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Abstract 

Accurate estimation of joint angles during limb movements plays a crucial role in the 

rehabilitation and diagnosis of neuromuscular and rheumatic disorders. This study aims to 

predict finger joint kinematics from surface electromyography (sEMG) signals using Long 

Short-Term Memory (LSTM) networks, which are well-suited for modeling temporal 

dependencies in physiological data. To enhance the model's generalization and reduce 

overfitting, four regularization strategies—LASSO, ridge, elastic net, and dropout—were 

systematically evaluated. Among these, LASSO and ridge regularization showed optimal 

performance when their coefficients were set to 0.0005, effectively balancing model complexity 

and prediction accuracy. While dropout was also beneficial, its performance declined at higher 

rates, with 0.2 identified as the most effective setting. The inclusion of appropriate regularization 

techniques led to a significant improvement in model accuracy, up to 20%, demonstrating their 

critical role in refining EMG-based kinematic estimation. The proposed LSTM model achieved a 

maximum prediction accuracy of 98% and an average of 96%, evaluated using the Pearson 

correlation coefficient. The results highlight the importance of selecting the appropriate 

regularization parameters to optimize both prediction accuracy and training speed in deep 

learning tasks designed to estimate joint angles. 
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1. Introduction  

Stroke survivors often experience challenges with precise motor control, particularly in daily 

activities such as grasping objects [1]. Research has shown that robot-assisted rehabilitation can 

improve both short- and long-term motor control in the affected upper limb. However, there is 

limited evidence regarding how well these improvements transfer to real-world activities. 

Therefore, incorporating functional tasks such as object grasping into rehabilitation programs is 

essential to enhance practical recovery [2]. 
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Additionally, surface electromyo graphy (sEMG) captures the bioelectrical signals produced 

by muscles during contraction, reflecting the overall electrical activity governed by the nervous 

system. Electrodes positioned on the skin's surface capture these signals, indicating the intention 

to move. Analyzing sEMG signals facilitates the identification of movement intentions and the 

assessment of muscle function.  

In the domain of hand motion analysis, two primary challenges exist: classifying hand 

gestures and regressing of joint and limb movements. Shen et al. also used a convolutional neural 

network (CNN) to identify hand movements, utilizing two classifiers in succession [3]. Kahn et 

al. used a lightweight CNN for recognizing hand movements [4]. Asif et al. used a CNN to 

identify eleven wrist and finger movements, examining how changes in certain network 

parameters affected efficiency [5]. Chen et al. applied a 3D CNN to recognize finger movements, 

highlighting its advantage in capturing both the timing and shape of signals [6]. Nasri et al. 

employed a recurrent neural network with gated recurrent units to classify six distinct 

movements [7]. Simao et al. utilized deep recurrent networks to identify eight hand movements, 

achieving real-time classification [8]. Although gesture classification has been widely studied, 

accurately tracking continuous hand movements is still a major challenge. This study specifically 

addresses the regression of finger joint movements.  

Previous studies aimed at mapping motor unit activity to finger kinematics have employed 

four methodological approaches: musculoskeletal modeling, traditional machine learning, 

conventional neural networks, and deep learning architectures. In the musculoskeletal modeling 

domain, He et al. estimated the metacarpophalangeal (MCP) joint angles of fingers using a 

muscle synergy model. They collected data using 32 surface electrodes [9]. Kim et al. 

established a muscle synergy and musculoskeletal model for estimating wrist joint angle [10]. 

Similarly, Zhang et al. employed fourteen electrodes alongside a Kalman filter algorithm to 

predict six finger joint angles [11]. Gilstrep et al. also adopted a musculoskeletal modeling 

strategy to continuously estimate the motion of the index finger [12]. In their study, Roy et al. 

utilized a 128-channel electrode array to decompose sEMG signals and predict joint angles [13]; 

however, this technique requires the experimental calibration of numerous biomechanical 

parameters, which poses significant limitations in terms of practical implementation and 

accuracy [14]. 

The second approach uses traditional machine learning. For example, Zhang et al. utilized a 

sparse pseudo-input gaussian process (SPGP) regression method to map EMG features to MCP 

joint angles [15]. Gao et al. utilized a least squares support vector machine that incorporates 

time-delayed features of sEMG signals to estimate continuous wrist palmar angles [16]. 

Nevertheless, these approaches often involve complex and labor-intensive feature extraction 

processes, which may result in the loss of critical signal information [17], [18].  

The third category encompasses the use of conventional neural networks. Batayneh et al. 

used neural networks to create a nonlinear relationship between sEMG signals and hand joint 

angles [19]. Gao et al. developed a control method that utilizes a nonlinear autoregressive model 

with exogenous inputs (NARX) to estimate joint angles based on surface EMG signals [20]. 
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Tacca et al. implemented a traditional neural network, combined with 150 electrodes, to estimate 

joint angles for four specific hand movements [21]. Despite showing promising results, this 

approach is highly dependent on the integration of numerous parameters and the availability of 

high-quality data [14].  

Deep learning has resulted in significant advancements across various scientific fields [22, 23]. 

Recently, there has been an increasing exploration of deep neural networks for predicting finger 

kinematics, owing to their ability to learn features automatically and enhance generalization. 

