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Abstract 
Time Series Alignment is a crucial task in signal processing with wide-ranging applications. Real-world signals 

often suffer from temporal shifts and scaling, leading to errors in raw data classification. This paper presents 

a novel Deep Learning-based approach for Multiple Time Series Alignment (MTSA). While existing methods 

mainly focus on Multiple Sequence Alignment (MSA) for biological sequences, there is a notable lack of 

alignment techniques for numerical time series. Traditional methods also typically address pairwise 

alignment, whereas our approach aligns all signals simultaneously, improving both alignment efficiency and 

computational speed. By decomposing to piece-wise linear sections, we introduce varying complexity into the 

warping function while ensuring compliance with three key constraints: boundary, monotonicity, and 

continuity conditions. We propose a deep convolutional network with a novel loss function that addresses 

key limitations of Dynamic Time Warping (DTW). Experiments on the UCR Archive 2018, involving 129 time 

series datasets, show that our method significantly enhances classification accuracy, warping average, and 

runtime efficiency across most datasets. 
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1 Introduction 

Multiple Sequence Alignment (MSA) and Multiple Time Series Alignment (MTSA) are essential 

in machine learning, data analysis, and bioinformatics, both aiming to align multiple inputs to 

identify patterns. The key difference lies in the data type: MSA aligns symbolic, discrete 

sequences like DNA, RNA, or proteins, while MTSA aligns continuous numerical signals, such 

as time series representing temporal or spatial measurements. 

Both MSA and MTSA are commonly performed via successive pairwise alignments. While 

effective, this approach is computationally intensive, particularly for MTSA, where the 

numerical nature of data significantly increases complexity. Consequently, MTSA has received 

less attention in the literature compared to MSA. Our paper addresses this gap by introducing 

a true multiple alignment algorithm for MTSA that avoids repeated pairwise alignments, 

improving computational efficiency. Drawing on methodological parallels with MSA, we also 

review existing MSA strategies. 

The problem involves aligning a set of time series with arbitrary lengths. Due to its 

importance and wide applications, various approaches have been proposed for MSA. At the 
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heart of these methods is Dynamic Time Warping (DTW), the most widely used technique for 

signal alignment. In the following subsections, we present various applications of MSA and 

methods grounded in DTW, then we proceed to recent approaches. 

1.1 Applications 

The applications of MSA and MTSA can be categorized as follows: 

• Classification: Time series classification is complicated by temporal and amplitude variations. 

Therefore, pre-warping can improve accuracy, as shown in our experiments. Traditional 

approaches combine DTW with Nearest Neighbor (NN) [1–3], but are computationally 

intensive. Nearest Centroid (NC) method reduces cost by aligning test samples to class 

representatives [4], often chosen using Dynamic Barycenter Averaging (DBA) [5]. Instead, we 

apply MTSA algorithms, achieving superior quality and performance 

• Human Activity Recognition: HAR is a specialized classification task involving motion signals, 

widely used in surveillance, healthcare and assistive robotics. Here signal alignment is crucial 

due individual variations in speed and phase. Several warping-based methods for HAR have 

been proposed in [1, 6–10]. 

• Biological Signal Analysis: ECG, EEG, EMG, and PPG are key signals in intelligent health 

monitoring. Due to signal variability and limited labeled data, unsupervised warping methods 

are crucial. DTW has been used for sub-pattern prediction [11], noise reduction [12, 13], and 

neural network-based approximation for EEG signals [14].    

Recently DTW and alignment methods have also been used for video alignment [11, 15, 16], 

time series forecasting [17, 18] and anomaly detection [19]. While there are numerous other 

applications, we omit them for the sake of brevity. 

1.2 Classical Approaches 

MSA is widely used in genomics, particularly for protein sequence analysis, leading to the 

development of numerous methods in this field. ClustalW [20], the first method discussed, 

builds a guide tree from pairwise alignments based on Progressive Alignment, assuming 

similar aligned signals can be merged. This iterative approach requires homogeneous signals, 

such as motion or ECG data. 

Hidden Markov Models (HMM) are used for MSA in studies [21–23]. In [24], an unsupervised 

approach models time series as non-uniform samples from a latent trace, addressing local 

rescaling and noise. MTSA alignment is performed using DTW between each signal and the 
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latent trace. Notably, [24] is one of the few works directly addressing numerical time series in 

MTSA. 

In all the aforementioned works, Multiple Alignment is achieved through successive 

pairwise alignments. Additionally, all these methods utilize DTW for time series alignment. 

DTW computes the optimal alignment between two time series by allowing non-linear 

temporal variations. It constructs a cost matrix of pairwise distances and employs dynamic 

programming to identify the warping path that minimizes cumulative distance, subject to 

temporal constraints. For further details, readers are referred to [25]. 

Despite its effectiveness, DTW has several limitations. Its polynomial computational 

complexity makes it impractical for large datasets, leading to the development of approximate 

methods that reduce complexity to linear time while almost preserve alignment quality. DTW 

also suffers from singularity, where vertical-axis differences lead to one-to-many point 

mappings, distorting alignment. This can be mitigated by incorporating local shape information 

through shape descriptors [2] or by extracting relevant features via neural networks prior to 

warping [26]. Additionally, DTW is non-differentiable, limiting its integration into neural 

network training. To address this, differentiable variants like Soft-DTW [27] have been 

introduced. 

1.3 Enhanced DTW-Based Approaches 

In an attempt to address the limitations of DTW, several alternative methods have been 

proposed: 

• Generalized Time Warping [7]: GTW addresses the polynomial complexity of DTW by 

introducing a linear-time algorithm that models the warping path as a linear combination of 

basis functions. 

• Trainable Time Warping [28]: TTW enhances warping by operating in the continuous time 

domain with convolutional kernels, offering better performance for complex warpings. 

• Neural Time Warping [9]: NTW relaxes the original DTW optimization problem to a continuous 

convex problem and finds the solution using a neural network. 

      Both TTW and NTW serve as approximations of the original DTW problem. Additionally, 

studies [29, 30] introduce modifications to DTW to enhance its effectiveness in time series 

classification. 
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1.4 Deep Learning Approaches 

      Integrating deep neural networks, such as Convolutional Neural Networks (CNN) or 

Recurrent Neural Networks (RNN), into time series alignment offers substantial advantages 

due to their architectural flexibility, customizable loss functions, and tunable hyperparameters. 

Their capacity to extract meaningful features helps address challenges like singularity in DTW. 

Here, we review recent deep learning approaches for signal alignment. 

• Sequence Transformer Network (STN) [31]: STN, built on CNN, enables simple translations and 

scalings in both time and amplitude domains, providing a powerful deep learning-based tool 

for time series alignment. 

