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Abstract - Manual material lifting is a common activity in daily life and Oinocsyial work
environments, placing significant stress on the L5/S1 joint in the lower back. Nudy aims to
compare the biomechanical impacts of squat and stoop lifting techniques 0@5/81 joint to
assess load distribution and potential injury risks in manual handlin . In contrast to
previous studies using boxes with handles, our experiments involve lifti rgo boxes from the
bottom without handles, providing a more realistic simulation for ca andling workers. Five
healthy male participants performed squat and stoop lifts with weights of 4, 8, 12, and 16 kg.
Markerless motion capture was conducted using the Kinect v2 , and kinematic and kinetic
data were analyzed with the OpenSim biomechanical mode%gd; ftware. Results indicated that
squat lifting reduced compression forces by approximat and shear forces by 25% at the
L5/S1 joint compared to stoop lifting for heavier Iﬁhese findings align with previous
literature, demonstrating that squat lifting may bét tribute loads across the lumbar spine,
suggesting it as a potentially safer method for ha heawer loads.
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1. Introduction

Despite industrial developments, Woﬁ@rﬁany sectors perform lifting tasks with handling. Improper
body postures during frequentl eated lifting while working can cause musculoskeletal disorders
(MSD). These disorders cause_l ack pain (LBP) and subsequently lead to loss of work capacity.
According to a study, bac has affected approximately 619 million people worldwide [1]. In the
United States in 2020, snahwal lifting-related injuries constituted 31.4% of non-fatal occupational
injuries that caused IQ ﬁ work capacity [2]. Ergonomic risk assessment methods such as NIOSH,
RULA, REBA, QEQ afe Wrsed to assess the risk of musculoskeletal diseases that cause loss of work
capacity of Work%y?,ﬁ]. In addition, these methods were examined comparatively in a study [7].

Artificizj neug)networks (ANN), machine learning, and biomechanical modeling approaches are also
t

used in imation of spinal loads during manual lifting. In this context, there are studies in literature
using ANN-based models to estimate the loads in the L4/L5 and L5/S1 spine regions [8], whole body
posture and spine forces [9] and joint coordinates [10]. Low back pain risk [11] and biomechanical risk
[12] have been studied during manuel lifting with machine learning. The biomechanical modeling
method includes static models calculating L4/L5 and L5/S1 compression forces [13,14],
electromyography (EMG)-supported dynamic spine models [15-17], models based on three-
dimensional finite element analysis (FEA) [18], dynamic models that consider body segments separately
and three-dimensional geometric body models [19,20]. Three-dimensional musculoskeletal models
facilitate dynamic motion analyses and enable comprehensive simulation of body kinematics, kinetics
and musculoskeletal forces [21-24]. Recent advances in musculoskeletal modeling approaches in
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ergonomic analyses have demonstrated the effectiveness of these methods in optimizing lifting
techniques to reduce spinal loads [25]. Indeed, some studies in the literature emphasize the
biomechanical differences between squat and stoop lifting techniques, supporting the need for detailed
biomechanical evaluation of loading in the lumbar region [26-28].

To design these models, position data of the L5/S1 joint and other body parts are required. For this
purpose, motion capture systems with skin-mounted markers are commonly used. Position data from
markers and sensors help estimate body joint locations. However, implementing these systems is costly
and requires specialized laboratory environments, making field studies challenging [29-31].

In recent years, alternative markerless imaging methods have been developed due to the '@dst and
complexity of marker-based imaging systems. Markerless imaging systems like Kineet v&) preferred
for their cost-effectiveness and ease of use. This sensor has been applied in gait %&is, real-time
human movement simulations, and joint angle measurements [32]. Kinect v @&ticular, offers
advantages such as human skeleton recognition, portability, and suitability fo e [33-38]. Several
studies have shown that a single sensor, when properly positioned, is su @o capture joint position
data of the human body during dynamic lifting movements [39,40].

In manual lifting tasks, two lifting techniques—squat and sto
technique, the lift is performed by keeping the back upright an
technique, the movement is executed by bending at the waistwithout flexing the knees [41]. Although
the semi-squat technique aims to combine the advantages)ot both methods, it does not provide a
biomechanical benefit due to the simultaneous lo of both the lumbar and knee joints [42].
Moreover, it has been suggested that mechanic ; patterns vary depending on individual lifting

} commonly used. In the squat
g the knees, whereas in the stoop

strategies, which makes it difficult to define a rd representation for modeling purposes [43].

