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Abstract 

This study proposes a hybrid deep learning approach combining U-Net and Generative Adversarial 

Network (GAN) architectures for the segmentation and texture-based reconstruction of 3D multi-

mineral porous media images. The dataset consists of high-resolution 3D Leopard sandstone 

images, segmented into four key mineral classes: macro-pores, clay, quartz, and high-density 

minerals. Our approach leverages the feature extraction capabilities of a ResNet-18 backbone 

within U-Net, pre-trained specifically for multi-mineral segmentation, which then feeds these 

detailed features into a GAN framework for image reconstruction. The model effectively bridges 

segmentation and reconstruction, achieving superior image quality and structural fidelity 

compared to standalone GAN models by preserving intricate textures and maintaining 

macroscopic rock structures. Quantitative assessments reveal that the hybrid model yields porosity 

and absolute permeability values with minimal discrepancies (2.25% and 1.54% error, 

respectively) compared to actual data. These findings highlight the model's ability to replicate 

critical geophysical metrics and generate accurate 3D representations. Unlike traditional methods 

that either focused solely on segmentation or reconstruction, our model uniquely integrates 

segmentation-driven texture data for image reconstruction, offering a novel solution for 

geoscientific applications in hydrogeology, petroleum engineering, and environmental science. 
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1. Introduction  

Characterization of porous media is vital in engineering applications. This needs the 3D structure 

of the medium which allows assessment of macroscopic properties [1].3D construction methods 

include physical scanning  (e.g., X-ray [2], or CT [3]), which provids high-resolution 3D images 

without destructive sectioning [4]. However, these tools are often expensive, time-consuming, and 

not universally available; high-resolution FIB-SEM is limited to small samples, hindering 

representative analysis [5, 6]. 

Porous media images, as raw data, require analysis from texture identification [7] to modeling 

physical processes [8]. Segmentation simplifies these images for simulation [9], often using binary 

(solid/void) or multiphase approaches. 

Convolutional neural networks (CNNs) have overcome segmentation challenges like inheritance 

errors [10], high sensitivity to physical modeling [11], and segmenting noisy images [12]. Most 

studies use SEM or higher-quality images, improving training, accuracy, and noise reduction 

compared to micro-CT. CNNs, combined with pooling, consider surrounding shape and texture, 

outperforming machine learning methods like Weka that rely on user-defined filters. 

In CNN-based segmentation, networks like SegNet [13] and U-Net [14] (encoder-decoder based) 

convert input images to segmented ones. Sandstone samples are common due to clear mineral 

distinctions, allowing traditional segmentation. Here, machine learning's advantage diminishes, 

but it simplifies SEM imaging for higher accuracy [10] and outperforms traditional methods even 

for rock/fluid separation [15]. 

An early SegNet application used statistically generated datasets from manually segmented 

sandstone images, achieving 95% pixel accuracy, though lower (60%) for less frequent phases [4]. 

LeNet-5 was trained on grayscale micro-CT sandstone images (three phases), with physical 

accuracy assessed via permeability/porosity [10]. A study using QEMSCAN-segmented micro-CT 

sandstone found pixel accuracy did not correlate with physical accuracy (topology, flow 

simulation) for CNNs like SegNet, U-Net, and U-ResNet [11]. U-Net and U-ResNet achieved 

>99% pixel accuracies, with U-ResNet performing best in 3D physical and per-pixel accuracy. 

Deep learning (DL) is increasingly used for porous media reconstruction [16] and feature 

evaluation [17, 18], automatically extracting image features and improving reconstruction. 



 

 

Generative models, especially Generative Adversarial Networks (GANs) [19]—an unsupervised 

approach with a generator and a discriminator—produce realistic samples. Trained GANs quickly 

generate synthetic images consistent with training data. 

GANs have been used for 3D porous media reconstruction from 3D training data [11, 20], where 

the generator creates images to deceive the discriminator. Valsecchi et al. [21] trained a GAN 

discriminator on 2D samples, requiring large memory and reconstructing small volumes. Feng et 

al. [22] used BicycleGAN (generator, discriminator, encoder), but it requires 3D training data, is 

inadequate for heterogeneous samples [23], and training three networks is difficult. Zhang et al. 

[24] developed an autoencoder-GAN model for 3D reconstruction from 2D samples, improving 

stability. 

Conditional GANs (CGANs) address limited training data [14] by using conditional factors in 

generation [25], accelerating statistical reconstruction [25]. 3D reconstruction has used layer-by-

layer stacking [25] or full 2D image reconstruction from limited information [26]. Shams [27] 

combined conditional/statistical GANs for reconstructing homogeneous/heterogeneous media 

from 2D images, feeding statistical information to the deep network. GANs and autoencoders were 

also used for multi-scale 3D reconstruction [19], with GANs for inter-grain and autoencoders for 

intra-grain porosity. 