• Temporal Transformer Network (TTN) [8]: TTN is a supervised warping module placed before 

a classifier to reduce intra-class variability and increase inter-class separation. 

• DeepFRC [32]: It incorporates an alignment module that learns time warping functions via 

elastic function registration and a learnable basis representation module for dimensionality 

reduction on aligned data. 

• Regularization-free Diffeomorphic Temporal Alignment Nets (RF-DTAN) [33]: This paper 

introduces a novel architecture that utilizes diffeomorphic transformations for joint alignment 

and averaging of time series, preserving the inherent temporal structures while improving 

alignment quality.  

• Deep Attentive Time Warping (DATW) [34]: The authors propose a neural network model for 

task-adaptive time warping using the attention model, to predict all local correspondences 

between two time series. The method has two learning stages: pre-training and contrastive 

learning.  

1.5 Contributions 

We propose an efficient multiple alignment framework that improves both the speed and 

accuracy of time series alignment compared to existing approaches. Moreover, as discussed 

previously, methods such as NTW [9] and Soft-DTW [27] are differentiable approximations of 

DTW. In contrast, we introduce a more effective method that addresses fundamental 

limitations of DTW by introducing a novel cost function. This leads to more flexible, accurate 

alignments. In summary, we have made the following contributions: 

• Linear Inference Complexity: Our model achieves linear inference time, addressing the 

scalability limitations of previous MSA/MTSA methods with higher-order complexity. 
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• Grouped MTSA Algorithm: We introduce a grouped alignment approach that avoids redundant 

pairwise comparisons, improving both efficiency and scalability for MTSA through a novel 

training and testing procedure. 

• Holistic Loss Function for Deep Alignment: We propose a novel loss that captures overall 

similarity between signals with a cosine similarity-based metric, going beyond point-to-point 

proximity, enabling more accurate and flexible alignment in deep models. 

• Stability-Promoting Penalization Terms: We introduce carefully designed penalties to 

encourage stable and reliable alignment outcomes. 

• Empirical Validation Across Datasets: We demonstrate that our method improves classification 

performance on most of datasets in the UCR Archive 2018, highlighting its practical utility. 

2 The Proposed Method 

In this section, we first present the necessary background definitions and formally introduce 

the MTSA problem. We then provide a detailed description of our proposed method, 

highlighting its key innovation s. 

2.1 Background and Problem Definition 

Warping Path: Consider two time series X and Y with lengths N and M, respectively. The 

warping path, denoted as P, is a sequence with length L N  defined as follows: 

  1,..., lP p p  (1) 

In Equation 1 for  1:l L  we have      , 1: 1:l l lp n m N M    Clearly  max ,L N M  and 

 ,l l lp n m  indicates that index ln  from X is warped to index lm  from Y. This warping path 

contains all essential information for aligning the two signals. Typically, three warping 

constraints are considered: 

• Boundary condition:  1 1,1p   and  ,Lp N M . This ensures the first and last indices from 

the signals are warped to each other. 

• Monotonicity condition: 1 2 Ln n n   and 1 2 Lm m m  . The alignment must preserve 

the chronological order of the time series. 

• Continuity condition:       1 1,0 , 0,1 , 1,1l lp p    for each  1: .l L  This prevents 

discontinuities between corresponding points, ensuring that each time step has at least one 

match in the other signal. 
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MTSA Problem Definition: Suppose N time series 1 2, ,..., ,NX X X  where for 

 1: , i id T

ii N X  R  with ,i id T  representing the dimension and length of iX , respectively. 

Two models can be employed to express time warping: 

• Matrix Multiplication: Defining warping matrices as iW  for  1:i N , the warped form of iX  

can be expressed as i iW X . One possible MSE cost function for the MTSA problem can be 

formulated as Equation 2: 

   
2

1

1 1

N N

MTSA i i i j j

i j

J W W X W X
 

   (2) 

• Function Composition: Utilizing warping functions i   for  1:i N , the warped form of iX   

is   i i i iX X t   and the associated cost function can be expressed as Equation 3: 

         
2

2

1 1

N N

MTSA i i i j j

i j

J X t X t  
 

   (3) 

2.2 Warping Function and Constraints 

To generalize linear warping  t at b    and model complex temporal alignments, we 

propose a piecewise linear warping function as follows: 

• Segmentation: The time axis is divided into K consecutive intervals with durations 1 2, , , Kt t t . 

The k-th interval spans 1

1 1
,

k k

i ii i
t t



 


  . 

• Slopes: The k-th interval is assigned a slope ka , controlling how quickly time progresses within 

that segment. 

• Warping Function: The function  t  is continuous and linear within each interval, defined by 

   1 1

1 1

k k

i i k ii i
t a t a t t

 

 
    , for  1

1 1
,

k k

i ii i
t t t



 


   in the k-th interval. 

• Neural Network Output: A neural network predicts 2K non-negative parameters  1, , Ka a  and 

 1, , Kt t , enabling the function to adapt its shape based on input data. The higher K increases 

non-linearity, allowing for a more flexible alignment.  

The proposed warping function, illustrated in Fig. 1 and defined in Equation 4, satisfies three 

fundamental warping constraints: 
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• Boundary condition: It is evident that  0 0  . Additionally, we enforce 
1

K

kk
t T


 , where T 

is the length of the target warped signal. 

• Monotonicity condition: This condition holds if 0ka   for  1:k K . Ensuring non-negative 

slopes guarantees a monotonically increasing warping function. 

• Continuity condition: The function  t  is continuous, thus satisfying the continuity constraint. 

  
 

1 1

1 1 2 1 1 1 2

                                                                           

                                           

...                                                  

a t t t

a t a t t t t t t

t



    



1 1 1

1 1 1 1

         ...                   

( )                              
K K K K

k k K k k k

k k k k

a t a t t t t t
  

   







    

   

 

 

(4) 

2.3 Non-differentiability Problem 

Consider a neural network is trained to implement the warping function  · , and let signal X 

with length T be inputted to the network. The warped signal is obtained as   ·warpX X  . 

Consequently,   X t  should be calculated for each  1, .t T  However, if  t  is not an 

integer, standard (hard) warping approximates it to the nearest integer since X is defined only 

at discrete time steps. This makes the loss function non-differentiable, as small changes in time 

( kt ) or amplitude ( ka ) parameters may result in non-integer  t , causing   X t  and the 

loss function to be undefined. Consequently, gradient-based optimization cannot be applied. 

      To solve this, soft warping is utilized, allowing  t  to be a floating-point value. The warped 

signal warpX  is then computed using interpolation. This is modeled through matrix 

multiplication (Equation 2), where the warping matrix W contains values in the range [0,1]. 