In this study, the effect of manual lifting ements performed with squat and stoop lifting techniques
in an occupational environment on t int was investigated using the markerless motion capture
method Kinect v2 sensor and OpenSi are as an innovative approach. As a result of experiments

conducted with lifting technique@iﬁerent masses, shear and compression forces acting on the L5/S1

joint were analyzed.
,@

2. Methods

This study was con |th five healthy male participants (age: 27 years (£ 5), height: 184.2 cm (
2.5), weight: 79. ) BMI: 23.34 kg/m2 (+ 1.04)) without low back injuries, all employees of

the local bra the cargo industry. This number of participants is consistent with previous
blomechanlc udies in the literature that used similar samples and obtained valid results using
muscul I modeling and motion capture techniques [44-46]. The study protocols were approved
by the Kitahya Health Sciences University Ethics Committee (Approval No: 2021/13-16), and informed
consent forms were obtained from all participants. Before the study, the necessary movement techniques
were explained to the participants verbally and visually, and supervision was provided during the
experimental process.

2.1. Equipment
2.1.1. Microsoft Kinect v2

In this study, a single Kinect v2 was used to collect motion data without using markers. This device,



developed by Microsoft for the Xbox game console, has the ability to measure distance with a depth
sensor and time-of-flight (ToF) principle. Kinect v2 provides color images with a resolution of
1920x1080 pixels and depth data with a resolution of 512x426 pixels, obtaining 30 frames per second.
The depth perception angle was determined as 60 degrees vertically and 70 degrees horizontally. In
Figure 1, Kinect can detect 25 joints on the user's body. In this study, Kinect v2 was positioned 2.5
meters in front of the participant and 1.5 meters above the ground. This positioning was achieved by
optimizing the accuracy in preliminary tests [47].

2.1.2. Ground Reaction Force Measurement

The Zebris™ FDM-2 platform was used to measure the ground reaction forces durin %Iiﬂing
movement. This device has a length of 2120 mm, a width of 605 mm and a height of ZIﬁr@nd records

data at a sampling frequency of 100-200 Hz with 15360 sensors on its surface. In , The Zebris
device reports static posture analyses such as changes in the participant's center ity, total load on
the right and left feet, and front-back foot load distribution. The participant w with lifting boxes

while standing on the platform, and the data obtained were recorded wa& is software [48].

2.2. Musculoskeletal Model

In this study, the whole-body musculoskeletal model develope ajagopal et al. (2016) was used.
OpenSim software allows the model we used in the exp@ents to be scaled according to the
anthropometric data of each participant. This is achleve djusting the body segment lengths and
mass properties of each participant [49].

This model represents a male individual weigh@@g and being 172 cm tall. There are 22 body parts
connected by joints in the musculoskeletal structire. For the lower body, there are the pelvis, femur,
calcaneus, talus, patella, tibia/fibula, toesg apd for the upper body, there are the head-trunk junction,
humerus, ulna, radius, and hand joi%ere re a total of 37 degrees of freedom (DoF) in the model:

20 DoF in the lower body (6 for the p , 7 for the right and left legs) and 17 DoF in the upper body

(3 for the lumbar joint, 7 for the and left arms). The coordinate system for each body part in the
model is aligned as fO||0WS' -direction corresponds to the anterior direction, the y-direction
corresponds to the prOXI rior direction, and the z-direction is to the right [49].Considering the

differences in BMI a e participants, it was assumed that small deviations in the model had
negligible effects o ults.

participagts were given verbal and visual information about both lifting techniques; Supervision is
provided fo ensure that they can apply it in the correct form and safely. During the squat lifting
movement, the information was given that the knees should be fully flexed, the heels should be lifted in
such a way that the contact with the ground was cut off, and the body should be close to the vertical
position (Figure 3a). During the stoop lift, the participant was instructed to extend the knees without
bending and bend the torso to lift the box from the ground in an upright position (Figure 3b) [50].

2.3. Experi @ cedure
The parw performed two standard lifting techniques: squat and stoop. Before the experiment,

Each participant lifted boxes weighing 4, 8, 12 and 16 kg. The dimensions of the box were 40 cm x 40
cm x 35 cm (width x depth x height). The box was placed in the middle of the sagittal plane. The
participants lifted the box on the ground (0 cm above the ground) by grasping it symmetrically from



below the bottom with both hands and held it upright at L5/S1 joint (waist) level. Participants were
asked to perform squat and stoop lifting techniques with the knees and torso slightly bent; Since it was
thought that the lateral movement of the pelvis could affect the flexion and torsional torques, they were
made to keep their feet stable during the lifting [51]. Participants repeated each lifting process 5 times,
and a total of 200 lifting movements were performed in 8 different conditions.