Stark et al. [28] introduced an open-source pipeline for reaction-diffusion models using level-set 

methods and GPUs. Siavashi et al. [29] used CNNs for upscaling multiphase flow simulations 

from low-resolution images. Yan et al. [30] developed a multiscale reconstruction algorithm using 

multiple dictionary learning. Yang et al. [31] presented a cGAN for reconstruction from low-

resolution core images. Amiri et al. [32] used GANs for 2D to 3D heterogeneous reconstruction 

from 2D training images. Zhang et al. [33] proposed an RNN (3D-PMRNN) for efficient 3D 

reconstruction from 2D images. These DL advances improve digital rock modeling accuracy, 

efficiency, and scalability. 

Percolation theory is able to quantify uncertainties using metrics like connected pore fraction [34]. 

New 3D correlations from 2D micro-CT images highlight the need for pore-scale structures. A 

multi-scale image reconstruction method integrates high/low-resolution micro-CT scans, 

maintaining features while reducing cost [35]. However, image segmentation remains a bottleneck; 



 

 

random forest (RF) and CNNs show promise over conventional methods for fractured rocks, with 

RF being cost-effective [36]. 

While 3D reconstruction is well-researched, reconstruction using rock texture segmentation data 

needs further investigation. This work innovates by considering rock texture's impact on 3D 

reconstruction, using DL to reveal its influence on image quality and address heterogeneity. We 

propose a novel U-Net + GAN architecture: U-Net performs texture-based segmentation, and its 

encoder feeds texture features to the GAN for reconstruction, enabling texture-informed 

generation of multiple porous media reconstructions from an input image. 

2. Materials and Methods 

2.1. Data 

The data used in this study consists of Leopard sandstone images along with their corresponding 

segmented images based on the rock texture of the sandstone. These images have dimensions of 

800*800*800 and a voxel size of 2.15 um. The segmented images are classified into four classes, 

including macro-pores, clay, quartz, and high-density minerals. These data are publicly accessible 

on the digitalrocksportal.org website. For our study, we divided the data into three sets: 128 initial 

slices for validation data (dimensions: 128*800*800), 128 subsequent slices for test data 

(dimensions: 128*800*800), and the remaining 544 slices for training data (dimensions: 

544*800*800). All data used had dimensions of 128*128*128. For training purposes, 1140 images 

with these dimensions were utilized, while 300 images were allocated for validation and 144 

images were set aside for testing. Figure 1 presents a representative Leopard sandstone image 

alongside its corresponding segmentation, highlighting the classification into macro-pores, clay, 

quartz, and high-density minerals. 

Low‑quality inputs were not captured by a separate scanner; they were synthetically derived from 

the 800 × 800 × 800‑voxel Leopard‑sandstone micro‑CT volumes available on the Digital Rocks 

Portal. Each high‑resolution cube is first nearest‑neighbour up‑scaled to 896 × 896 × 896 solely so 

that every axis is an integer multiple of our 128‑voxel patch size; this step adds voxels but does 

not add new information. The enlarged stack is then partitioned into non‑overlapping 128 × 128 × 

128 sub‑volumes and linearly normalised to the [‑1, 1] range. To mimic bench‑top µCT artefacts, 

we apply an isotropic Gaussian blur (σ = 1 voxel) followed by 4 % additive Gaussian sensor noise. 



 

 

This pipeline yields 1140 training, 300 validation and 144 test blocks, which we collectively refer 

to as the low‑quality dataset, while the untouched high‑resolution blocks serve as ground‑truth 

targets. 

2.2. Network Architecture 

2.2.1. U-Net Architecture 

The proposed U-Net model is designed for 3D multi-mineral segmentation, incorporating 

a ResNet-18 backbone for its encoder, which enhances feature extraction capabilities. The 

input to the model consists of 3D images with dimensions 128x128x128 and a single 

channel. 

Encoder Path 

 Input Layer and Initial Normalization: 

o The input layer accepts data of shape 128, 128, 128, 1. 

o Initial batch normalization is applied to stabilize the learning process. 

 Convolutional Blocks: 

o The first convolutional block applies a 3D convolutional layer with 64 filters of size 

(3, 3, 3) followed by batch normalization and ReLU activation. The output is then 

down sampled using max pooling. 

o This block structure is repeated, with the number of filters doubling at each down 

sampling step (64, 128, 256, 512 filters respectively), reflecting a typical ResNet 

architecture. 

 Residual Blocks: 

o Each residual block consists of two 3D convolutional layers with batch 

normalization and ReLU activation, followed by an additive identity shortcut 

connection, enhancing gradient flow during training. 

 Final Encoding Layer: 



 

 

o The final layer in the encoder path contains 512 filters, resulting in a highly abstract 

and feature-rich representation of the input data. 

Decoder Path 

 Up sampling and Concatenation: 

o The decoder path mirrors the encoder but in reverse, utilizing up sampling layers 

to increase the spatial dimensions of the feature maps. 

o At each up-sampling step, the feature maps are concatenated with the 

corresponding feature maps from the encoder (skip connections), ensuring the 

preservation of spatial context and finer details. 