2.4 Neural Network Structure 

The overall structure of the neural network is illustrated in Fig. 2. The input time series 

     1 2, ,..., NX t X t X t  are assumed to have the same length at this stage; considerations for 

different-length time series will be addressed later. The primary network is a CNN with an 

input, three convolutional, a flatten and two dense layers. 

• Input Layer: Receives  iX t  from the dataset and passes it to the first convolutional layer. 
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• Convolutional Layers: Comprise multiple convolutional kernels and pooling layers to extract 

features. 

• Flatten Layer: Converts the final convolutional layer’s output into a vector proportional to 

the input time series length. 

• Parallel Dense Layers: Two layers generate the warping function parameters  1 2 3 4, , ,a a a a  

and  1 2 3 4, , , ,t t t t  as shown in Fig. 1 for 4K  . 

From these outputs a warping function is implemented, and a warping matrix iW  is calculated 

using the soft warping concept. The warped input  ,i warpX t  is obtained by multiplying iX  

with iW  and is applied to both the loss function and the input dataset blocks. 

Two key contributions related to the neural network include the loss function block and the 

training and testing procedure, which will be discussed in the following subsections. 

2.5 Loss Function 

As discussed in Section 1, DTW faces issues like computational complexity and singularity. To 

address singularity, we propose two solutions: First, using convolutional kernels in CNNs for 

feature extraction, allowing local patterns at each temporal point to influence adjacent points, 

creating relationships between them. Second, instead of relying on traditional DTW algorithms 

with MSE loss functions, which can cause singularity due to their point-wise nature, we 

implement a more robust loss function that captures the overall similarity between two signals, 

rather than just point-to-point proximity. This function can be split into main and penalization 

parts, which will be deliberated in this section. 

The Main Part: It must accommodate small to moderate scalings and shifts in the temporal 

domain without correcting amplitude. So, when two signals are multiples of each other, the loss 

function should reach its minimum. The approach is to apply the inner product of the two 

signals. For two arbitrary 1-dimensional signals X and Y (vectors), the Cosine Similarity function 

is defined as follows: 

  
 

2 2

,
,

max ,
X

X Y
S X Y

X Y


ò
 (5) 

Here, 
2

·  denotes the Euclidean norm, and ò  is a small positive constant to prevent division by 

zero. Cosine similarity ranges from [-1, 1], where 1 signifies codirectional signals, 0 indicates 

orthogonal signals, and -1 represents contradirectional signals. To achieve smoother results, 

we use a quadratic form of cosine similarity while preserving its sign. This is because both 
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orthogonal and contradirectional signals are undesirable, and we need codirectional signals. 

Consequently, the loss function in Equation 6 is defined using the signed square form of cosine 

similarity. 

      
2

, 1 ,C CL X Y S X Y sign S   (6) 

Finally, the main loss function between two arbitrary signals X and Y is introduced as Equation 

7: 

    , ,main warpL X Y L X Y  (7) 

The main loss function in Equation 7 is similar to Equation 6, only the first signal ( X ) is warped 

and then its cosine similarity with the second signal (Y ) is measured. 

If the signals have dimensions greater than one, each row is treated as an individual vector. 

Cosine similarity is then calculated between corresponding rows using Equation 5, resulting in 

a vector as the main loss function in Equation 7, with a size equal to the signal dimensions. To 

obtain a specific loss function, the average value of the elements in this vector is computed. 

The Penalization Part: If 1ia   for all  1:i K , the warping function becomes the identity, 

implying no change to the signal. Since signals in the dataset are assumed to be homogeneous 

with minimal discrepancies, the values of  1,..., Ka a  should stay close to 1. To encourage this, 

two penalization terms are added to the loss function. Suppose x  is a measure of the mean 

amplitude of  1,..., Ka a . We define two functions on x : 

•    
2

1 1f x x  : Encourages x  to be around 1 and penalizes x  for values far larger than 1. 

•    2

2 1/ :f x x ò  Prevents x  from going too close to zero. Here, ò  is a small positive 

constant. 

The combination of these two functions can be expressed as Equation 8, and Fig. 3 illustrates 

its graphical curve. 

    
2

2

1
1

0.1
f x x

x
  


 (8) 

       Based on Fig. 3, the function in Equation 8 can serve as an effective penalization term. 

Building on this prototype, we define the following penalization function: 
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    
2

. 1 1
21

1

1
, , 1

1
0.1

K

pen K k
K

k
kk

L a a a

a
K






   





 (9) 

 

The Final Loss Function: Combining Equation 9 with Equation 6, the loss function for an input 

time series X can be expressed as Equation 10: 

 

     

     

2 . 1

2 2

2 1
21

1

, , , ,

1
1 , 1

1
0.1

final main pen K

K

C warp C k
K

k
kk

L X Y L X Y L a a

S X Y sign S a

a
K



 




   

 
 

    
 
 




 

(10) 

In Equations 9 and 10, 1  and 2  are hyper-parameters controlling the penalization terms, and 

ka  for  1:k K  are the amplitude outputs corresponding to the input X. The main loss 

function  ,mainL X Y , is computed between the warped input signal warpX  and the second 

signal Y. For two signals X and Y, the neural network can warp the first signal X to align with Y 

using Equation 10. For more than two time series, the problem becomes MTSA, discussed in 

the next subsection. 

2.6 Training and Testing Procedure 

Here, we explain how our framework extends to the multiple case for the MTSA problem. 

Consider Fig. 2, where the signals in the input dataset iX  for  1:i N  have the same length 

T. If their lengths differ, a pre-processing stage will equalize them. Below is the proposed 

algorithm for the training procedure: 

1. Apply each time series iX  to the network input. 

2. Obtain amplitude parameters  1 2 3 4, , ,a a a a  and time parameters  1 2 3 4, , ,t t t t   from the 

network. 

3. Utilize the warper block to generate the warping matrix based on these parameters and 

multiply it with the input time series to construct ,i warpX . 

4. The loss function block calculates the average final loss between ,i warpX  and each of the other 

1N   signals according to Equation 10. 

5. Replace the original iX  with its warped version ,i warpX . 
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6. Repeat steps 1-5 for all N signals, completing one epoch of training. 

7. Perform the required number of epochs to gradually align signals to each other. 

Substituting signals with their warped versions is essential in our MTSA framework. 

However, early in training, the network may lack meaningful warpings. Delaying substitution 

until the model learns more relevant information ensures stable and informed dataset updates. 

Ultimately, the network aligns N input signals, enabling accurate warping of homogeneous 

test time series. During testing (illustrated in Fig. 2), the process remains the same except for 

omitting the loss function block. The input test signal iX  is processed by the network, 

producing the warped test signal ,i warpX  via the warper block. 