The distance between the participant’s body and the box was standardized at approximately 25 cm,
measured from the toes to the nearest edge of the box. This distance was chosen to replicate common
manual material handling scenarios where loads are lifted from the ground directly in front of the
worker. The decision to consider only one load distance and a ground-level position was m ted by
the study’s primary objective: to investigate lumbar spine loading during lifting from at i€a] ¥ow-back

risk scenario. \

The positioning of the devices used in the experiment and the data collection pro shown in Figure
4. Kinematic data was collected with the Kinect v2 sensor operating at a 3 %Iing rate. While the
participants performed the movement, the Kinect v2 sensor recorded Fgﬁon data of each joint
throughout the movement. In the kinetic analysis, ground reaction forces {GRF) and moments were
recorded using the Zebris FDM-2 platform with a 100 Hz samplin r@he Zebris platform was used
to determine the participant's foot position and load distributi(& data obtained were analyzed in

OpensSim 4.0 software [52,53]. Q

2.4. Biomechanical Analysis ’»

The model was scaled according to the anth (@r'c data of each participant. The process of
transferring the position data of human body % rom Kinect v2 and ground reaction force (GRF)
data from the Zebris FDM 2 platform to the human model in OpenSim was started. Using the joint
position information obtained from the Ki v2 sensor, the joint angles of the participant in each lifting
movement were obtained by the inv inematic calculation method. Using the collected data, L5/S1
joint moments were calculated with th&shelp of OpenSim's Inverse Dynamics Tool, and the obtained
moments were decomposed in scle forces with the static optimization method [48,49]. This
analysis process was carried the OpenSim workflow shown in Figure 5.

o\

3. Results

Participants perforr@%lifting tasks at their self-selected comfortable speed to simulate realistic
working conditigns, Figure 6 illustrates the time-dependent variation in lumbar (L5/S1) joint angles
throughout thelifting process (0-100%) for both squat and stoop lifting techniques. The differences in
joint a ween the two techniques reflect the inherent biomechanical distinctions of each
movemi%s%tegy.

In the initial phase of lifting (0-40%), the stoop technique involved greater lumbar flexion, with joint
angles exceeding 65 degrees, whereas squat lifting began with a more upright spinal posture, showing
joint angles below 60 degrees. This indicates that stoop lifting relies more heavily on trunk flexion,
while squat lifting distributes movement more evenly across the lower extremities.

As the lifting progressed (40-100%), the spine gradually moved toward a more upright position in both
techniques, and lumbar flexion decreased accordingly. Particularly during the final 30% of the
movement, joint angle values converged between the two techniques, resulting in similar spinal postures



at the end of the lift. The error bars (standard deviations) demonstrate overall consistency in participant
performance, although inter-individual variability was slightly higher in the initial phase of stoop lifting.
Despite variations in load magnitude, no significant differences were observed in L5/S1 joint angles
within each lifting technique.

In general, the stoop and squat lifting motion of the spine are associated with the 3-D lumbar spine at
the L5/S1 joints. Figure 7 presents the extension moments in the lumbar region (L5/S1) during the lifting
of various weights (4, 8, 12, and 16 kg) using both techniques. The highest moment values appear at the
beginning of the lifting process for both techniques. While maximum L5/S1 extension moments between
squat and stoop lifting were similar at 4 and 8 kg, they were higher during squat lifting at 12 16 kg,
likely due to increased muscle activation needed to stabilize knee flexion. O

L5/S1 joint reaction forces were analyzed in the vertical (SI) and horizontal (AP) dir representmg
compression and shear forces. In Figure 8, compression forces were relat onsistent across
participants, varying by lifting technique and weight. In squat lifting, compr, 2ﬁ'forces ranged from
49.38 N/kg to 60.95 N/kg (3911-4827 N), while in stoop lifting, they ra& 44.05 N/kg to 55.78
N/kg (3489-4418 N).

In Figure 9, L5/S1 joint shear forces were greater during stoop meared to squat lifting. Shear
forces were observed to be 9.23 N/kg — 15.64 N/kg (731-1239 uat, while stoop lifting produced
forces of 12.25 N/kg — 19.48 N/kg (970-1543 N), highlingncreased demand on spinal stability
in stoop lifting.