Chen et al. utilized Long Short-Term Memory (LSTM) networks to forecast upper limb joint 

angles [24]. Kim et al. first reduced the dimensions of electromyogram signals and then applied a 

CNN to determine finger positions [25]. Qin et al. used a CNN to estimate the angle of the wrist 

joint [26]. Guo et al. also leveraged a convolutional framework for finger kinematics estimation 

[27]. RNNs have also been applied to estimate the position of limbs. Tang et al. employed LSTM 

to estimate the elbow and wrist joints [28]. Wen et al. introduced an CNN architecture to 

estimate neural drives during isometric contraction tasks [29]. Sun et al. proposed a multi-stream 

CNN for the continuous recognition of finger gestures [30]. Guo et al. forecasted finger 

kinematics by a multi-attention feature fusion network [31]. Wang et al. employed a hybrid 

unsupervised domain adaptation network to estimate joint angles for application in myoelectric 

control systems [32]. An et al. used convolutional layers transformer to estimate finger joint 

angles during grasping movements [33]. Wang et al. proposed an ensemble learning technique to 

estimate MCP joint angles during finger movements [34]. To estimate ten joint angles during six 

grasping tasks, Lin et al. adopted a network architecture combining inception and transformer 

models [35]. To estimate hand joint kinematics, Anam et al. initially performed dimensionality 

reduction on sEMG signals, followed by the implementation of an LSTM network [36].  

Developing reliable and intuitive control systems for myoelectric prosthetic hands remains a 

key challenge in neurorehabilitation. While deep learning models have advanced in decoding 

hand kinematics from surface EMG signals, there are still notable methodological and practical 

limitations that need to be addressed. This study aims to bridge these gaps by emphasizing model 

optimization, signal efficiency, and physiological interpretability.  

Previous studies have employed deep neural networks to estimate joint angles continuously; 

however, they often overlooked the impact of hyperparameter tuning on model performance. 

Moreover, the lack of structured regularization strategies may reduce the models' ability to 

generalize, particularly when working with datasets that contain limited repetitions.  

Some existing approaches rely on using a large number of electrodes to achieve accurate results 

[13]. Although effective, this setup can limit real-world applicability due to its high cost, 

complexity, and discomfort for patients. Many current studies focus on estimating specific finger 

joints [9, 11, 12, 15, and 34] without considering the underlying neuromuscular factors that 

affect decoding performance. This oversight restricts physiological interpretability and limits the 

potential to provide valuable design feedback for optimizing electrode placement. Several earlier 

studies have integrated pre-processing and post-processing techniques to analyze sEMG signals 

and estimate joint angles [25, 36]. While these approaches can improve signal quality and reduce 
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noise, they often lead to increased computational complexity and longer processing times. The 

key contributions are as follows: 

1. A new LSTM-based system with carefully adjusted regularization settings is proposed for 

estimating joint angles, achieving top accuracy (up to 98%, average: 96%) on the Ninapro 

dataset, demonstrating a novel approach to optimizing parameters in deep recurrent models.  

2. A minimal-electrode configuration utilizing only 10 sEMG channels is proposed for precise 

estimation of multi-joint finger angles, marking a significant advancement for real-time clinical 

and wearable applications. 

 3. A joint-specific, muscle-level analysis framework has been developed to interpret the 

variations in accuracy across finger joints. This framework offers a novel perspective on the 

relationship between EMG, muscles, and joints, while also guiding future strategies for electrode 

placement. 

4. A lightweight, end-to-end estimation pipeline has been designed that does not require complex 

pre- or post-processing. This enables real-time deployment with minimal computational 

overhead, representing a significant advancement in the practical application of embedded 

systems. The rest of the article introduces the materials and methods used, covering the dataset, 

LSTM, network architecture, and evaluation criteria. The third and fourth sections present the 

results and the subsequent discussion, respectively. 

 

2. Methodes  

2.1 Data set 

This study employed data from the Ninapro Database 4 (DB4), which contains highly 

synchronized kinematic and sEMG recordings from the upper limbs of ten able-bodied subjects 

[37]. The cohort included six males and four females, with a mean age of 29.1 ± 3.9 years. All 

subjects were right-handed and reported no history of neuromuscular disorders. Participants were 

instructed to perform a range of standardized finger, hand, and wrist movements. Muscle activity 

associated with five primary flexion tasks was recorded via ten surface electrodes. 

Simultaneously, joint kinematics was captured using a CyberGlove II data glove, enabling 

precise monitoring of joint angles. Each movement is repeated six times [38]. Figure 1 shows the 

electrode placement on the forearm. Eight electrodes were evenly spaced around the forearm 

near the radiohumeral joint, just below the elbow. The remaining two electrodes were positioned 

over the forearm's main flexor and extensor muscles. 

 

Figure 1: The placement of electrodes on arm muscles [38] 

The finger flexion movements chosen for this study are illustrated in Figure 2 [38]. 

 

Figure 2: Finger flexion movements [38] 
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The hand's kinematic configuration was recorded using a CyberGlove II data glove equipped 

with 22 sensors, as shown in Figure 3. This glove was constructed from a lightweight, stretchable 

fabric with 22 integrated strain gauges. The device produced 22 8-bit values that correspond to 

the joint angles, with an average resolution of less than one degree, depending on the hand size 

of the wearer, the glove's fit, and the angular range of the specific joint [39]. 