A key benefit of using deep neural networks for time series alignment is the elimination of 

backpropagation during testing. Unlike conventional methods such as DTW, which require 

repeated optimization for each alignment, our approach uses a parameterized network that 

learns to align signals efficiently. 

3 Experiments 

Four series of experiments are presented in this paper. The first addresses the MTSA problem 

by aligning test signals to training signals. The second explores warped averaging as a key 

MTSA application, highlighting notable cases to evaluate the method's performance. The third 

involves a classification test on 90 datasets, reporting accuracy for a Nearest Neighbor 

classifier. The fourth validates the method's superiority by measuring classification rate and 

error using a deep ResNet classifier. Experiments were conducted on the UCR Time Series 

Classification Archive [35], a widely recognized benchmark in time series analysis, as it is 

commonly employed in the majority of existing literature for evaluating alignment and 

classification methodologies. 

Missing Values and Varying Lengths: The UCR Archive includes 11 datasets with variable time 

series lengths, which require pre-processing to equalize them. Following [36], we adjust each 

time series based on the average sequence length: longer series are shortened by randomly 

removing time steps, while shorter ones are extended by inserting values computed as the 

average of random points and their neighbors. This approach preserves shape and is more 

efficient than uniform stretching, which requires recomputing all values. Missing values are 

handled via linear interpolation, with boundary cases addressed through nearest-value 

extrapolation to maintain continuity without discarding samples. 
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Experiment Setup: The CNN consists of three layers with filter sizes of 13, 7 and 3, and filter 

counts of 128, 64 and 32, respectively. Each convolutional layer is followed by an average 

pooling layer (stride 1, sizes 6, 4 and 2). After the third layer, the tensor is flattened and 

processed by two parallel dense layers, each with 4 output neurons representing  1 2 3 4, , ,a a a a  

and  1 2 3 4, , ,t t t t . ReLU activation functions ensure non-negative, unbounded outputs for a  and 

t  values. The hyperparameters 1  and 2  in Equation 10 are set to 0.5 for most datasets. 

Although optimizing them individually could improve results, we avoided this due to its time-

intensive nature. The learning rate is fixed at 310 . Training runs for 25 epochs, with 

checkpoints saved every 5 epochs to account for potential early stopping benefits. The best 

model is chosen based on validation accuracy. The implementation uses the PyTorch library. 

 

3.1 The Multiple Time Series Alignment (MTSA) 

A key application of MTSA is computing a warped average to represent a set of signals, as a 

simple arithmetic average cannot handle temporal shifts or scale variations. DBA [5], a robust 

MTSA method, iteratively uses DTW to align signals with an evolving average. Also, RF-DTAN 

[33] is a novel deep-learning based approach for MTSA. In this study, both DBA and RF-DTAN 

are used as baselines for MTSA (this section) and warped averaging (the next section) to 

demonstrate the advantages of our proposed time series alignment approach. 

For each dataset, signals with the same label are inputted into the model to ensure 

homogeneity. Standard UCR dataset train-test splits are used. The goal is to optimally align 5 

test signals with their corresponding training signals. Fig. 4 illustrates the results for various 

datasets and labels. For each test signal (red), generating its warped counterpart (green) 

involves solving an MTSA problem to align it with a set of training signals (gray). In cases like 

"Plane: 4" and "Trace: 3", simple linear transformations are insufficient, requiring more 

complex non-linear warpings for accurate alignment. Once the warper network is trained, the 

MTSA problem is solved by passing the test signal through the network, ensuring linear 

computational complexity relative to signal length. Notably, inference time is unaffected by the 

number of training signals, making the method scalable for large datasets. A major advantage 

of deep neural networks is the decoupling of training time (a one-time process) from test time. 

We compare the computation times of our method against DBA and RF-DTAN for generating 

warped signal averages. While quality metrics are discussed in Subsection 3.2, this section 

focuses on timing. As shown in Table 1, our model is over twice as fast as DBA and substantially 

faster than RF-DTAN. Fig. 5 illustrates performance across all UCR datasets, with our method 

outperforming DBA in over 82% of cases and consistently surpassing RF-DTAN. Notably, it 
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reduces DBA’s processing time from 258 to 59 seconds, achieving more than 4-fold 

improvement. 

3.2 Representative and Warped Averaging 

In this section, we provide visual comparisons demonstrating the advantages of our approach 

over the DBA and RF-DTAN algorithms in computing the warped average signal and effectively 

addressing various challenges. 

Overall Comparison: An overall test on the GunPoint dataset evaluates our method's 

performance, as shown in Fig. 6. Fig. 6(a) displays label 1 signals with different averaging 

methods. Fig. 6(b) shows warped signals using our method and their average. Fig. 6(c),(d) 

present the same for label 2. The results highlight that the simple average fails to capture 

slightly complex trends, particularly for label 2, while DBA introduces unwanted spikes and 

RF-DTAN does not seem as a proper average. In contrast, our method aligns signals effectively, 

producing a warped average that preserves the trend of signals and serves as a representative 

for each class. 

      Preserve Signal Shapes: This is crucial in warped averaging, especially for challenging 

datasets like Trace. Simple averaging fails to capture the true shape of signals, as shown in Fig. 

7. While DBA improves the results, RF-DTAN and our approach effectively compensate for 

signal shifts by applying appropriate multiple warping. This generates a warped average with 

reduced variations and better representation of the underlying trend compared to DBA. 

Alignment of Peaks: The InsectWingbeatSound dataset contains signals with sequences of 

unaligned peaks, making alignment and trend extraction very challenging. Fig. 8 demonstrates 

that both simple averaging and DBA fail to preserve the sequence of peaks, particularly smaller 

ones. In contrast, RF-DTAN and our proposed method successfully preserve the peak 

sequences. Notably, our method produces cleaner and more representative average signals. 

Signal Shifts: Time warping effectively compensates for temporal shifts in signals with 

similar shapes. As demonstrated in Fig. 9, our method successfully removes temporal 

displacements, resulting in warped signals that produce a more accurate average trend 

compared to other approaches. 

Noisy Environments: Extracting signal shapes from datasets with high variation and noise is 

challenging. However, as shown in Fig. 10 on the SyntheticControl and CBF datasets, our 

method effectively aligns signals and extracts a meaningful representative for the time series 

set, even under noisy conditions. 
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Outlier Signals: Rare signals with peaks at specific temporal points are considered outlier 

trends and should be excluded from the representative signal. As shown in Fig. 11 on the 

MoteStrain dataset, while other methods reflect local peaks, our model produces a 

representative signal that captures the overall trend without these outliers. 