4. Discussion and Conclusion

This study investigates the impact of manua%rg on the L5/S1 joint, which is one of the most
vulnerable regions in the lumbar spine. Unlike traditional studies where boxes with handles are used,
our model simulates real-world carge lifting conditions by requiring participants to lift boxes from the
bottom, without handles. This appro better represents typical scenarios encountered by cargo
workers and may yield insights& more accurately reflect the occupational risks associated with

manual lifting. @

When comparing comp forces with those reported in the literature, our findings appear to be
consistent with the r;@ﬁeported by Arx et al. (2021), who observed a 5% reduction in compression
forces during sto jng Compared to squat lifting [27]. Beaucage-Gauvreau et al., however, observed
a 17% decreas &besting differences in load handling approaches and study methods [25]. Figure 10
illustrates these gomparisons, with our squat lifting forces at 57.01-60.95 N/kg for 12 and 16 kg loads,

and a d?to 51.83-55.78 N/kg for stoop lifting [25-27].

When compared with the literature, it is seen that the shear forces of the L5/S1 joint are higher during
the stoop lift than during the squat lift. For example, Beaucage-Gauvreau et al. (2019) reported a 20%
decrease in stoop shear forces, closely aligning with our findings, as seen in Figure 11 [25-27].

Our findings reveal that stoop lifting reduces compression forces at the L5/S1 joint by approximately
9% compared to squat lifting for 12 and 16 kg , suggesting that squat lifting may distribute loads more
safely across the lumbar region. On the other hand, shear forces were approximately 25% higher during
stoop lifting, which may pose a greater risk to lumbar stability, as increased shear loading has been
linked to disc injury and spinal instability in the literature [18,54,55]. These findings support the use of



squat lifting as a potentially safer method for handling heavier loads, with practical implications for
manual labor-intensive occupations. However, a limitation of our study is that the biomechanical model
did not account for spinal ligaments or intra-abdominal pressure, which are important factors in lumbar
spine stabilization during lifting.

Future research should continue to refine biomechanical models and standardize lifting methods to
improve the safety and efficiency of manual material handling tasks, consider incorporating ligamentous
structures and intra-abdominal pressure to enhance model accuracy. Additionally, exploring a broader
range of lifting conditions—such as varying box dimensions, handle placements, and participant
demographics—could provide a more comprehensive understanding of lumbar loading dysfagics. In
addition, different approaches can be used, such as integrating the obtained data with z;dva@ achine

learning techniques [56]. x
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Figure ons

Figure 1. 3D skeleton joints tracked by the Kinect v2 sensor.

Figure 2. Zebris™ FDM-2 system used for lifting analysis in experiments.
Figure 3. (a) Squad lifting and (b) Stoop lifting.

Figure 4. a) Experimental setup, b) Lifting motions of the biomechanical model.
Figure 5. OpenSim workflow.

Figure 6. Joint angles of lumbar in different weights (4,8,12, and 16 kg) during squat and stoop lift.
Figure 7. Lumbar (L5/S1) extension moments during squat and stoop lift.

Figure 8. L5/S1 joint compression forces during squat and stoop lifting.

Figure 9. L5/S1 joint shear forces during squat and stoop lifting.
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Figure 10. Comparison of L5/S1 joint compression forces during squat and stoop lifting movements.
Figure 11. Comparison of L5/S1 joint shear forces during squat and stoop lifting.
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Figures

Figure 1. 3D skeleton joints tracked by the Kinect v2 sensor.
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Figure 2. Zebris™ FDM-2 system used for lifting analysis in experiments.
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Figure 4. a) Experimental setup, b) Lifting motions of the biomechanical model.
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Figure 5. OpenSim workflow. (y
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Figure 6. Joint angles of lumbar in different weights(£4&g,)and 16 kg) during squat and stoop lift.
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Figure 7. Lumbar (L5/S1) extension moments during squat and stoop lift.
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Figure 8. L5/S1 joint compression forces during squafa@gop lifting.
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Figure 9. L5/S1 joint shear forces during squat and stoop lifting.
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Figure 10. Comparison of L5/S1 joiﬁ@méssion forces during squat and stoop lifting movements.
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Figure 11. Comparison of L5/S1 joint shear forces during squat and stoop lifting.
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