 Convolutional Blocks: 

o Post-concatenation, 3D convolutional layers with batch normalization and ReLU 

activation are applied, progressively reducing the number of filters (512, 256, 128, 

64, 32, 16). 

 Final Convolution and Activation: 

o The final layer uses a 3D convolutional layer with 4 filters, corresponding to the 

number of mineral classes, followed by a SoftMax activation function to produce 

the segmentation map. 

Model Training and Performance 

 Training: The model was trained for 100 epochs, each epoch taking approximately 15 

minutes. This training duration ensured the model had sufficient time to learn and 

generalize the complex multi-mineral features from the input data. 

 Optimizer and Loss Function: The Adam optimizer with a learning rate of 1×10−5 was used. 

The loss function employed was the categorical focal dice loss, which combines focal loss 

and dice coefficient, effectively handling class imbalance and improving segmentation 

accuracy. 

Feature-Rich Output of the Encoder 



 

 

The encoder's ability to produce feature-rich outputs is fundamental to the effectiveness of the 

U-Net architecture, especially in the context of multi-mineral segmentation. As the input image 

progresses through the layers of the encoder, each convolutional block extracts increasingly 

abstract features, capturing both local textures and global patterns crucial for distinguishing 

different minerals. 

1. Initial Feature Extraction: The early convolutional layers in the encoder focus on extracting 

low-level features such as edges and textures.. 

2. Intermediate Layers: As the image data moves through the intermediate layers, the encoder 

captures more complex patterns, including shapes and the spatial relationships between 

different mineral components.. 

3. Deeper Layers: In the deeper layers of the encoder, the model learns high-level abstract 

features that represent the global context of the image.. 

The ResNet-18 backbone enhances this feature extraction capability through its residual 

connections. These connections allow for the effective training of deeper networks by 

mitigating the vanishing gradient problem. Residual connections enable the network to learn 

more complex features without degradation of the performance, thereby ensuring that even the 

deepest layers contribute valuable information to the encoding process. 

In the context of multi-mineral segmentation, the feature-rich output of the encoder is 

particularly significant. Minerals often exhibit subtle differences in texture, shape, and spatial 

distribution, making their accurate identification challenging. The encoder's layered approach 

ensures that both local and global features are captured effectively, providing a comprehensive 

representation of the mineral content in the input images. 

 Local Features: These include fine-grained details such as mineral grain boundaries, small-

scale textures, and minute variations in composition, which are crucial for distinguishing 

between similar-looking minerals. 

 Global Features: These encompass broader patterns such as the overall distribution of 

minerals, large-scale structures, and spatial relationships between different mineral 

deposits, which are essential for understanding the geological context. 



 

 

Note that the combination of the U-Net's architectural strengths and the ResNet-18 backbone 

ensures that the encoder outputs are rich in features that capture both the intricate details and 

the overall context of the minerals present in the images. Table 1 provides a summary of the 

architecture of the proposed 3D U-Net model with the ResNet-18 backbone. 

2.2.2 GAN network 

In this study, we integrate a pre-trained U-Net encoder with a Generative Adversarial Network 

(GAN) to create a powerful model capable of reconstructing images with multi-mineral 

segmentation information. This approach leverages the feature-rich output of the U-Net 

encoder, specifically trained on multimineral segmentation tasks, to enhance the quality of 

generated images by incorporating detailed mineral information. 

The U-Net model used in this study has been pre-trained on a multimineral segmentation 

dataset. Its encoder consists of multiple convolutional and pooling layers that extract high-

level features from input images.. 

The architecture of the U-Net encoder includes: 

• Input Layer and Initial Normalization: 

  - The input layer accepts data of shape 128x128x128x1. 

  - Initial batch normalization is applied to stabilize the learning process. 

• Convolutional Blocks: 

  - The first convolutional block applies a 3D convolutional layer with 64 filters of size (3, 3, 

3) followed by batch normalization and ReLU activation. The output is then downsampled 

using max pooling. 

  - This block structure is repeated, with the number of filters doubling at each downsampling 

step (64, 128, 256, 512 filters respectively), reflecting a typical ResNet architecture. 

• Residual Blocks: 

  - Each residual block consists of two 3D convolutional layers with batch normalization and 

ReLU activation, followed by an additive identity shortcut connection, enhancing gradient 

flow during training. 



 

 

• Final Encoding Layer: 

  - The final layer in the encoder path contains 512 filters, resulting in a highly abstract and 

feature-rich representation of the input data. 

The generator model aims to reconstruct high-resolution images using the features extracted 

by the U-Net encoder. It consists of several layers designed to upsample and refine the encoded 

features. 

The architecture of the generator includes: 

• Input Layer: 

  - Accepts a 4x4x4x512 feature map from the U-Net encoder. 

• Convolutional Transpose Layers: 

  - Series of Conv3DTranspose layers to upsample the feature map gradually, doubling the 

spatial dimensions at each step. 

  - These layers have 512, 256, 128, 64, and 32 filters respectively. 