3.3 The Comprehensive Classification Test 

This section and the next aim to show how our proposed warper network enhances 

classification accuracy. We employ the nearest neighbor (NN) classifier, and evaluate accuracy 

across datasets under several conditions: a basic NN classifier, NN combined with DTW and 

DBA [5] (classical approaches) and NN with RF-DTAN [33], DATW [34] and our method (deep 

learning-based approaches). 

In the DTW+NN classifier, the Euclidean distance is replaced with DTW distance, requiring 

DTW computation between the test sample and all training signals. In the DBA approach, the 

warped average of training signals is computed for each class, and test samples are assigned to 

the class whose representative has the smallest DTW distance. RF-DTAN and DATW 

combinations with NN are implemented as described in their original publications. 

      In our approach, a neural network is trained for each class using specified parameters. 

Training is repeated with multiple random initializations, and the best model is selected based 

on validation accuracy. The final model's performance is evaluated on the test dataset. 

After training on a dataset, each test signal is processed through all class-specific warpers. 

The error is measured between the warped test signal and the average of all warped training 

signals for each class (warped by their corresponding class warper) using Equation 6. The test 

signal is assigned to the class whose warper produces the smallest error. 

A limitation of our approach is the requirement to train as many models as there are classes 

in a dataset, making it less practical for datasets with numerous classes. Due to this and 

resource constraints, we performed classification tests on 90 UCR Archive datasets. 

Experiments were conducted on a system with an 8-core CPU and 64 GB RAM. Since DATW is 

optimized for GPU and requires several days per dataset on CPU, we used published results 

from [34], adding a few supplementary datasets. RF-DTAN was run on 90 datasets with an 

average runtime of 65 minutes per dataset, while our method achieved an average of just 4 

minutes per dataset. 

      The results are presented in Table 2. This table demonstrates that our method on average 

improves baseline results by 6.1%, DTW+NN by 3.1%, DBA+NN by 7.5%, DATW by 3% and 

RF-DTAN by 6.2%. The last row in Table 2 shows the Mean Per Class Error (MPCE) introduced 

by [37], which is defined as Equation 11. 
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In Equation 11, kAcc  is the classification accuracy in the k th dataset, and K is the number of 

datasets. MPCE measures the expected error rate per class across all datasets. According to 

Table 2, our method reduces the MPCE by 24.6% compared to NN, 17.5% compared to 

DTW+NN, 28.8% compared to DBA+NN, 18.9% compared to DATW and 27.2% compared to 

RF-DTAN. Thus, on average, it exhibits better classification accuracy per class for these 90 

datasets. 

Error Analysis: The final column of Table 2 presents cosine similarity-based loss between 

training signals before and after training. As some UCR datasets are manually aligned, warping 

may not always improve alignment, and in some cases, suitable warping functions may not 

exist. These limitations are reflected in the loss differences between original and warped 

signals. Datasets are sorted by the degree of loss reduction; those at the top show greater 

improvements in both loss and accuracy over the NN baseline. Conversely, lower-ranked 

datasets (e.g., OliveOil, Fungi, and Meat) are already well-aligned, making warping less effective 

and a simple NN more suitable. Minor accuracy drops in some datasets are attributed to using 

uniform hyperparameters, which could be mitigated through dataset-specific fine-tuning. 

Statistical Significance Test: The results of Wilcoxon signed-rank test are presented in Table 

3, which confirm that our method achieves a statistically significant improvement over four 

baselines: NN, DTW+NN, DBA+NN and RF-DTAN (with the p-value lower than 0.05). Compared 

to DATW, although our method achieves a higher average accuracy, the difference is not 

statistically significant (p-value is 0.275) due to limited number of datasets. However, the total 

processing time of our model is significantly lower than DATW (4 minutes compared to several 

days per dataset).  

Finally, Fig. 12 illustrates the wins and losses of our model compared to NN, DTW+NN, RF-

DTAN and DATW baselines. In each plot, blue points indicate wins and red points represent 

losses. As shown, our model outperforms NN on 65 out of 90 datasets, with 15 losses; against 

DTW+NN, it records 50 wins and 33 losses; against RF-DTAN, 72 wins and 17 losses; and 

against DATW, 27 wins and 17 losses. These results highlight the effectiveness of our approach 

across all baselines. 

3.4 Deep Network Classification 

After evaluating our method's effectiveness in enhancing the accuracy of a simple NN classifier, 

this section examines its performance with a more advanced and complex classifier. 
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In [38] deep learning methods for time series classification are explored, identifying ResNet 

[37] as the best-performing model among nine top-rated approaches for UCR Archive datasets. 

Our method is not an alternative to ResNet but can serve as a pre-stage warper to improve the 

accuracy. To demonstrate this, we randomly selected 30 datasets from the previous 90 (due to 

computational constraints) and trained the ResNet classifier for 1500 epochs, as recommended 

in [37]. Each dataset was tested twice: once in its original form and once after warping, where 

each test signal was warped using the model that produced the least error. 

Table 4 presents the results, showing percentage improvements in test loss average and 

variance for the selected datasets. These values are computed from epoch 300 to 1500 to 

exclude high initial variations. The results indicate a 33% improvement in average loss and a 

54% reduction in variance when incorporating our warper stage. Additionally, Table 4 reports 

final test accuracies, revealing a 2.5% average accuracy improvement and a 22.7% reduction 

in MPCE. Notably, our approach is significantly faster than ResNet, ensuring that its integration 

does not introduce noticeable computational overhead. 

4 Discussion 

The proposed innovative MTSA algorithm enables scalable multiple sequence alignment, 

offering superior speed and alignment quality compared to baseline models. By employing a 

novel and efficient loss metric, incorporating appropriate regularization terms, and utilizing an 

optimized learning procedure, our network effectively learns class-specific patterns from 

training signals and accurately identifies them in test signals. However, as noted in the 

Experiments section, a primary limitation of our approach is the need to train a separate neural 

network for each class in the dataset. Consequently, the method may be less practical for 

datasets with a large number of classes. 

Incorporating time warping into time series analysis opens possibilities for applications 

such as forecasting and anomaly detection, making these promising directions for future work. 

Additionally, extending our approach to multi-dimensional time series could enable its use in 

tasks such as video alignment.  

5 Conclusion 

We presented a novel deep learning-based framework for MTSA, addressing a largely 

overlooked problem in the literature. Unlike traditional MSA methods that relied on pairwise 

alignments, leading to high computational complexity, in our approach a grouped multiple 

alignment algorithm was introduced that jointly aligned all signals. Additionally, complex non-
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linear warpings were decomposed into simple linear sections and a penalization term was 

added to the loss function, ensuring a general time warping that adheres to three essential 

constraints. By optimizing loss functions and training procedures, our method achieved 

promising results in both time series classification and warped averaging. 
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Fig. 1: The implemented piecewise linear warping function τ (t). 

