characteristic curve. The larger the value of ω12, the greater the storage capacity of the near-

well fracture development zone compared to the far-well region, leading to a larger upward 

amplitude of the derivative curve during the transition flow stage. 



 

 

(6) Based on the sensitivity analysis results, the curves are qualitatively classified, 

providing a theoretical explanation for the changes in the type curves caused by variations in 

well-testing parameters during the production process. 

(7) In the field application section, the model demonstrates a good fit with the measured 

data from Well GS3 on a log-log plot, and relevant formation parameters are obtained. This 

model can be applied to simulate gas reservoirs with non-uniform fracture development where 

high-velocity non-Darcy flow occurs. 

  



 

 

Parameter definition 

Dimensionless Pseudo-Pressure: 
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Dimensionless Wellbore Storage Coefficient: 
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Dimensionless Line Source Flow Rate: 
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The definitions of other parameters are as follows: 

Fracture Storage Ratio in the Non-Darcy Region: 
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Crossflow Coefficient in the Non-Darcy Region: 
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Fracture Storage Ratio in the Darcy Region: 
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Crossflow Coefficient in the Darcy Region: 
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Mobility Ratio: 
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Symbol Notation 

1A , 2A , FA —Undetermined Coefficients； 

b , 1B , 2B , FB —Undetermined Coefficients； 

c —Empirical Constants； KC —Parameter； DC —Dimensionless wellbore storage constant； 

KD —Undetermined Coefficients； 

G , kG , mG —Undetermined Coefficients； 

h —Formation thickness; 

0I —First Kind, Zero-Order Modified Bessel Function； 1I —First Kind, First-Order Modified Bessel Function； V-1I —

First Kind, v-1-Order Modified Bessel Function； VI —First Kind, v-Order Modified Bessel Function； V+1I —First Kind, 

v+1-Order Modified Bessel Function； 

1mk —Inner Region Matrix Permeability； 1nfk —Inner Region Natural Fracture Permeability； 2mk —Outer Region 

Matrix Permeability； 2nfk —Outer Region Natural Fracture Permeability； 0K —Second Kind, Zero-Order Modified 

Bessel Function； 1K —Second Kind, First-Order Modified Bessel Function； V-1K —Second Kind, v-1-Order Modified 

Bessel Function；
V

K —Second Kind, v-Order Modified Bessel Function； V+1K —Second Kind, v+1-Order Modified 

Bessel Function； 

m —Parameter； 12M —Mobility Ratio；  

n —Empirical Constants； 

iP —Original Formation Pressure; 

scq —Surface flow rate； Dq —Dimensionless Line Source Flow Rate； Dq —Dimensionless Line Source Flow Rate in 

Laplace Space 

Dr —Dimensionless Radial Distance； er —Boundary Radial Distance； eDr —Dimensionless Reservoir Boundary Radial 

Distance； R —Inner Region Radius； DR —Dimensionless Inner Region Radius； IR， KR —Parameter；  

S —Skin Factor； 

Dt —Dimensionless Time； 

u —Laplace Variable； 

v —Seepage Velocity； 

w —Parameter； 



 

 

 ,  —Substitution Variable； 

1 , 2 —Substitution Variable; 

1mnf —Crossflow Coefficient in the Inner Region； 2mnf —Crossflow Coefficient in the Outer Region； 

 —Parameter；  

1m —Inner Region Matrix Porosity； 1f —Inner Region Fracture Porosity； 2m —Outer Region Matrix Porosity； 2f

—Outer Region Fracture Porosity； 

1nfd —Dimensionless Natural Fracture System Pseudo-Pressure in the Inner Region； 2nfd —Dimensionless Natural 

Fracture System Pseudo-Pressure in the Outer Region； 1md —Dimensionless Matrix System Pseudo-Pressure in the Inner 

Region； 2md —Dimensionless Matrix System Pseudo-Pressure in the Outer Region； 1nfd —Dimensionless Natural 

Fracture System Pseudo-Pressure in Laplace Space in the Inner Region； 2nfd —Dimensionless Natural Fracture System 

Pseudo-Pressure in Laplace Space in the Outer Region； 1md —Dimensionless Matrix System Pseudo-Pressure in Laplace 

Space in the Inner Region； 2md —Dimensionless Matrix System Pseudo-Pressure in Laplace Space in the Outer Region；

wD —Dimensionless Bottomhole Pseudo-Pressure in Laplace Space 

1nf —Inner Region Fracture Storage Ratio； 2nf —Outer Region Fracture Storage Ratio； 1m —Inner Region Matrix 

Storage Ratio； 2m —Outer Region Matrix Storage Ratio； 12 —Storage coefficient. 