• Batch Normalization and LeakyReLU: 

  - Applied after each Conv3DTranspose layer to stabilize training and introduce non-linearity. 

• Gaussian Noise Layer: 

  - Adds noise to the feature maps to improve robustness. 

• Final Conv3DTranspose Layer: 

  - Produces an output of size 128x128x128 with a single channel, followed by a tanh activation 

function to normalize the pixel values. 

The detailed architecture of the Generator model is summarized in Table 2. A visual overview 

of the Generator’s architecture is presented in Figure 2. 

The discriminator evaluates the authenticity of generated images by distinguishing between 

real and fake samples. It follows a typical convolutional neural network architecture designed 

for 3D image data. 



 

 

The architecture of the discriminator includes: 

• Input Layer: 

  - Accepts images of size 128x128x128 with a single channel. 

• Convolutional Layers: 

  - Series of Conv3D layers to downsample the input image, extracting hierarchical features. 

  - These layers have 64, 128, 256, and 512 filters respectively. 

• Batch Normalization and LeakyReLU: 

  - Applied after each Conv3D layer to stabilize training and introduce non-linearity. 

• Final Conv3D Layer: 

  - Reduces the spatial dimensions to 4x4x4 with a single channel. 

• Activation Layer: 

  - Sigmoid activation to output a probability indicating the authenticity of the input image. 

The Discriminator model is detailed in Table 3. A schematic representation of the 

Discriminator’s structure is shown in Figure 3. 

The GAN model is trained for 600 epochs, with each epoch taking approximately 15 minutes. 

The encoder's weights are frozen to preserve the learned mineral features. During training, the 

generator reconstructs images using the mineral-specific information provided by the encoder, 

while the discriminator learns to differentiate between real and generated images. 

The novelty of this approach lies in the integration of a pre-trained U-Net encoder, specifically 

trained on multimineral segmentation tasks, with a GAN framework. The use of the ResNet-

18 backbone in the U-Net encoder further enhances the feature extraction process, ensuring 

that detailed mineralogical information is retained in the generated images. 

The generator and discriminator are optimized using the Adam optimizer with specific learning 

rates and momentum parameters to ensure stable training. The learning rate is 1e-4 for 

generator and 1e-4 for discriminator and momentum parameter is 0.5. The loss functions 



 

 

involve binary cross-entropy, with the generator’s loss calculated based on its ability to fool 

the discriminator, and the discriminator’s loss calculated based on its ability to correctly 

distinguish real from generated images. 

The use of a GAN framework enables the generation of high-quality, mineral-rich images. This 

approach ensures that the generated images retain detailed mineralogical features, enhancing 

the overall performance and applicability of the model in geoscientific tasks. This novel 

architecture demonstrates significant improvements in the accuracy and quality of image 

reconstructions,. 

By feeding the feature tensor produced by the U-Net encoder directly into the GAN generator, 

the adversarial model is conditioned on segmentation-aware representations of mineral 

boundaries and pore textures. Stand-alone GANs explore the entire latent space in search of 

realistic images, but they do so blindly, guided only by the discriminator’s real/fake signal; this 

often leads to blurry grain contacts, missing micro-fractures, or mode collapse. In contrast, the 

U-Net encoder has already distilled the input into high-level, geology-specific cues—such as 

the shape of macro-pores, clay rims, and quartz grain edges. When these cues seed the 

generator: 

 Texture fidelity improves: the generator begins its up-sampling path with mineral-

specific features rather than isotropic Gaussian noise, so fine rims, laminations, and 

facies contrasts are preserved instead of being hallucinated. 

 Structural consistency is enforced: skip-connection indices from the encoder are 

injected at matching resolutions in the decoder. This cross-talk keeps large-scale pore 

topology and mineral contacts aligned, whereas unconditional GANs can drift away 

from the true spatial relationships. 

 Training stabilizes: because the generator’s initial activations already resemble 

plausible rock textures, the discriminator receives realistic candidates earlier in 

training. That narrows the adversarial gap, shortens convergence, and minimizes mode 

collapse—problems often reported for 3D-DCGAN and SliceGAN. 

 Domain knowledge becomes part of the latent code: the frozen U-Net weights embed 

prior geological knowledge captured during supervised segmentation. Passing this 



 

 

latent code to the GAN effectively transfers that knowledge into the generative task 

without requiring additional labels. 

 Data efficiency increases: leveraging a pre-trained encoder reduces the volume of 3-D 

training samples the GAN needs to learn high-frequency details, addressing the chronic 

data-scarcity issue in digital-rock analysis. 

2.3 Loss Function 

In this hybrid network, , we employ distinct loss functions for the generator and discriminator to 

optimize the training process.The generator loss is designed to encourage the generation of outputs 

that are indistinguishable from real data by the discriminator. 

The loss is computed by summing two components: the loss when the discriminator correctly 

identifies real data (real_loss) and the loss when it correctly identifies generated data 

(generated_loss). In this formulation, the real_loss penalizes the discriminator for misclassifying 

real data as generated, while the generated_loss penalizes it for misclassifying generated data as 

real. 