 

Figure 3: The placement of bending sensors on finger joints  

The sEMG signal processing procedure included filtering, synchronization, and relabeling. A 

Hampel filter was applied to remove the 50 Hz power-line interference and its harmonics from 

the sEMG signals. Inaccurate movement labels, caused by differences in human reaction times 

and experimental settings, were rectified using an expanded likelihood ratio technique. To 

achieve synchronization, each stream was up-sampled to the maximum sampling frequency 

using either nearest-neighbor or linear interpolation [39]. The study selected the root mean 

square (RMS) feature, as shown in equation (1). 
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2.2. Structure of LSTM 

Hochreiter and Schmidhuber introduced LSTM, an enhanced RNN architecture specifically 

designed to address the vanishing gradient problem found in traditional RNNs [40]. LSTM 

networks utilize gating mechanisms to overcome this issue. LSTM networks are highly effective 

for tasks such as prediction and classification because they can manage time series data with 

varying intervals between significant events. The structure of LSTM, illustrated in Figure 4, 

includes the input (x) and hidden state (h) at time step k and utilizes sigmoid (σ) and hyperbolic 

tangent (tanh) functions. 

  

Figure 4: Structure of the LSTM 

LSTM networks consist of three gates: the input gate, the output gate, and the forget gate. 

These gates allow the LSTM to selectively forget or retain new information in the memory cell, 

effectively capturing long-term dependencies. The input gate regulates how much new 

information is added to the memory cell, the forget gate decides which information should be 

discarded, and the output gate controls the flow of information from the memory cell to the 

hidden state. By employing these gates, LSTM networks can better handle long-term 

dependencies and enhance performance in sequence modeling tasks. LSTM's capability to tackle 

the gradient vanishing problem makes it well-suited for tasks involving sequential data, 

including natural language processing, speech recognition, and time series analysis. The 

operations of the LSTM layer can be described by the following equations [41]. 
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1( )t g f t f t ff W x U h b     (2) 

1( )t g i t i t ii W x U h b     (3) 

1( )t g o t o t oo W x U h b     (4) 

1 1( )t t t t c c t c t cc f c i W x U h b      (5) 

 ( )t h ty o c  (6) 

 

These equations illustrate how the input gate, forget gate, cell state, output gate, and hidden state 

interact and depend on each other within the LSTM model. The parameters involved in these 

relationships are shown in Table 1. 

 

 

Table 1: LSTM cell vectors and parameters [41] 

 

2.3. Proposed LSTM Network Architecture 

To model the temporal dynamics and long-term dependencies in EMG signals, an LSTM 

network was employed. LSTM cells are ideal for analyzing time-series data because they can 

remember information over long periods, filter out noise, and capture complex nonlinear 

patterns. This capacity makes them a strong option for estimating motion from EMG signals. The 

network receives time-series data as input, which is reshaped into 2D arrays—one dimension 

representing the time window length and the other representing the number of EMG channels 

(electrodes). The model processes this input using two stacked LSTM layers, each with 128 units 

and the hyperbolic tangent (tanh) activation function. Since each movement in the DB4 dataset 

repeats six times, two layers provide enough learning capacity. The network’s output is a 

sequence of joint angles, recorded simultaneously with the EMG signals using bending sensors 

in a CyberGlove II. A fully connected (dense) layer follows the LSTM layers, which do not 

include any activation function.  

The network was trained using the Adam optimizer [42] with a learning rate of 0.0005. The 

data were divided into training and testing sets at a 2:1 ratio. All experiments were conducted in 

Python using the TensorFlow library within the PyCharm development environment. To prepare 

the input matrices, a sliding window approach was used. Each window had a length of 150 

milliseconds and moved along the time axis with a fixed step size (hop length) of 10 

milliseconds. The block diagrams illustrating this design are shown in Figure 5. 
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Figure 5: Structure of proposed network  

 

2.4. Regression Criterion 

Three evaluation metrics were employed to evaluate the regression model's performance: root 

mean square error (RMSE), Pearson correlation coefficient (PCC), and box plots. The PCC is a 

statistical indicator that measures both the strength and direction of the linear relationship 

between actual values and predicted values. RMSE quantifies the average discrepancy between 

the model's predicted values and the actual values. Box plots were used to display the 

distribution of both predicted and real values. The criteria referenced are defined in equations 7 

and 8, and the parameters governing these relationships are summarized in Table 2. 
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Table 2: Parameters of regression criterion 

 

2.5. Regularization 

Regularization is a technique in machine learning and deep learning that reduces overfitting and 

enhances a model's generalization ability. It plays a crucial role in training neural networks by 

incorporating a penalty term into the loss function. This helps mitigate overfitting and promotes 

the learning of robust, meaningful features [43]. Regularization techniques, such as L1 and L2 

regularization, dropout, and elastic net, improve model robustness and prediction accuracy. L2, 

L1, and elastic net limit parameter size, while dropout averages results over networks. These 

techniques improve performance and adaptability in models.  

2.5.1. LASSO 

LASSO regression, also known as L1 regularization, is a statistical modeling technique that 

balances simplicity and accuracy in estimating variable relationships and making predictions. 

