Study on the arc behavior of laminar plasma arc welding
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Abstract Q

Laminar non-transfer arc of laminar plasma arc has the charagteristics of long jet
length, low temperature gradient, and good controllability, afg 1s often used for

cutting, spraying, and surface treatment, but rarely f(@gg due to its lower arc

heat. The combined laminar plasma arc, composed of nar non-transfer arc and
the transfer arc, has better welding penetratio research on its welding
characteristics is still lacking. The arc behavior j %ﬁ:d in this paper to expand its
application range. The experimental results sl at the laminar plasma arc can be
obtained with the proper shielding g a@p asma gas flow. The maximum arc
ignition height is mainly determined b%-transfer arc current, while arc shape and
arc pressure mainly depend on transfer ar€ current. The arc pressure sharply decreases
with the increase of arc ignition Wﬁ% below 20 mm. Furthermore, potential welding
applications and their prospec ebeen discussed. It was found that the transfer arc
plays a crucial role in w@ng formation, while the non-transfer arc can enhance
welding adaptability the control of arc ignition height. This heat source is
highly suitable for tl&d@ate narrow gap welding and shows promising prospects.
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1 I?uction

lasma arc is composed of high temperature, high speed, and high energy density
plasma gas flow [1]. The arc has three forms: (1) Non-transfer arc. where an arc is
generated between the tungsten electrode and the conductive nozzle. (2) Transfer arc.
where an arc is generated between the tungsten electrode and the workpiece. (3)
Combined arc. where non-transfer arc and transfer arc exist simultaneously.

In the plasma welding torch, plasma gas is introduced between the tungsten
electrode and the conductive nozzle, while shielding gas is introduced between the
conductive nozzle and the shielding gas nozzle. Both gases used are argon. Gas flow
can be generally divided into turbulent flow and laminar flow. Non-transfer arc, in
which both the plasma gas and shielding gas are in a turbulent state, is often used in
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industrial production [2]. Due to the irregular jumping of the arc root and the shearing
effect of high-speed gas flow on the air [3], the arc length is below 20 mm, which
makes it difficult to meet the current industrial development requirements. Research
shows that [4], when both plasma gas and shielding gas are in laminar flow, the arc
length of a non-transfer arc can reach 100 mm. Additionally, the arc exhibits small
axial temperature gradients, good stability, and low noise levels. Laminar non-transfer
arc has been studied on the relationship between plasma temperature and velocity [5],
volt-ampere characteristics [6], and impact characteristics [7]. It has been applied in
the fields of metal material cutting [8], material surface treatment [9], spraying [10],
and additive manufacturing [11]. The use of laminar non-transfer arc for weldi

rare due to its low arc heat and the challenge of quickly penetrating the wor gg
has been studied to compound it with MIG arc [12], but the weld formati' orse,
and the operation is complicated. The study also mentions a weldlqeg od that
combines laminar non-transfer arc and transfer arc, known as la plasma arc
welding. However, research on its welding characteristics is sti I%vi .

Based on the maximum arc ignition height, arc shape ameters, and arc
pressure, the welding characteristics of laminar plasma, ar¢gShave been studied in this
paper. This study provides experimental and theoreti a&)ort for expanding the
welding applications of this technology.

2 Experimental procedure @0
2.1 Experimental methods

During the experiment, the non-tra f@%ls opened first, and then the transfer
arc is opened to form a combined arc. %xperimental platform used in the study is
shown in Fig. 1. Experimental insttuméents and equipment include: (1) Plasma arc
welding machine, with an adjust ansfer arc current of 0-300 A and an adjustable
non-transfer arc current of O@\; 2) Plasma arc welding torch with a conductive
nozzle aperture of 4 m@nd a shielding gas nozzle aperture of 12 mm. A
cerium-tungsten electr ith a diameter of 4 mm and a sharpening angle of 30
degrees, was selected; @YRCIOOO welding robot; (4) X113 high-speed camera has a
frame rate of 20ﬁmes per second; (5) Small hole arc pressure testing system with
a pressure sen en the arc passes through the small hole, the arc pressure and arc
position arg regorded in real time.

2.2 Arc @cessing

?processing is divided into two parts: videos and pictures. The videos are
captured by a high-speed camera positioned perpendicular to the arc, while the
pictures are made by video editing software combined with picture processing
software, such as Adobe Premiere Pro (PR) and Photoshop (PS). First, PR is used to
extract pictures from the videos frame by frame and export them at a fixed size. Then,
PS is used to standardize the picture parameters, encompassing brightness and
threshold [13]. Finally, the processed arc shape figures are obtained, as shown in Fig.
2(c).