The loss functions are crucial for the stability and convergence of the hybrid network training. By 

strategically combining the U-Net with a GAN, the network benefits from the generative 

capabilities of the GAN while leveraging the structural advantages of the U-Net.  

2.4. Evaluation Metrics 

The evaluation of generated samples is conducted using the PoreSpy and OpenPNM packages, 

which are well-established tools for analyzing and simulating porous structures and properties, 

with applications across nanotechnology, petrochemical engineering, and materials science. 

To assess static features of the generated samples, metrics such as porosity, the two-point 

correlation function S2(r), and the linear path function L(r) are utilized. In 3D structures, this 

probability is calculated along three perpendicular directions, providing insights into the 

connectivity of local pores. 

A graphical representation of the two-point correlation function S2(r) and linear path function L(r), 

, is shown in Figure 4. 



 

 

To investigate flow properties and dynamic characteristics, the relative permeability and capillary 

pressure of the reconstructed images are examined. This process involves several stages: 

     Conversion of the heterogeneous environment images into binary images comprising 

solid and pore regions using the Otsu algorithm. 

 Extraction of the existing network in the image using the Snow algorithm, which employs 

a watershed-based method to find an appropriate set of initial markers in the image. 

 Subsequent extraction of geometric features of the network. These features, including pore 

and throat sizes, are of significance as they control the entire percolation and transport 

behavior of the network. 

 Addressing any issues related to network clustering. Network clustering refers to the lack 

of connectivity of some pores with the main body of the network. 

 Ensuring the network's integrity, which means that isolated pores, clustered non-connected 

pores, dead-end throats, repeated throats, and throats without an inlet should not be present 

in the network. 

 Creating phases, where knowledge of the thermodynamic and physical properties of fluids 

and phases is required. 

 Invasion Percolation, a simulation and analysis method used in porous media studies, is 

introduced. This method is widely employed in physics and engineering for modeling fluid 

flow in porous structures. 

 Definition of the Invasion Percolation algorithm for simulation. Invasion Percolation 

simulates the process of fluid infiltration in a porous structure. It starts by applying pressure 

or allowing fluid infiltration from a specified starting point in the porous structure. The 

fluid then continuously advances step by step in the structure, forming new pores until 

reaching the exit surface. 

 For calculating relative permeability, the Stokes flow algorithm is defined in the 

simulation. The Stokes flow algorithm is used in physics and engineering for modeling 

fluid flow in systems with low velocities and slow motion. 



 

 

 Definition of the multi-phase flow model for relative permeability calculations. 

This multi-stage approach allows a comprehensive assessment of both static and dynamic 

properties, enhancing our understanding of the generated samples' flow and connectivity 

characteristics within porous media. 

3. Results and Discussion 

This hybrid model leverages the feature extraction capabilities of U-Net’s ResNet-18 backbone to 

capture intricate details of mineral textures, while the GAN framework enhances the realism of the 

reconstructed images. Through this unique combination, the proposed network demonstrates 

significant improvements in accurately segmenting and reconstructing images of porous media,. 

Figure 5 presents the schematic of the proposed network architecture. As shown, the output of 

encoder part of U-Net which is feature rich regarding the texture of reservoir, plus a random noise 

is the input of generative part of our hybrid model.  

3.1. UNet 

The first part was training UNet. In this study, the Unet model was trained using 3D images of 

Leopard sandstone, segmented into four distinct classes: macro-pores, clay, quartz, and high-

density minerals. The original images were of size 800×800×800 with a voxel length of 2.15 µm, 

but they were subdivided into smaller sections of 128×128×128 for training purposes. The training 

process utilized an NVIDIA GeForce RTX 2070 with Max-Q Design GPU with 8 GB memory and 

was conducted over 80 epochs. 

Figure 6 shows a representative input slice, its segmented ground-truth, and the masks produced 

by three different segmentation strategies: the proposed 3D-U-Net, Otsu’s global thresholding, and 

k-means clustering. The U-Net prediction reproduces the complex pore network and mineral 

boundaries far more faithfully than the two unsupervised baselines, which both over smooth the 

fracture system and miss smaller clay pockets. This qualitative observation is mirrored by the 

quantitative scores: the U-Net attains an Intersection-over-Union (IoU) of 0.87 and an F1-score of 

0.93, whereas Otsu and k-means achieve only 0.32 / 0.33 and 0.32 / 0.33, respectively. This figure 

therefore confirms—visually and numerically—the superiority of the learning-based approach for 

mineral-specific segmentation. 



 

 

 Training and Validation Loss: 

Figure 7 displays the training and validation loss over 80 epochs, providing insights into the UNet 

model's learning process. Initially, both losses decrease rapidly, indicating that the model is quickly 

grasping fundamental patterns within the data. 