LASSO regression, which stands for least absolute shrinkage and selection operator, adds a 

penalty term that encourages sparse solutions. This aids in feature selection and enhances model 

interpretability while also reducing overfitting and boosting the model's robustness and 

generalizability [44]. Expression 9 shows the cost function for LASSO regression, and Table 3 

provides its parameters. 
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Table 3: Parameters of regularization methodes [31] 

 

By constraining the sum of the absolute values, LASSO regularization encourages simpler 

models with fewer non-zero coefficients. 

 

 

 

2.5.2. Ridge 

L2 regularization, also referred to as weight decay, is synonymous with ridge regression. It 

drives the weights toward zero by incorporating a penalty term proportional to the sum of the 

squared values of the coefficients. This regularization technique stabilizes the model and 

prevents overfitting by reducing the magnitudes of the coefficients. L2 regularization encourages 

smaller weights, balancing model complexity and accuracy to produce more robust and 

generalized predictions [45]. The ridge regression cost function is defined as 
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(10) 

 

2.5.3. Elastic net 

Elastic net offers a flexible regularization approach that allows for fine-tuning the balance 

between selecting important features and shrinking coefficient values. This makes it particularly 

powerful for high-dimensional datasets with many correlated variables. By combining the 

benefits of L1 and L2 regularization, the elastic net offers a versatile and effective method for 

regression analysis [46]. 

2.5.4. Dropout 

Dropout is an effective regularization technique in deep learning, widely recognized for its 

success. Applying dropout to feed-forward neural networks yields encouraging results [47]. The 

function of dropout is shown in Figure 6.  

 

Figure 6: Deep neural network (A) without applying dropout - (B) with dropout applied 

 

3. Results 

Figure 7 shows the LSTM network’s joint angle estimation accuracy, based on PCC. 
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Figure 7: The average accuracy in estimating joint angles using the LSTM network, based on the PCC.  

The PCC values, ranging from 0.73 to 0.98, indicate a high level of precision in estimating 

the angles of the interphalangeal joints. The highest PCC value was found for the proximal 

interphalangeal (PIP) joint of the ring finger, while the lowest was for the MCP joint of the 

thumb. To further evaluate performance, the RMSE criterion was applied, with values ranging 

from 5.1 to 7.5. Figure 8 shows the error values based on the RMSE criterion.  

 

Figure 8: the average accuracy in estimating joint angles using the LSTM network, based on the RMSE. 

The PIP joint of the ring finger achieved the lowest RMSE, reflecting a minimal difference 

between estimated and actual values. Conversely, the MCP joint of the thumb had the highest 

RMSE, indicating a more substantial difference between the estimated and actual values. 

As shown in Figure 9, reducing the L1 regularization parameter from 0.5 to 0.0005 led to an 

improvement in accuracy based on the PCC metric, increasing from 86.46% to 91%. The number 

of epochs needed during the training process ranged from 28 to 45.   

 

Figure 9: The impact of the LASSO (L1) regularization parameter on the accuracy of joint angle estimation with the 

designed LSTM network 

The results of this study show that increasing the LASSO parameter value reduces the 

accuracy of joint angle estimation. This happens because LASSO, as a regularization technique, 

encourages the model to simplify by shrinking or removing certain weights from the input data. 

In contrast, lowering the LASSO value gives the model greater flexibility to capture complex, 

nonlinear relationships between muscle signals and joint angles. Lowering the LASSO value 

reduces the restrictions on network weights, which increases the model's complexity and requires 

more training epochs to reach convergence.  

As illustrated in Figure 10, adjusting the L2 parameter from 0.5 to 0.0005 results in accuracy 

changes ranging from 58% to 96%, while the number of training epochs needed varies between 

15 and 60. 

 

Figure 10: The impact of the ridge (L2) regularization parameter on the accuracy of joint angle estimation with the 

designed LSTM network 

The findings of the study show that a higher ridge regularization parameter leads to lower 

accuracy in estimating joint angles. Ridge regularization reduces large weights in the model by 

shrinking them; however, unlike LASSO, it does not eliminate them. In contrast, decreasing the 
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ridge parameter allows the model more freedom to adjust its weights, enabling it to better learn 

complex and detailed patterns in the data. Reducing regularization leads to a more complex 

model, which in turn demands more training epochs to reach convergence. As a result, achieving 

optimal performance requires additional training time and greater computational resources. To 

evaluate the impact of both the LASSO and ridge parameters in the design, the L2 parameter is 

set to its optimal value of 0.0005, while the L1 parameter is varied between 0.0005 and 0.5. The 

highest accuracy is achieved when L1 equals 0.0005. These findings are illustrated in Figure 11. 

 

Figure 11: The influence of the Elastic Net regularization parameter on the accuracy of joint angle estimation using 

the developed LSTM network 

Figure 12 illustrates the effect of varying the dropout rate on network performance.  

 

Figure 12: The effect of the dropout regularization parameter on the accuracy of joint angle estimation using the 

developed LSTM network 

As the dropout rate increases from 0.2 to 0.8, estimation accuracy declines significantly—

from 0.98 to 0.63—while the required number of training epochs simultaneously decreases from 

68 to 22. An increase in the dropout rate leads to a decline in the accuracy of joint angle 

estimation, as excessive dropout can hinder the network’s ability to effectively learn and retain 

meaningful patterns within the data. Dropout functions as a regularization technique by 

randomly deactivating a portion of neurons during training, thereby preventing overfitting. 