Fig. 2: The overall structure of the network including the Main Network and the Warper 

and Loss Function blocks. 

Fig. 3: A graphical curve from the prototype penalization function f(x). This function 

prevents x from getting too high or too close to zero. 

Fig. 4: Results of the MTSA experiment, with dataset names and labels displayed above 

each. In each plot, gray signals represent the warped training signals, while red signals 

indicate five randomly selected test signals requiring alignment. The green signals show the 

warped versions of the red signals, generated by our model. 

Fig. 5: Scatter plots to compare the timing of our method with: (a) DBA and (b) RFDTAN. 
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Each point represents a label from a dataset, with points above the y x  line indicating a 

win (blue points) and those below showing a loss (red points) for our model. 

Table 1: Timing comparison for the MTSA task between our method and the DBA and 

RF-DTAN approaches. 

Fig. 6: Results on the GunPoint dataset. (a) label 1, gray: original time series, red: simple 

average, green: DBA, cyan: RF-DTAN, blue: OUR warped average. (b) label 1, gray: warped 

time series with OUR method, blue: OUR warped average. (c) label 2, similar to (a) for 

colors. (d) label 2, similar to (b) for colors. 

Fig. 7: Results on the Trace dataset, label 2. For details refer to Fig. 6 caption. 

Fig. 8: Results on the InsectWingbeatSound dataset, (a), (b): label 2 and (c), (d): label 

10. For details refer to Fig. 6 caption. 

Fig. 9: (a), (b): Results on the Plane dataset, label 5. (c), (d): Results on the ECGFiveDays 

dataset, label 1. For details refer to Fig. 6 caption. 

Fig. 10: (a), (b): Results on the SyntheticControl dataset, label 2. (c), (d): Results on the 

CBF dataset, label 3. For details refer to Fig. 6 caption. 

Fig. 11: Results on the MoteStrain dataset. gray: original time series, red: simple average, 

green: DBA signal, blue: warped average with our method. (a): label 1, (b): label 2. Table 2: 

Classification accuracy comparison between our method and five baselines over 90 

datasets of the UCR Archive. 

Table 3: Results of the Wilcoxon signed-rank test to assess the statistical significance of 

our approach over five baselines. 

Fig. 12: Scatter plots comparing our method with (a) NN, (b) DTW+NN, (c) RF-DTAN 

and (d) DATW. Each point represents a dataset, with points above the y x  line indicating 

a win (blue points) and those below showing a loss (red points) for our model.  

Table 4: RESNET Test Loss Average and Variance percentage improvements over 

epochs (after epoch 300) and Accuracy comparison for 30 datasets when a warping stage 

with our approach is added. 
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Fig. 1: The implemented piecewise linear warping function  t . 
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Fig. 2: The overall structure of the network including the Main Network and the Warper and Loss Function  

blocks. 
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Fig. 3: A graphical curve from the prototype penalization function  f x . This function prevents x from getting 

too high or too close to zero. 

 

Fig. 4: Results of the MTSA experiment, with dataset names and labels displayed above each. In each plot, gray 

signals represent the warped training signals, while red signals indicate five randomly selected test signals 

requiring alignment. The green signals show the warped versions of the red signals, generated by our model. 
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Fig. 5: Scatter plots to compare the timing of our method with: (a) DBA and (b) RF-DTAN. Each point represents 

a label from a dataset, with points above the y x  line indicating a win (blue points) and those below showing 

a loss (red points) for our model. 

 

 

 

Table 1: Timing comparison for the MTSA task between our method and the DBA and RF-DTAN approaches. 

Dataset 

name 
Label 

Number of 
Training 
signals 

OUR time: 
Train (sec) 

OUR Time: 
Test (sec) 

OUR Time: 
Whole (sec) 

DBA time: 
Whole (sec) 

RF-DTAN time: 
Whole (sec) 

ChlorineConcentration 2 91 11.6 2.27 13.87 87.7 1009.2 
ChlorineConcentration 3 262 102.4 2.24 104.6 259.9 2905.7 

ECG5000 1 292 127.6 1.65 129.2 201.6 2732.9 
ECGFiveDays 1 14 0.30 1.51 1.81 3.94 155.5 
ECGFiveDays 2 9 0.13 1.55 1.68 2.04 100.0 

GunPoint 1 24 0.81 1.89 2.7 11.4 253.5 
GunPoint 2 26 0.95 2.02 2.97 12.9 274.7 

Plane 4 16 0.38 1.73 2.11 5.41 155.2 
Plane 5 13 0.25 1.71 1.96 3.97 126.1 
Plane 6 18 0.46 1.77 2.23 6.56 174.6 
Trace 1 26 0.96 6.15 7.11 42.3 484.5 
Trace 3 22 0.70 6.15 6.85 32.4 409.9 
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Fig. 6: Results on the GunPoint dataset. (a) label 1, gray: original time series, red: simple average, green: DBA, 

cyan: RF-DTAN, blue: OUR warped average. (b) label 1, gray: warped time series with OUR method, blue: OUR 

warped average. (c) label 2, similar to (a) for colors. (d) label 2, similar to (b) for colors. 

 

Fig. 7: Results on the Trace dataset, label 2. For details refer to Fig. 6 caption. 
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Fig. 8: Results on the InsectWingbeatSound dataset, (a), (b): label 2 and (c), (d): label 10. For details refer to Fig. 

6 caption. 
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Fig. 9: (a), (b): Results on the Plane dataset, label 5. (c), (d): Results on the ECGFiveDays dataset, label 1. For details 

refer to Fig. 6 caption. 
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Fig. 10: (a), (b): Results on the SyntheticControl dataset, label 2. (c), (d): Results on the CBF dataset, label 3. For 

details refer to Fig. 6 caption. 

 

Fig. 11: Results on the MoteStrain dataset. gray: original time series, red: simple average, green: DBA signal, blue: 

warped average with our method. (a): label 1, (b): label 2. 
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Table 2: Classification accuracy comparison between our method and five baselines over 90 datasets of the UCR Archive. 