Arc projection diameter, arc root diameter, and arc ignition height are expressed
by Dp, Dr, and L, respectively. The calculation of scale is obtained using a
proportional relation. Based on the outer diameter of the conductive nozzle in the



figure being 53 mm, and the actual diameter being 10 mm, the length relational
equation (1) is established. By considering the total area of the picture
(141.22x141.22) mm? and the total pixels of the picture (250,000), along with the arc
pixel ¢ in the picture, the actual arc area d can be calculated, as shown in equation (2).

a = K)’ﬂ =5.3 (1)
b 10mm

cx(141.22mm x141.22mm)
250000 _5 32

d (NZ)

Where a is the length (mm) in the figure, b is the actual length (mm), gle arc
pixel, and d is the actual arc area (mm?). Q&
3 Results and discussion (b
3.1 Maximum arc ignition height

Non-transfer arc is generated between the tungsten electrode,and the conductive
nozzle, which can always be successfully ignited. leerpw, this section mainly
focuses on the influencing factors of the maximum igni eight of the transfer arc.
The following method was adopted: under a certai eter, after the non-transfer
arc was ignited, the welding torch was continuo ﬁed to try to ignite the transfer
arc until it failed, and the data of the mﬁ@\ arc ignition height under this
parameter was recorded. O
3.1.1 Shielding/plasma gas flow %

The influence of shielding/plasma g&s flow on maximum arc ignition height was
studied, as shown in Fig. 3. Amo@%em, the fixed transfer arc current is 100 A, and

the non-transfer arc current 1 Af When the shielding gas flow is 18 L/min, the
plasma gas flow is adjusteddrom 1 to 5 L/min. Similarly, when the plasma gas flow is
3.5 L/min, the shieldin ow is adjusted from 6 to 30 L/min.

The results shoﬁ as the plasma gas flow increases, the maximum arc ignition
height first incre arply and then increases gently. With the increase of shielding
gas flow, the @aximum arc ignition height first sharply increases and then slowly
decreases. Duging the adjustment of shielding gas flow, a phenomenon was observed
where a@mse decreases as the maximum arc ignition height increases.

rEyﬂolds numbers (Re) for plasma gas and shielding gas were calculated using
Formla (3).

n

€)

Where Re is the Reynolds number, p is the fluid density, v is the fluid velocity, d
is the characteristic length, and # is the dynamic viscosity coefficient of the fluid.

In this experiment, p = 1.7837 (kg/m?), = 0.0000202 (Pa-s), d; = 0.004 m when
calculating plasma gas, and d> = 0.012 m when calculating shielding gas. d; and d>
represent the aperture of the conductive nozzle and the shielding gas nozzle,
respectively. The fluid velocity (v) can be calculated using Formula (4).
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Where Q is the gas flow.

When the Re is less than 2300, the fluid is in a laminar state. When the value is
between 2300 and 4000, it is in a transitional state; when it exceeds 4000, it is in a
turbulent state. The Re is 2342.29 when the maximum plasma gas flow is 5 L/min, so
it can be roughly considered that the plasma gas has always been in laminar flow
during adjustment. The Re of the shielding gas flow is 2342.29 at 15 L/min and
4059.96 at 26 L/min, and the flow state is illustrated in Fig. 3. Compared _to a
turbulent state, a laminar state is considered to have less noise because le is
drawn by the arc, and the noise level is inversely proportional to the arc’ . The
gas flow parameters of the follow-up experiments were properly selecte sure the
laminar arc, with the shielding gas flow at 18 L/min and the plas flow at 3.5

L/min. &
3.1.2 Transfer/non-transfer arc current x

The influence of transfer/non-transfer arc currept Q‘vnammum arc ignition
height was studied, as shown in Fig. 4. When the tr urrent is 100 A, the
non-transfer arc current is adjusted from 10 to 150 larly, when the non-transfer
arc current is 26 A, the transfer arc current is adJ ﬁ)m 50 to 250 A.

The results show that the maximum 1t10n height increases with the
non-transfer arc current, but it does not @ significant change with the increase of
transfer arc current.