According to the results of this study, the highest estimation accuracy was achieved at a dropout 

rate of 0.2, indicating that moderate dropout provides a suitable balance between regularization 

and learning capacity. 

Figure 13 shows a box diagram illustrating the values of both the estimated and real finger 

joint angles. The LSTM-based neural network used sEMG signals to estimate joint angles. These 

estimates were then compared to actual joint angles measured by the CyberGlove II’s bending 

sensors, which were accurately positioned over the finger joints. Boxplot comparisons show a 

strong match between the estimated and actual joint angles, especially for the PIP and distal 

interphalangeal (DIP) joints of the ring and little fingers. These joints exhibited minimal variance 

and near-identical interquartile. For most joints, there is a strong alignment between the 

estimated and real angle ranges, underscoring the model’s robustness in capturing fine motor 

articulations.   
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Figure 13: Compare estimated and real angles of interphalangeal joints. 

 

4. Discussions 

In this study, a deep neural network model was proposed for the regression of finger- grasping 

movements. Due to the inherently temporal and non-stationary nature of surface EMG signals, 

combined with the continuous output demands of the joint angle regression task, LSTM deep 

neural network architecture was selected to effectively capture temporal dependencies and model 

complex input-output relationships. This choice was due to LSTM's ability to capture long-term 

dependencies in the data, thereby enhancing the accuracy of the regression task. Table 4 displays 

the forearm muscles involved in flexion movements [48].  

 

Table 4: Muscles involved in finger flexion [48] 

 

Based on the information in Table 4, the muscles involved in finger flexion for all fingers except 

the thumb are superficial and deep, while the thumb's flexor muscle is deep [48]. 

Additionally, Figure 1 shows that the electrodes are placed on the flexor digitorum 

superficialis and flexor digitorum profundus muscles, but not on the flexor pollicis longus 

muscle. The sEMG signals recorded from these electrodes offer detailed information on the 

flexion of non-thumb fingers, leading to higher prediction accuracy for non-thumb joint angles 

compared to those of the thumb. This conclusion is supported by the results depicted in Figures 7 

and 8. 

This study demonstrated that adjusting regularization settings properly is important for 

improving how well deep learning models estimate joint angles using surface EMG signals. 

Notably, applying LASSO (L1) regularization revealed that increasing the regularization strength 

reduced prediction accuracy. This reduction can be attributed to the sparsity-promoting nature of 

LASSO, which drives some model weights to zero and may inadvertently eliminate features 

essential for capturing the complex relationship between EMG signals and joint movement. 

Lowering the LASSO parameter—especially to the optimal value of 0.0005—allowed the model 

to preserve essential signal features, which enhanced estimation accuracy. However, this came 

with an increase in training time and computational load due to the added model complexity. The 

impact of ridge (L2) regularization also showed that applying stronger penalties limited the 

model's flexibility, which resulted in underfitting and a decrease in accuracy. Unlike LASSO, 

ridge regularization shrinks all weights uniformly without eliminating any. The best performance 

was obtained at a ridge coefficient of 0.0005, balancing generalization and expressiveness. 

Larger ridge values accelerated convergence but compromised accuracy, whereas smaller values 

improved precision at the cost of extended training time.  
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Along with using L1 and L2 penalties, the model used dropout regularization during training 

to reduce overfitting by randomly turning off some neurons. The optimal dropout rate was found 

to be 0.2, which maximized accuracy. Excessive dropout led to unstable learning and degraded 

performance, suggesting that moderate dropout provides a favorable trade-off between 

generalization and learning stability. Overall, the results show that properly adjusting 

regularization methods, such as LASSO, ridge, elastic net, and dropout, is key to getting the best 

model performance. Improper parameter selection can result in either oversimplified models with 

poor learning capacity or overly complex networks that are difficult to train and prone to 

overfitting.  

From a computational complexity standpoint, regularization methods such as L1, L2, 

dropout, and elastic net each exhibit distinct characteristics in terms of optimization and training 

overhead, especially in deep learning models like LSTMs. L1 regularization promotes sparsity 

by penalizing the absolute values of weights. However, its non-differentiability at zero can make 

gradient-based optimization more challenging and may slow convergence. In contrast, L2 

regularization provides a smoother and more stable optimization process due to its differentiable 

and convex penalty function. It introduces minimal computational overhead, making it an 

efficient and reliable choice. Dropout helps prevent overfitting by randomly deactivating a subset 

of neurons during training. While simple to implement, it introduces stochasticity into the 

learning process, which can increase training time and lead to higher variance in gradient 

updates. Elastic net combines the strengths of both L1 and L2 regularization. It encourages 

sparsity while maintaining stability, but achieving the right balance between the two penalties 

requires careful hyperparameter tuning, which can add to the computational burden. Overall, 

selecting the appropriate regularization technique depends on the model architecture, data 

characteristics, and training goals to balance performance, accuracy, and computational 

efficiency.   