  



 

 

Appendix A 

Non-Darcy flow region seepage control equation derivation is as follows： 

Basic assumptions: The entire flow process is assumed to be isothermal (i.e., other 

parameters are unaffected by temperature); the fluid is a single-phase ideal gas, with its density 

dependent solely on pressure; both the reservoir and the gas are slightly compressible, and the 

compressibility coefficients of the fractures and the matrix are considered constant. 

(1) According to the principle of mass conservation for gas flow, the continuity equation 

for the natural fracture system can be obtained as: 

 ( ) ( )g g g 1nf mg

1
0r v q

r r t
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 (A-1) 

(2) The continuity equation for the matrix system[22]: 
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(3) The pseudo-steady-state crossflow equation from the matrix system to the natural 

fracture system: 
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(4) Equation of motion:  
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(5) Equation of state. 

The equation of state for gas: 
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ZRT
 =  (A-5) 

Equation of state for rock. 

① The natural fracture system: 

 ( )1nf 1nf0 1nf 1nf 0= 1 C p p  + −    (A-6) 

② Matrix system: 

 ( )1m 1m0 1m 1m 0= 1 C p p  + −    (A-7) 

(5) Natural gas compressibility factor: 
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Substituting Equations (A-4) and (A-5) into Equation (A-1), the left-hand side of the 

equation is: 
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 the third term on the right-

hand side of Equations. (A.9) can be ignored. Equations. (A.9) can be rewritten as: 
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Substituting Equations (A-5) and (A-6) into Equation (A-1), the second term on the left-

hand side of the equation is: 
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In the above equation, where ϕ1nf0 and p0 are reference values, taken as ϕ1nf and p1nf 

respectively, Equation (A-11) can be further expressed as: 
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Based on Equations (A-3), (A-10), and (A-12), it can be obtained that:  
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Based on Equations (A-2), (A-3), (A-4), (A-5), and (A-8), it can be obtained that: 
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Then, Equations (A-13) and (A-14) are the seepage control equations for the non-Darcy 

flow region considering the exponential equation. However, Equation (A-13) is a nonlinear 



 

 

equation, and to obtain its analytical solution, the equation is processed. 

From Equation (A-4), it can be seen that: 
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Substituting Equation (A-15) into Equation (A-13), we can obtain: 
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Here, referencing the solution method for non-Newtonian fluid seepage by Ikuko-

Ramey[23, 24], the characteristic permeability k*
1 and apparent permeability k1a are defined, with 

the relationship as follows: 
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The purpose of the above treatment is to equate the inertial resistance during high-speed 

non-Darcy seepage to the change in apparent permeability k1a. Due to the high gas velocity near 

the wellbore, the inertial resistance is large, and the apparent permeability is smaller. Conversely, 

in the region far from the wellbore, the gas velocity is relatively slower, the inertial resistance 

is small, and the apparent permeability is larger. At the interface between the non-Darcy seepage 

region and the Darcy seepage region, the high-speed non-Darcy effect is very weak, and the 

apparent permeability approaches the formation permeability. Therefore, the permeability at the 

interface is: 
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To simplify the solution of the model, the definition of pseudo-pressure is introduced 

here[25]: 
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Using dimensionless parameters (refer to the parameter definition section), the 

dimensionless control equation for the non-Darcy flow region can ultimately be obtained as: 
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Figures&Tables 

Figure 1 Dual-dual composite gas reservoir model with high-velocity non-Darcy flow 

 

Figure 2 HVND curves for a dual-dual composite reservoir 

 



 

 

Figure 3 Influence of the flow index 

 

 

Figure 4 Influence of the radius of the high-speed non-Darcy region 

 

 



 

 

Figure 5 Influence of the fracture storage ratio 

 

Figure 6 Influence of the crossflow coefficient in non-Darcy region 

 



 

 

Figure 7 Influence of the mobility ratio 

 

Figure 8 Influence of the storage coefficient 

 



 

 

Figure 9 Influence of the fracture storage ratio in the Darcy region 

 

Figure 10 Influence of the crossflow coefficient in the Darcy region 

 



 

 

Figure 11 Well GS3 test fitting comparison 

 

Table 1 The basic parameters of the example well. 

wellbore radius 

(m) 

Gas reservoir 

thickness 

(m) 

Porosity 

(%) 

Middle depth 

(m) 
Relative density 

0.062 28.5 0.0553 5037.6 0.61 

Table 2 The fitting results of the example well. 

Well bore 

storage 

constant, C 

(m3/MPa) 

Skin factor, 

S 

Empirical 

constant, n 

Crossflow 

coefficient, 

λ1mnf 

Crossflow 

coefficient, 

λ2mnf 

Storage ratio, 

ω1nf 

Storage ratio, 

ω2nf 

3.27 -1.38 0.91 6.35×10-5 1.32×10-5 0.082 0.16 

 