Around epoch 30, the validation loss stabilizes, while the training loss continues to decline 

gradually before leveling off at epoch 70. The close alignment between training and validation loss 

indicates minimal overfitting, suggesting that the model has learned to generalize well to unseen 

data. The steady convergence pattern highlights the model’s stability and efficiency in learning 

complex features. 

The minimal gap between the training and validation loss curves demonstrates that the UNet model 

is not only learning effectively but is also robust against overfitting, making it reliable for real-

world data applications. 

 Intersection over Union (IOU): 

Figure 8 illustrates the IOU metric, a critical measure for segmentation tasks, as it captures the 

overlap between predicted and actual segmentation masks. Both the training and validation IOU 

scores exhibit consistent growth, ultimately reaching around 0.7. 

The gradual increase in IOU reflects the model’s improving ability to align its predictions with the 

ground truth. Although there is a slight gap between training and validation IOU, the curves remain 

closely aligned, indicating that the model generalizes well without overfitting. The steady climb 

in IOU across epochs also suggests the model is progressively refining its understanding. 

With an IOU score of approximately 0.7, the UNet model effectively captures spatial relationships 

in segmentation, showing a high degree of accuracy. The minimal discrepancy between training 

and validation IOU further reinforces the model’s strong generalization capabilities, making it 

reliable for precise segmentation. 

 F1 Score: 

Figure 9 tracks the F1 score, a metric combining precision and recall, particularly important for 

imbalanced segmentation tasks. Starting at around 0.45, the F1 score climbs steadily, reaching 

about 0.72 on the validation set by the final epochs. 



 

 

The continuous rise in F1 score demonstrates that the model is successfully balancing precision 

and recall, accurately identifying relevant segments while minimizing false positives and false 

negatives. The close alignment between training and validation F1 scores suggests a well-

generalized model that avoids overfitting and achieving a balanced performance across the dataset. 

The high F1 score at the end of training confirms that the UNet model performs well in this 

segmentation task, handling the balance between precision and recall effectively. The minimal gap 

between training and validation scores further validates the model’s ability to maintain consistent 

performance across different data samples. 

The training and validation curves for loss, IOU, and F1 score collectively indicate that the UNet 

model is both accurate and well-generalized. The minimal gap between training and validation 

metrics across all curves points to a robust model that resists overfitting while achieving high 

segmentation accuracy. The final high IOU and F1 scores underscore the model’s suitability for 

complex segmentation tasks, capturing intricate spatial patterns effectively.  

 Data Preprocessing and Model Training: 

The decision to divide the 800×800×800 3D images into smaller 128×128×128 patches proved 

advantageous for memory management during training, as it allowed efficient utilization of the 

GPU. However, this approach may introduce challenges related to boundary effects, which could 

potentially impact segmentation accuracy at the edges of patches. Future work could explore 

techniques such as overlap-tile strategies or larger patch sizes to mitigate these boundary issues. 

Additionally, further training or fine-tuning might enhance the model’s performance, as indicated 

by the ongoing improvement in both IOU and F1 scores even after 80 epochs. Also in figure 10, 

the visual prediction masks are presented. 

3.2. GAN-Based Image Reconstruction 

Following the segmentation with U-Net, the next phase involved image reconstruction using a 

Generative Adversarial Network (GAN).. 

Comparison of Reconstructed Images Across Epochs 

To evaluate the performance of the proposed model, reconstructed images were generated and 

analyzed at different training epochs (120, 240, 360, and 480). As depicted in Figure 11, the quality 



 

 

of the reconstructed images shows a marked improvement as training progresses. At 120 epochs, 

the reconstructions produced by the 3D-DCGAN model are highly noisy and lack discernible 

structures, reflecting its inability to capture the underlying mineral textures effectively. In contrast, 

the proposed hybrid model, even at an early training stage, begins to approximate the true textures, 

albeit with some blurring. 

As training continues to 240 epochs, the superiority of the hybrid model becomes evident. The 

reconstructed images exhibit more defined boundaries between minerals and a more accurate 

representation of the porous structure. By 360 epochs, the hybrid model outperforms 3D-DCGAN, 

which still struggles with maintaining the integrity of mineral boundaries. At 480 epochs, the 

proposed model achieves reconstructions that are not only visually similar to the original but also 

structurally accurate, capturing fine details that are critical for accurate multi-mineral 

segmentation. 

The comparison clearly demonstrates that the proposed hybrid model significantly outperforms 

the conventional 3D-DCGAN. While 3D-DCGAN fails to preserve the intricate details and 

textures, particularly at lower epochs, the hybrid model consistently produces high-quality 

reconstructions, with a progressive enhancement in both visual fidelity and structural accuracy. 

To determine the information that is lost in a synthetic low-quality (Low-Q) scan—and how much 

of it is recovered by the hybrid U-Net + GAN—we compared a volume against the ground-truth 

high-resolution (Hi-Res) scan with three full-reference metrics: mean-squared error (MSE, lower 

= better), peak-signal-to-noise ratio (PSNR, higher = better) and structural similarity index (SSIM, 

higher = better). The results of the quantitative comparison between the Low-Q and Hi-Res scans, 

along with the improvements achieved by the proposed hybrid model, are presented in Table 4, 

highlighting significant enhancements in MSE, PSNR, and SSIM values. 