Each regularization method also carries specific side effects that influence the model's 

learning dynamics and generalization ability. L1 regularization can create models with very few 

active features, which helps in choosing important features and understanding the model better, 

but it might cause problems in models like LSTM that need detailed information to understand 

time-related patterns. L2 regularization provides smooth weight decay, helping to prevent 

overfitting while preserving model capacity by not eliminating features. Dropout is particularly 

effective in deep or over-parameterized networks, as it reduces neuron co-adaptation and 

improves generalization; however, if not carefully tuned, it may cause noisy training and slow 

convergence. Elastic net serves as a compromise between L1 and L2, offering both sparsity and 

regularized weight shrinkage. While this dual effect can improve robustness and generalization, 

especially in high-dimensional settings, it also adds complexity to model tuning. Selecting and 

combining these regularization strategies appropriately is essential for achieving an optimal 

balance between model complexity, training stability, and generalization performance. Although 

comparing similar works can be challenging, it is crucial for recognizing progress in a specific 

field. In the field of musculoskeletal modeling, He et al. created a musculoskeletal model 
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grounded in muscle synergy analysis, incorporating data from 32 electrodes. Their approach 

yielded a peak accuracy of 0.92, representing the highest performance reported in their research 

[9]. Kim et al. developed a combined muscle synergy and musculoskeletal model to estimate 

wrist joint angles, achieving a maximum accuracy of 84% [10]. Using fourteen surface 

electrodes integrated with a Kalman filter algorithm, Zhang et al. estimated finger kinematics 

with a prediction accuracy of 0.73 across six finger joint angles [11]. Gilstrep et al. also 

employed a musculoskeletal modeling approach to continuously estimate index finger 

movements, reporting an RMSE of 2.15 [12]. However, this method necessitates the 

experimental calibration of multiple biomechanical parameters, which presents major challenges 

for practical application and limits its overall accuracy.   Some studies have worked on 

decomposing sEMG signals into individual motor unit action potentials (MUAPs) to better 

understand muscle activation in a more meaningful way. Roy et al. used sEMG signals from 

finger muscles with 128 electrodes and achieved 94% accuracy in predicting joint angles [13]. 

Dai et al. conducted a study in which they estimated MCP joint extension angles using 160 

electrodes. Their approach followed a two-stage process: first, classifying finger movements, and 

then applying second-order polynomial regression to predict joint angles. The results 

demonstrated that their method achieved an estimation accuracy exceeding 0.8 [49]. By 

analyzing motor unit discharge timings from high-density EMG recordings, Chen et al. achieved 

85% accuracy in predicting finger joint kinematics [49]. However, despite its theoretical 

advantages, this method presents substantial practical limitations. The decomposition process is 

computationally intensive and requires sophisticated algorithms to separate overlapping MUAPs, 

especially during dynamic contractions. High-density electrode arrays complicate the 

experimental setup and introduce additional challenges, including the need for thorough skin 

preparation, accurate electrode placement, increased risk of signal crosstalk, and reduced user 

comfort, particularly in real-time or wearable applications.  

The second method, based on conventional machine learning techniques, such as Zhang et 

al., reached an accuracy of 0.91 in predicting MCP joint angles. Their study used six electrodes 

and applied Gaussian process regression to link sEMG features with hand movements [15]. 

However, these methods frequently require intricate and time-consuming feature extraction 

procedures, which can lead to the loss of important signal information.  

The third category involves the application of traditional neural networks. Batayneh et al. 

created a neural network to connect sEMG signals with hand joint angles and achieved 79.8% 

accuracy [19]. Gao et al. implemented a control strategy using an NARX, which effectively 

estimated joint angles by analyzing sEMG signals. In this study, principal component analysis 

(PCA) and kalman filtering were also utilized, which increased the computational complexity 

and processing time and may have led to the loss of valuable signal information [20]. Tacca et al. 

employed a traditional neural network and 150 electrodes to estimate joint angles during four 

specific hand movements, reporting an accuracy of 0.88 [21].  However, this method heavily 

relies on the incorporation of numerous parameters and the presence of high-quality data. 
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Deep convolutional neural networks have also been used for joint angle estimation. Qin et al. 

utilized a convolutional neural network to estimate the wrist joint angle, achieving an accuracy 

of 89% in their study [26]. Guo et al. used a convolutional model to estimate finger movements 

and achieved their highest accuracy with a correlation coefficient of 0.82 [27]. Sun et al. 

developed a multi-stream convolutional neural network for continuous finger gesture 

recognition, attaining an accuracy of 0.84 [30]. An et al. predicted finger joint angles during 

grasping movements using a Convolution Layers Transformer, achieving an average accuracy of 

0.84 [33]. Although CNNs are effective at extracting complex features from two-dimensional 

data, using them alone for EMG signal analysis has some limitations. EMG signals have a time-

based, sequential structure, which requires models that can capture changes and patterns over 

time. Since CNNs are not specifically designed to handle temporal information, they may not 

perform as well in estimating joint angles. 

Chen et al. employed an LSTM network to predict shoulder joint angles. The model achieved 

a prediction accuracy of 0.91 for touch tasks and 0.81 for compound tasks [24]. Tang et al. used 

an LSTM network to predict elbow and wrist movements, achieving an RMSE of 0.1025 [28]. 