With the increase of non-transfer aré*current and transfer arc current, the number
of electrons excited by the tun lectrode will rise. These electrons will collide
with plasma gas, ionizing mor snfa, consequently increasing the ionization degree
in the arc column area [ The difference is that the non-transfer arc is generated
between the tungsten de and the conductive nozzle, and the plasma excited
between them can e Sh a conductive channel between the tungsten electrode and
the workpiece. ansfer arc is generated between the tungsten electrode and the
workpiece, and it san ignite with the workpiece along the conductive channel.
Therefore, the)non-transfer arc current plays a decisive role in the arc ignition height,
while th@nsfer arc current can be seen as supplementing plasma for the arc.

control of arc ignition height by non-transfer arc current can help the arc
adag::tarious welding conditions. For instance, when the welding torch is too large
to fit into narrow gaps, adjusting the arc ignition height can enable the arc to reach the
welding location directly.
3.2 Arc shape parameters
3.2.1 Transfer arc current

The influence of transfer arc current on arc shape parameters was studied, as
shown in Fig. 5. Among them, the fixed non-transfer arc current is 26 A, and the arc
ignition height is 40 mm. The transfer arc current is adjusted from 80 to 250 A, and
pictures are taken every 10 A.

The phenomenon depicted in the figure confirms the above analysis. As the



transfer arc current increases, the ionization degree and plasma density in the arc
column area also increase, leading to an expansion in the ionization zone profile and
the brightness of the arc.

According to Fig. 5(b), as the transfer arc current increases, the expansion speed
of the arc bottom is significantly faster than that of the arc root. This may be due to
the physical constraint of the arc root by the plasma gas nozzle, similar to how the
upper end of water flow is constrained by the water pipe when the faucet is turned on.
Therefore, an arc shape with a narrow top and a wide bottom is formed. This arc
shape is particularly well-suited for narrow gap welding. Research [15] shows that the
bottom corner of the sidewalls is prone to poor fusion during narrow gap welding.

The arc expanding at the bottom will provide good coverage for the bottom ¢ of
the sidewalls. ¢
3.2.2 Arc ignition height x

The influence of arc ignition height on arc shape parameter tudled as

transfer arc current is 100 A. The arc ignition height is adjusted 3 to 36 mm, and
pictures are taken every 3 mm.

With the increase of arc ignition height, the undoubtedly increases
steadily, the arc projection diameter and arc ro eter change little, and arc
brightness decreases. The arc root diameter can Q&dered to fluctuate around 5
mm, with a variation range of less than 11.2% ever the arc projection diameter

initially increases and then decreases. O
When the arc ignition height is % the arc is constrained by the conductive
1 0

nozzle, resulting in minimal hea f the arc to the surrounding air and
concentrated arc energy [16]. As rc ignition height increases, the restraint effect
weakens. Within a certain arc i0ofl height range, the heat generated by the arc still
significantly exceeds heat digsipation, causing the arc to expand. Beyond this range of
arc ignition height, t t loss of the arc increases, leading to a decrease in
temperature and an Mcredse in resistance. This causes the arc voltage to increase, the
actual arc currenecrease, and the degree of arc ionization to weaken, resulting in
arc contractio n be inferred that if the arc ignition height continues to increase,
the degree ¢ contraction will increase until the arc is extinguished.

3.3 Arc @ssure

shown in Fig. 6. Among them, the fixed non-transfer arc cg% 26 A, and the

33 E‘hpnsfer/non transfer arc current

he influence of transfer/non-transfer arc current on arc pressure was studied, as
shown in Fig. 7. The fixed arc ignition height is 16 mm. When the non-transfer arc
current is 26 A, the transfer arc current is adjusted to 100, 150, 200, and 250 A.
Similarly, when the transfer arc current is 100 A, the non-transfer arc current is
adjusted to 20, 50, 80, and 110 A.

Arc pressure increases significantly with the increase of transfer arc current.
When the current is 200 A, the arc pressure is 8 times that of ordinary DC TIG arc
pressure (0.11 KPa) [17], which can fully meet the welding requirements. Arc
pressure reflects the impact effect of plasma on the molten pool [18], so welding
formation can be adjusted by the transfer arc current.



3.3.2 Arc ignition height

The influence of arc ignition height on arc pressure is studied, as shown in Fig. 8.
The fixed non-transfer arc current is 26 A, and the transfer arc current is 100 A.
During the experiment, the tungsten electrode was directed at the guide hole on the
arc pressure tester. The arc pressure was recorded after the arc was ignited and the
value stabilized. The arc ignition height was adjusted from 2 to 44 mm, and the arc
pressure data were collected every 2 mm.