A 4 dB PSNR gain and four-fold MSE drop indicate that most Gaussian blur and sensor noise have 

been suppressed. The SSIM rise from 0.70 to 0.85 shows that the reconstruction recovers crucial 

textural patterns. 

 

 



 

 

Porosity and Absolute Permeability Analysis 

The quantitative metrics such as porosity and absolute permeability were evaluated for the 

reconstructed images. Table 5 presents a comparison of these parameters between the original 

image and the reconstructed images averaged over 10 realizations from the hybrid model. 

The porosity of the reconstructed images is slightly overestimated at 36.3%, compared to the actual 

porosity of 35.5%. The absolute permeability of the reconstructed images averages at 263 mD, 

closely aligning with the actual value of 259 mD. 

These results indicate that the hybrid U-Net and GAN model is not only effective in reconstructing 

the geometric structure of porous media but also in accurately reproducing flow properties.. 

Capillary Pressure and Non-Wetting Phase Saturation  

Figure 12 illustrates the relationship between capillary pressure and non-wetting phase saturation 

for both the original image and the GAN-reconstructed image. The capillary pressure increases 

steadily with the non-wetting phase saturation, indicating a strong correlation between the two 

variables. The comparison between the original and reconstructed images shows a slight deviation, 

with the GAN-reconstructed data slightly underestimating the non-wetting phase saturation at 

lower capillary pressures.. 

This result demonstrates the success of the GAN in preserving the macroscopic behavior of the 

system, as the reconstruction accurately reflects the non-linear capillary pressure response.. 

Two-Point Correlation Function  

The two-point correlation function is a critical metric for assessing the spatial distribution of 

phases in porous media. Figure 13 compares the two-point correlation function of the original 

image and the GAN-reconstructed image. Both curves show a rapid decay, indicating that the 

spatial correlation diminishes as the distance between points increases. 

Although the GAN-reconstructed image slightly deviates from the original in terms of the 

correlation at shorter distances, the overall trend is well-preserved. This consistency highlights the 

model's ability to replicate the fine-scale structural heterogeneity of the porous media. The minor 

discrepancies observed at short distances could be addressed by refining the GAN’s loss function 

to emphasize small-scale structural features, potentially enhancing its reconstruction accuracy. 



 

 

Relative Permeability 

The relative permeability curves in Figure 14 provide a more detailed analysis of the fluid flow 

properties for both wetting and non-wetting phases in the x direction. The original and 

reconstructed images show similar trends in relative permeability for both phases,. 

The GAN-reconstructed image successfully captures the transition points and the overall shape of 

the relative permeability curves. However, some divergence is observed in the intermediate 

saturation range, where the GAN reconstruction slightly overestimates the relative permeability of 

the non-wetting phase and underestimates that of the wetting phase. This deviation could be 

attributed to the complex nature of fluid interactions in porous media, which may require more 

advanced modeling techniques or a more refined GAN architecture to capture accurately. 

The results of this study demonstrate the effectiveness of the hybrid U-Net and GAN architecture 

in both segmenting and reconstructing images of porous media. The integration of U-Net’s feature 

extraction capabilities with the generative modeling of GAN allowed for the accurate recreation 

of both mineral textures and macroscopic fluid properties. 

Additionally, increasing the patch size for U-Net segmentation or using a more advanced overlap-

tile strategy could help mitigate boundary effects and further enhance segmentation performance. 

Overall, the proposed model offers a promising approach for improving multi-mineral 

segmentation and texture-based image reconstruction in complex porous media, with potential 

applications in fields such as hydrogeology, petroleum engineering, and environmental science. 

Computational considerations 

 Memory footprint: The hybrid stacks a full 3-D U-Net encoder on top of a 3-D generator. 

Even with the encoder frozen, the model occupies noticeably more GPU memory than a 

stand-alone 3-D-DCGAN and roughly the same as two separate networks running back-to-

back. Patch-wise training and mixed-precision arithmetic mitigate the overhead, but 

commodity laptop hardware remains insufficient. 

 Training time: Although the hybrid converges in fewer epochs than an unconditional GAN, 

each epoch processes two networks in tandem. In wall-clock terms it therefore sits between 

a plain U-Net (fast) and a full-blown 3-D-DCGAN (slow). For projects where turnaround 



 

 

time outweighs ultra-high texture fidelity, a lighter 2-D conditional GAN may still be 

preferable. 

 Inference speed: During deployment the encoder executes once per volume and then hands 

off its feature tensor, so generation is only moderately slower than a vanilla GAN. Slice-

based reconstructions such as SliceGAN remain faster in absolute terms, but they pay for 

that speed with reduced three-dimensional coherence. 