Dataset name Train Test Class Length Base 

 NN 
DTW+ 

NN 
DBA+ 

NN 
DATW RF-

DTAN 

OUR CS org . -> 

CS  warp 

ACSF1 100 100 10 1460 54 64 47 ----- 52 60 0.326->0.022 
Trace 100 100 4 275 76 100 86 100 74 80 0.392->0.042 
CBF 30 900 3 128 85.5 71.7 92.2 99.1 100 90 0.745->0.141 

TwoLeadECG 23 1139 2 82 78.5 93.1 87.1 ----- 91 90.5 0.247->0.048 
SmoothSubspace 150 150 3 15 95.3 81.3 82.7 ----- 84.7 96.7 0.275->0.078 

ECG200 100 100 2 96 88 92.5 83 91 78 85 0.275->0.085 
SonyAIBORobotSurface2 27 953 2 65 88.5 85.4 76.4 ----- 79.1 83 0.633->0.218 

BME 30 150 3 128 82.7 75 75.3 98 96.7 91.3 0.268->0.120 
Car 60 60 4 577 60 99.8 63.3 ----- 85 80 0.148->0.068 

GunPoint 50 150 2 150 91.3 88.7 76.7 82.7 80 87.7 0.366->0.167 
Computers 250 250 2 720 57 71.6 56.8 62.8 47.2 59.2 0.955->0.452 
InlineSkate 100 550 7 1882 33.5 37.8 31.6 ----- 23.7 45.5 0.591->0.285 

Plane 105 105 7 144 96.2 100 99 100 100 99 0.101->0.050 
AllGestureWiimoteZ 300 700 10 Vary 47 65.4 53 ----- 51.7 54 0.634->0.330 

PhalangesOutlinesCorrect 1800 858 2 80 77.5 93.1 75.9 78.6 69.2 90 0.078->0.040 
UMD 36 144 3 150 80.6 86.8 71.8 ----- 61.1 79.2 0.299->0.161 

GunPointAgeSpan 135 316 2 150 96 98.4 87.7 ----- 85.9 97 0.046->0.025 
ECGFiveDays 23 861 2 136 80 46.1 68.4 71.5 100 92.5 0.667->0.364 

Fish 175 175 7 463 78.3 81.1 69.1 92 84.6 81.5 0.087->0.049 
Chinatown 20 343 2 24 95 95 85.4 ----- 95.9 95 0.371->0.215 

InsectWingbeatSound 220 1980 11 256 61 35.9 40.9 55 52.4 55.7 0.657->0.403 
FreezerRegularTrain 150 2850 2 301 79 89.7 77.1 ----- 76.9 82.5 0.346->0.223 

Yoga 300 3000 2 426 82 83.6 81.2 82.9 83.1 86.5 0.675->0.445 
WormsTwoClass 181 77 2 900 61 58.4 54.5 61 56.8 63.5 0.918->0.609 

ProximalPhalanxOutlineCorrect 600 291 2 80 77.5 78.3 74.6 91.4 74.3 80 0.034->0.023 
SyntheticControl 300 300 6 60 88.5 99 92.3 99.7 98.7 100 0.655->0.446 
MedicalImages 381 760 10 99 70.5 73.5 71.2 68.3 71.2 83 0.565->0.388 

FreezerSmallTrain 28 2850 2 301 64.5 75.9 75.8 ----- 80.9 83 0.290->0.200 
Meat 60 60 3 448 93.3 93.3 90 ----- 91.7 100 0.000->0.000 

Herring 64 64 2 512 51.6 54.7 59.4 ----- 67.2 70.3 0.090->0.064 
Lightning7 70 73 7 319 57.5 69.9 68.5 ----- 61.6 72.5 0.722->0.512 

MiddlePhalanxOutlineCorrect 600 291 2 80 76.5 71.1 68.1 82.8 65.7 69 0.050->0.035 
ECG5000 500 4500 5 140 91.5 75.6 84.5 90.6 87.8 95.5 0.374->0.270 
FaceAll 560 1690 14 131 68 85.8 68.7 83.5 76.9 84.5 0.780->0.568 

BirdChicken 20 20 2 512 55 65 65 ----- 75 85 0.682->0.496 
Wafer 1000 6164 2 152 100 97.9 92.5 99.8 72.5 99.5 0.518->0.382 

Symbols 25 995 6 398 93.5 95.2 93.8 ----- 84.5 93.5 0.212->0.158 
Worms 181 77 5 900 45.5 61 45.5 62.3 49.9 59 0.899->0.672 

ItalyPowerDemand 67 1029 2 24 97 95 92.7 95.9 94.1 98.5 0.312->0.240 
MiddlePhalanxOutlineAgeGroup 400 154 3 80 51.9 50.6 57.1 51.3 59.7 68.2 0.030->0.023 

MiddlePhalanxTW 399 154 6 80 51.3 50.6 48.7 50 43.5 62.3 0.018->0.014 
ProximalPhalanxOutlineAgeGroup 400 205 3 80 78 81 81.5 82.4 84.9 86 0.021->0.017 

DistalPhalanxTW 400 139 6 80 63.3 60.4 63.3 61.9 60.4 66.9 0.025->0.020 
ArrowHead 36 175 3 251 80 70.9 67.1 ----- 72.6 80 0.134->0.109 

FordA 3601 1320 2 500 68.5 56.8 62.5 71.5 70.5 63.5 0.473->0.389 
FordB 3636 810 2 500 58 61.7 61.1 60.9 68.7 63 0.481->0.396 

DiatomSizeReduction 16 306 4 345 91.5 96.1 84.3 58.5 95.8 98.5 0.009->0.007 
MoteStrain 20 1252 2 84 89 82.5 88.2 86.5 87.7 91 0.714->0.592 
Strawberry 613 370 2 235 95.5 95.6 87.8 95 89.5 96 0.063->0.052 

CinCECGTorso 40 1380 4 1639 91.5 64.9 63.2 ----- 72.8 87 0.740->0.619 
Wine 57 54 2 234 61.1 57.4 70.4 ----- 55.6 77.8 0.002->0.002 
Ham 109 105 2 431 60 49.5 71.4 74.3 77.1 81 0.440->0.370 

SonyAIBORobotSurface1 20 601 2 70 64.5 72.5 71.7 ----- 72.4 75 0.423->0.356 
Haptics 155 308 5 1092 39.5 38.3 40.9 ----- 44.5 55.9 0.430->0.365 

ToeSegmentation2 36 130 2 343 80.8 83.8 80.8 ----- 76.9 90.8 0.876->0.747 
ProximalPhalanxTW 400 205 6 80 70.5 74.1 65.9 75.6 73.7 80 0.008->0.007 

ChlorineConcentration 467 3840 3 166 62.5 64.9 53 61.3 52 58.5 0.311->0.271 
AllGestureWiimoteY 300 700 10 Vary 45.5 68.9 57.1 ----- 64.3 54 0.882->0.786 

HouseTwenty 40 119 2 2000 68.1 82.3 83.2 ----- 68.9 84.5 0.912->0.817 
Lightning2 60 61 2 637 75.4 80.3 70.5 ----- 60.7 78.7 0.554->0.498 