Guo et al. predicted finger kinematics using a multi-attention feature fusion network, attaining an 

accuracy of 84% [31]. Wang et al. utilized a hybrid unsupervised domain adaptation network to 

estimate joint angles for application in myoelectric control systems, resulting in an estimation 

accuracy of 87% [32]. Wang et al. introduced an ensemble learning method for estimating MCP 

joint angles during finger movements, achieving an estimation accuracy of 89.7% [34]. Lin et al. 

created a method to predict ten finger joint angles during eight grasping movements using the 

correlation coefficient criterion, achieving an average accuracy of 0.82. Their approach 

incorporated the efficient multiple self-attention model [51]. Anam et al. adopted a two-stage 

approach to estimate hand joint kinematics, beginning with dimensionality reduction of sEMG 

signals, followed by the application of an LSTM network. Their method yielded an estimation 

accuracy of 93% [36]. Table 5 provides a summary comparing the current research with related 

previous studies. 

 

Table 5: Notable studies on joint angle estimation  

 

Some of the studies above focused on decomposing EMG signals into motor units [13, 49, 

and 50], which, while valuable, required a large number of electrodes and involved complex, 

time-consuming procedures. Additionally, several earlier works employed traditional machine 

learning techniques [11, 15]; however, these methods were not only costly and time-intensive but 

also posed the risk of losing critical signal information. Moreover, some of these studies limited 

their analysis to the kinematics of a single joint or a small number of joints [9, 11, 12, 15, 34, and 

51], thus restricting the generalizability of their findings. Some studies have utilized CNNs [26, 

27, 30, and 33]. While CNNs excel at extracting complex features from two-dimensional data, 

depending solely on them for analyzing EMG signals presents certain limitations, especially in 

capturing the temporal dynamics that are inherent in EMG patterns. Several previous studies 
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have incorporated pre-processing and post-processing techniques for sEMG signal analysis and 

joint angle estimation [25, 36]. While these methods—such as filtering, normalization, feature 

extraction, and dimensionality reduction—can enhance signal quality and reduce noise, they 

often come at the cost of increased computational complexity and longer processing times. In 

particular, techniques like PCA or ICA may discard components deemed less significant, 

potentially eliminating subtle but physiologically relevant information embedded in the raw 

sEMG signals. This loss of useful signal features can ultimately impair the performance of 

prediction models, especially in real-time or resource-constrained applications where both 

accuracy and efficiency are critical.  

This study demonstrates that meticulous tuning of deep network parameters can greatly 

improve model performance. Using the Ninapro DB4 dataset, the proposed model achieves an 

accuracy of up to 98% (mean: 96%) in estimating joint angles across multiple subjects. The 

research proves that accurate joint angle estimation can be achieved with only 10 sEMG 

electrodes for all finger joints. This efficiency highlights the model’s practicality and suitability 

for real-time use in clinical settings. A muscle-level analysis was conducted to interpret 

variations in accuracy across joints, providing insights into the EMG-muscle-joint relationship 

during finger flexion. These findings offer valuable biomechanical understanding and guidance 

for optimizing electrode placement in future designs. The approach does not rely on complex 

pre-processing or post-processing of the signals, making it a promising candidate for real-time 

applications. 

Since this study investigates the impact of regularization parameters, the number of training 

epochs required varied accordingly, ranging from a minimum of 25 to a maximum of 68, 

depending on the parameter values. A CPU Intel Core i7-2.70 GHz was used to perform all 

implementations. The time and implementation analysis conducted in this study, along with that 

of several related works that have reported these aspects, is presented in Table 6. 

Table 6: Comparison of the implementation and time analysis between the proposed model and related 

researches 

 

5. Conclusions 

This study presents promising results in the estimation of finger joint angles. Given the 

sequential and stochastic nature of sEMG signals, deep LSTM neural networks proved to be 

highly effective for modeling such data. The findings also show that precise hyperparameter 

tuning can substantially enhance model performance in joint angle estimation tasks. The 

proposed LSTM-based model, evaluated on the Ninapro DB4 dataset, achieved a peak accuracy 

of 98% and an average accuracy of 96% across multiple subjects, highlighting its robustness and 

strong ability to generalize across individuals. Regularization proved to be a key factor in 

reaching this level of performance. Specifically, setting the LASSO (L1) regularization 

coefficient to 0.0005 helped the model preserve essential signal features, resulting in more 
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accurate predictions. Similarly, setting the ridge (L2) coefficient to 0.0005 provided a well-

balanced compromise between the model’s generalization ability and its representational 

capacity. While higher L2 values accelerated convergence, they tended to reduce accuracy; 

conversely, lower values slightly improved precision but extended training time. Furthermore, a 

dropout rate of 0.2 was found to be optimal, efficiently mitigating overfitting while maintaining 

high overall accuracy. These results highlight the critical role of systematic hyperparameter 

optimization in developing high-performing models for biomechanical signal processing and 

analysis. A detailed physiological analysis was also conducted to explain the variability in the 

accuracy of interphalangeal joint angle estimation and to identify the muscles contributing. 

Finger joint angle estimation will be performed across a broader range of movement types, 

including fine-grained and high-speed motions. To this end, various LSTM variants such as 

bidirectional LSTM (BiLSTM), Gated Recurrent Units (GRUs), and Layer-Normalized LSTMs 

will be evaluated to determine their capacity for capturing long-term dependencies and complex 

temporal dynamics in sequential sensor data. Furthermore, the integration of multi-branch or 

hierarchical architectures will be explored, allowing the model to process multi-modal signals 

(e.g., accelerometer, gyroscope, and magnetometer data) in parallel before temporal fusion. 