 Parameter efficiency: Freezing the encoder keeps the count of trainable weights on par with 

a conventional GAN, yet the total parameter count is higher. Storage and checkpoint 

transfer therefore demand more disk and network bandwidth. 

In workflows where geological realism and pore-scale connectivity are the dominant concerns—

and ample GPU memory is available—the U-Net-conditioned GAN remains the most compelling 

choice. Conversely, when rare-phase preservation, minimal engineering effort, or strict hardware 

budgets top the priority list, earlier approaches such as classical conditioning, 2-D slice GANs, or 

even rule-based up-scaling can still be the better fit. Articulating these trade-offs clarifies how the 

proposed integration should be selected or adapted for real-world deployments rather than applied 

as a one-size-fits-all solution. 

4. Conclusion 

This study presents a hybrid U-Net and GAN model that significantly advances the segmentation 

and reconstruction of 3D multi-mineral textures in porous media images, specifically Leopard 

sandstone. Our approach combines the U-Net’s robust feature extraction—powered by a ResNet-

18 backbone pre-trained for mineral segmentation—with a GAN structure, allowing for the 

synthesis of high-resolution images that retain the original mineral textures and structural details. 

Quantitative evaluations confirm the model’s accuracy, with reconstructed images achieving 

porosity estimates of 36.3% (compared to the actual 35.5%) and absolute permeability values of 

263 mD (compared to the actual 259 mD), resulting in minor error margins of 2.25% for porosity 

and 1.54% for permeability. This accuracy indicates the model's capability in generating reliable 

3D images essential for fluid dynamics simulations within porous media.. 

The innovation of this study lies in the integration of U-Net’s segmentation-driven texture data 

with GAN’s image synthesis capabilities, a combination previously unexplored for porous media 



 

 

image reconstruction. This approach provides a more comprehensive solution by considering the 

impact of rock texture,. Unlike earlier models that separately handled segmentation and 

reconstruction, our model consolidates these processes, marking a substantial step toward 

addressing the complex structure and flow properties of rock formations. Future research will 

focus on further GAN optimizations to improve fluid interaction modeling and refining 

segmentation processes to enhance overall model accuracy and application in fields such as 

hydrogeology, reservoir simulation, and environmental engineering. 
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Table 1. Architecture of the 3D U-Net model 

Layer Type Filters Padding Batch 

Normalization 

Activation 

1 Input - 0 yes - 

2 Conv3D 64 0 yes Relu 

3 MaxPoolin

g3D 

- 0 yes Relu 

4 Conv3D 128 0 yes Relu 

5 Conv3D 256 0 yes Relu 

6 Conv3D 512 0 yes Relu 

7 Conv3D 256 0 yes Relu 

8 Conv3D 128 0 yes Relu 

9 Conv3D 64 0 yes Relu 

10 Conv3D 32 0 yes Relu 

11 Conv3D 16 0 yes Relu 

12 Conv3D 4 0 yes Softmax 

Total params 42,624,775 Trainable params 42,614,853 Non-trainable 

params 

9,922 

 

Table 2. Architecture of the Generator model. 

Layer Type Filters Padding Batch 

Normalization 

Activation 

1 Input - 0 no - 

2 Encoder - 0 no LeakyRelu 

3 Conv3D 512 0 yes LeakyRelu 

4 GaussianNoise - 0 no LeakyRelu 

5 Conv3DTrans 512 0 yes LeakyRelu 

6 Conv3DTrans 256 0 yes LeakyRelu 

7 Conv3DTrans 128 0 yes LeakyRelu 

8 Conv3DTrans 64 0 yes LeakyRelu 

9 Conv3DTrans 32 0 yes LeakyRelu 

10 Conv3DTrans 1 0 No tanh 

Total params 68,174,979 Trainable params 35,001,600 Non-trainable 

params 

33,173,379 

 

Table 3. Architecture of the Discriminator model. 



 

 

Layer Type Filters Padding Batch 

Normalization 

Activation 

1 Input - 0 no - 

2 Conv3D 64 0 yes LeakyRelu 

3 Conv3D 128 0 yes LeakyRelu 

4 Conv3D 256 0 yes LeakyRelu 

5 Conv3D 512 0 yes LeakyRelu 

6 Conv3D 1 0 no Sigmoid 

Total params 11,051,713 Trainable params 11,049,793 Non-trainable 

params 

1,920 

 

Table 4. Quantitative evaluation of information loss and recovery 

Metric Low-Q vs Hi-Res Predicted vs Hi-Res Improvement 

MSE 2*10-3 5*10-4 ↓ ≈ 4 × 

PSNR 28 32 ↑ 4 

SSIM 0.7 0.85 ↑ 0.15 

 

Table 5. Comparison of actual and reconstructed images in terms of porosity and absolute 

permeability. 

Parameter Actual Image Reconstructed Image 

(mean of 10 

realizations) 

Error percentage 

 

Porosity (%) 35.5 36.3 2.25 
Absolute Permeability 

(mD) 

259 263 1.54 

 

 

 

 

 