AllGestureWiimoteX 300 700 10 Vary 45.5 71.6 54.3 ----- 41.3 58.5 0.899->0.810 
GunPointMaleVersusFemale 135 316 2 150 99.5 98.4 93.7 ----- 94.3 100 0.052->0.047 

ToeSegmentation1 40 228 2 277 68.5 80.3 64.9 ----- 61.8 70 0.929->0.840 
Beef 30 30 5 470 66.7 87.3 66.7 ----- 63.3 70 0.233->0.214 

FacesUCR 200 2050 14 131 73 90.5 82.5 95.6 90.2 85 0.753->0.693 
Rock 20 50 4 2844 64 48 44 ----- 60 60 0.849->0.790 

PowerCons 180 180 2 144 97.8 90 95 ----- 92.8 97.8 0.492->0.460 
DistalPhalanxOutlineCorrect 600 276 2 80 71.5 72.8 72.5 74.6 65.9 70 0.136->0.128 

OSULeaf 200 242 6 427 52 83.3 50.9 74.8 53.8 70 0.821->0.772 
TwoPatterns 1000 4000 4 128 90 100 80.2 100 99.8 100 0.935->0.900 

DistalPhalanxOutlineAgeGroup 400 139 3 80 62.6 74.8 69.8 66.2 72.7 75.5 0.109->0.105 
GunPointOldVersusYoung 136 315 2 150 100 100 91.4 ----- 88.1 100 0.048->0.047 

BeetleFly 20 20 2 512 75 63.3 70 ----- 70 95 0.946->0.914 
ScreenType 375 375 3 720 35.5 39.5 44 35.7 45.3 52.4 0.941->0.923 

LargeKitchenAppliances 375 375 3 720 50.5 78.4 49.1 56.8 46.9 75.5 0.984->0.967 
DodgerLoopWeekend 20 138 2 288 98.4 95.6 97.7 ----- 100 98.4 0.133->0.132 

ShapeletSim 20 180 2 500 53.9 62.8 53.9 ----- 52.8 65 0.998->0.990 
SmallKitchenAppliances 375 375 3 720 32.5 62.9 66.7 54.9 52.9 62.2 0.996->0.989 

Earthquakes 322 139 2 512 71.2 80 74 74.1 70.5 74.8 0.993->0.990 
RefrigerationDevices 375 375 3 720 38 46.1 40.8 55.7 31.7 47 0.993->0.990 

Fungi 18 186 18 201 83.9 79.6 87.1 83 81.7 85.5 0.000->0.000 
FaceFour 24 88 4 350 78.4 86.4 81.8 ----- 73.9 86.4 0.694->0.706 

Mallat 55 2345 8 1024 88 93.7 94.8 ----- 95.6 92 0.041->0.042 
DodgerLoopGame 20 138 2 288 87.6 89.1 78.3 ----- 95 87.6 0.156->0.176 

InsectEPGRegularTrain 62 249 3 601 100 100 100 ----- 86.3 100 0.025->0.029 
DodgerLoopDay 78 80 7 288 55.8 46.2 49.4 ----- 58.7 52.6 0.129->0.151 

InsectEPGSmallTrain 17 249 3 601 100 100 100 ----- 81 100 0.019->0.023 
Coffee 28 28 2 286 100 100 96.4 ----- 96.4 100 0.013->0.016 

MelbournePedestrian 1194 2439 10 24 93.5 87.7 71.4 ----- 76.5 80 0.122->0.322 
OliveOil 30 30 4 570 86.7 58.7 86.7 ----- 76.7 66.7 0.000->0.002 
Average ----- ----- ----- ----- 73.6 76.6 72.2 76.7 73.5 79.7 0.425->0.330 

MPCE ----- ----- ----- ----- 0.0832 0.0760 0.0881 0.0773 0.0861 0.0627 --------------- 
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Table 3: Results of the Wilcoxon signed-rank test to assess the statistical significance of our approach over five 

baselines. 

Baseline p-value 95% Confidence Interval of 

accuracy improvement (%) 

NN  81.45 10  [4.37, 7.97] 

DTW+NN  0.018  [0.86, 5.52] 

DBA+NN  136.33 10  [5.88, 9.03] 

RF-DTAN  92 10  [4.82, 8.21] 

DATW  0.275  [-0.84, 5.29] 

 

 

 

Fig. 12: Scatter plots comparing our method with (a) NN, (b) DTW+NN, (c) RF-DTAN and (d) DATW. Each point 

represents a dataset, with points above the  y x   line indicating a win (blue points) and those below showing 

a loss (red points) for our model. 
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Table 4: RESNET Test Loss Average and Variance percentage improvements over epochs (after epoch 300) and 

Accuracy comparison for 30 datasets when a warping stage with our approach is added. 

Dataset name % Loss Avg. 

Improvement 
% Loss Var. 

Improvement 
% Acc. Without Pre-

warping 
% Acc. With 
Pre-warping 

Birdchicken 50.4 92.8 85 95 
BME 81.5 62 98.7 100 
CBF 62.8 21.5 99.4 99.4 

Coffee 40.4 85.7 100 100 
DistalPhalanxTW -23.6 35.6 68.3 71.2 
DodgerLoopGame 37.4 97.5 48.8 51.2 

Earthquakes 3.7 -24.1 69.1 75.5 
ECG5000 8.9 -53.4 93.3 93.6 
FaceFour 14.2 86.1 95.4 94.3 

FreezerRegularTrain 72.9 100 99.8 98.7 
GunPoint 91.9 100 98.7 99.3 

GunPointOldVersusYoung 99 100 97.8 100 
Herring 34.1 79.9 60.9 65.6 

LargeKitchenAppliances -40.8 21.7 81.1 90.4 
Lightning2 20.3 97.2 77 83.6 

Mallat 5.2 -20.6 91.2 97.4 
MoteStrain 40.2 70.4 91.4 93.7 
PowerCons 42.1 74.3 86.1 90 

ProximalPhalanxOutlineAgeGroup -3.1 57.3 82.9 88.3 
ProximalPhalanxOutlineCorrect 17.7 -7.8 91.4 93.1 

RefrigerationDevices -8.8 52 51.7 53.1 
SonyAIBORobotSurface1 -30.1 23.2 93.3 94 

Symbols 13 -102.4 91 95.5 
SyntheticControl 69.3 100 99.3 98.7 

ToeSegmentation1 42 95.9 96.9 98.7 
Trace 99.7 100 100 100 

TwoLeadECG -3.9 12.4 100 100 
TwoPatterns 88.3 100 95.9 99.7 

UMD 10 72.3 98.6 99.3 
Wafer 58.5 99.7 99.8 99.7 

Average 33.1 54.3 88.1 90.6 
MPCE — — 0.0374 0.0289 
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