Attention mechanisms, both temporal and spatial, will be incorporated to enable the network to 

selectively focus on the most informative time steps and sensor channels, which is particularly 

beneficial for noisy or redundant input data. 
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Figure 1: The placement of electrodes on arm muscles [38] 

Figure 2: Finger flexion movements [38] 

Figure 3: The placement of bending sensors on finger joints  

Figure 4: Structure of the LSTM 

Figure 5: Structure of proposed network 

Figure 6: Deep neural network (A) without applying dropout - (B) with dropout applied 

Figure 7: The average accuracy in estimating joint angles using the LSTM network, based on the PCC.  

Figure 8: the average accuracy in estimating joint angles using the LSTM network, based on the RMSE. 

Figure 9: The impact of the LASSO (L1) regularization parameter on the accuracy of joint angle estimation with the 

designed LSTM network 

Figure 10: The impact of the ridge (L2) regularization parameter on the accuracy of joint angle estimation with the 

designed LSTM network 

Figure 11: The influence of the Elastic Net regularization parameter on the accuracy of joint angle estimation using 

the developed LSTM network 

Figure 12: The effect of the dropout regularization parameter on the accuracy of joint angle estimation using the 

developed LSTM network 

Figure 13: Compare estimated and real angles of interphalangeal joints. 

 

Table 1: LSTM cell vectors and parameters [41] 

Table 2: Parameters of regression criterion 

Table 3: Parameters of regularization methodes [31] 

Table 4: Muscles involved in finger flexion [48] 

Table 5: Notable studies on joint angle estimation  

Table 6: Comparison of the implementation and time analysis between the proposed model and related researches 
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Table 1 

LSTM vectors 

& parameters  

Description 

,W U  Weight matrices 

b  Bias vector 

tf  Forget gate's activation vector 

g  Sigmoid function 

,c h   Hyperbolic tangent function 

tx  Input vector to the LSTM unit 

th  Hidden state vector 

ti  Input/update gate's activation 

vector 

to  Output gate' activation vector 

tc  Cell state vector 

y  Block output 

 

Table 2 

Parameter Description 

predy  Estimated angles 

truey  Actual angles 

predy  Mean of Estimated angles 

truey  Mean of Actual angles 

 

Table 3 

Parameter Description 

Loss  The prediction error 

  regularization hyperparameter 

m  the number of training examples 

used to normalize the cost function 

w  model weights 

 

Table 4 

Muscle Task- Placement 

flexor digitorum 

superficialis 

Fingers flexion- 

Superficial   

flexor digitorum  

profundus 

Hand / Joints flexion- 

Deep 

flexor pollicis longus Thumb flexion- Deep 
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Table 5 

Research Implementation method Accuracy 

He et al.  [9] Muscle synergy model- MCP joint angles 

for the thumb, index, and middle 

92% 

Kim et al. [10] Muscle synergy- Wrist 84% 

Zhang et al. [11] SPGP - Finger MCP joints 91% 

Gilstrep et al. [12] Musculoskeletal model- Index joint RMSE:2.15 

Roy et al.[13] Decompose sEMG to MUAPs- Joint angle 94% 

Dai et al. [49] Decompose sEMG to MUAPs -MCP joint angle 80% 

Chen et al. [50] By analyzing motor unit discharge timings 85% 

Zhang et al. [15] Kalman-Six finger joint 73% 

Batayneh et al. [19] RBFNN- Finger joint angle 79.8% 

Tacca et al. [21] Neural network-Finger joint angle 88% 

Chen et al. [24] LSTM - Shoulder joint angle 81%-compound task 

Qin et al. [26] CNN- Wrist joint angle- Wrist flexion & extension 89% 

Guo et al. [27] CNN-Finger kinematic 82% 

Tang et al. [28] LSTM- Elbow joint and wrist joint RMSE:0.1025 

Sun et al. [30] CNN-Continues recognition finger 84% 

Guo et al. [31] Multi attention  feature fusion- Finger kinematic 84% 

Wang et al. [32] Hybrid unsupervised domain adaptation network   87% 

An et al. [33] CNN- Finger joint angle 84.35% 

Wang et al. [34] Ensemble learning- MCP joint angles 89.7% 

Lin et al. [35] Inception-Transformer network- Ten finger joint 81.24% 

Lin et al. [51] Encoder-Decoder-Ten finger joint 82% 

Anam et al. [36] ICA-LSTM- Hand joint kinematics 93% 

This study LSTM-Thumb, Index, Middle, Ring, and Little joint angel 96% (Mean)- 98% (Max) 

 

 

Table 6 

Research Training 

time(epoch) 

Implementation 

Gilstrep [12] 200 Intel Core i7- 

2.80GHz 

Batayneh 19] 1000  4-core,  2.8 Hz 

Tacca [21] 200 Intel Core i7- 

2.50GHz 

Sun [30] 200 Intel Core i7- 

3.20GHz 

Lin [35] 100 NVIDIA 

GeForce RTX 

3060 GPU 

Lin[38] 1000 Intel  i5-300HQ  

This study Min: 25-

max 68 

Intel Core i7-

2.70GHz 
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