With the increase of arc ignition height, the arc pressure initially decreases
sharply and then decreases slowly. The arc pressure at 20 mm has been reduced to
0.16 KPa, which is equivalent to the arc pressure (0.15 KPa) of a 100A ordinary DC
TIG. This confirms the above analysis. As the arc ignition height increases, th @ee
of arc ionization decreases, leading to a decrease in the number of plasr ch in
turn reduces the impact on the molten pool. Therefore, to ensure a &welding
formation effect, the proper arc ignition height should be adjusted w@ e current is
fixed. Similarly, the proper transfer arc current should be dj& when the arc
ignition height is fixed. &

3.4 Welding application prospect v (b

A novel idea would be to apply laminar plas & o narrow gap welding.

Compared with the traditional narrow gap arc weké&ocess, it offers two unique

advantages:

(1) Improving welding efficiency. Traditi @mrrow gap arc welding processes
have a short arc ignition height (<4 )Cl)u refore, it is necessary to extend the
welding torch into the narrow gap gro%‘\en welding thick plates. The large size of
the welding torch increases the gapqsizeYrequiring more welding wire to fill it, thus
decreasing welding efficiency While some solutions, like lengthening the
electrode, extending it into t@o [20, 21], and using a sheet tungsten electrode

[22], have been proposed have resulted in decreased welding quality, increased
process complexity, a er costs. The ignition height of the laminar plasma arc
can reach 60 mm. elding thick plates, there is no need to extend the welding

torch into the gr@; only extending the arc to the bottom of the groove is required.
This approach(eli tes the impact of the welding torch size on the gap size, thereby
enhancing welding efficiency.

(2)®prove the poor sidewall fusion. The traditional narrow gap arc welding
pro?’has poor coverage of the sidewall bottom corner because the energy is
concgntrated at the bottom of the arc, the arc ignition height is short, and the welding
torch flexibility is limited [23]. Although solutions such as bending the electrode [24]
and magnetically controlled oscillating arc [25] have appeared, they have increased
costs and process complexity. The arc bottom of the laminar plasma arc is very wide,
allowing it to effectively cover the bottom corner of the sidewall. A comparison of
advantages is shown in Fig. 9 (a) and (b).

However, due to the principle of minimum voltage, the arc should first ignite
with the sidewall of the workpiece closest to the tungsten electrode and cannot reach
the bottom of the workpiece, as shown in Fig. 9(c). Combined with the above
experiments, 304 stainless steel with dimensions of 100 X80X20 mm was actually



welded using the welding parameters shown in Table 1. The gap width is 10 mm, the
groove depth is 15 mm, and the wire material is 308 stainless steel. The arc shape is
shown in Fig. 9(d). It is shown that the arc does not ignite with the sidewall but
directly reaches the bottom of the groove. This phenomenon can be attributed to the
ignition mechanism of the laminar plasma arc. The laminar non-transfer arc has a long
arc ignition height and extends to the bottom of the groove along the axis of the
tungsten electrode, as shown in Fig. 9(e). The laminar non-transfer arc acts as a
conductive channel between the tungsten electrode and the bottom of the groove, and
the transfer arc will ignite at the bottom of the groove along this conductive channel,
satisfying the principle of minimum voltage, as shown in Fig. 9(f).

The relative height between the welding torch and the specimen was fi d
the specimen was welded in a single pass with four layers. The arc shape 8 e@ layer
and the welding formation are shown in Fig. 10. The results show t arc has
good stability. The welding formation is excellent, showing an ivﬁ triangular
shape, and no sidewall unfused defects were found.

4 Conclusions

(1) The non-transfer arc current is positively related arc ignition height. It
is also positively related to the arc pressure, but the i&; is extremely weak. In
this experiment, the maximum arc ignition hei reach 60 mm, which is
significantly greater than that achieved in. th@%entional plasma arc welding
process.

(2) The transfer arc current is posj ’V@' ated to arc size and brightness, and
also positively related to arc pressur%en the transfer arc current is 250 A, the
non-transfer arc current is 26 A, and¢the drc ignition height is 16 mm, the arc pressure
can reach 1.87 KPa.

(3) The arc ignition heigwse tively related to arc brightness and arc pressure.
The arc pressure sharply eases with the increase of arc ignition height below 20
mm.
(4) The trans&@: plays a major role in welding formation, while the
non-transfer arc enhance welding adaptability by controlling the arc ignition
height.

(%) C@ared with the traditional narrow gap arc welding process, laminar
plasma arc)narrow gap welding does not require a welding torch to extend into the
growm arc provides good coverage on the bottom corner of the sidewall,
enhancing welding efficiency and quality.

(6) Under suitable welding parameters, the laminar plasma arc narrow gap
welding process is stable. It produces an inverted triangle welding morphology, and
no sidewall unfused defects are found.
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