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Abstract 

A highly accurate numerical algorithm has been preferred and used to get numerical 

solutions of solitary wave, boundary-forcing and wave undulation solutions of the nonlinear Equal 

Width Wave (EW) equation. Since the boundary-forcing solutions of the EW equation do not 

exist in the literature it’s firstly obtained successfully and introduced in this study. Wave 

generation with different values of the impulse, which is related to the forced-boundary in the 

EW equation, is investigated. Using low-order modified B-spline and less number of nodal 

points are two advantages of the present algorithm. Choosing modified cubic B-splines prevents 

the appearance of the dummy points. To see the difference between the present technique with 

other methods four applications existing in the literature with many different values of parameters 

are investigated and comparisons with nearly forty different techniques are reported. For all of 

the comparisons, undoubtedly present algorithm produces better results except only one method 

using more than three times nodal points. The produced invariants are also in good agreement 

with the exact values. Rates of the convergence are computed. 
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1 Introduction 

Peregrine [1] first introduced Regularized-long-wave (RLW) equation in 1966 to investigate 

the development undular bore solutions. The RLW equation is another important equation like 

the Korteweg-de Vries equation at the applications of non-linear dispersive waves. The RLW 

equation is of the form 

𝑢𝑡 + 𝑢𝑥 + 𝜀𝑢𝑢𝑥 − 𝜇𝑢𝑥𝑥𝑡 = 0.                                                (1) 

Morrison et al. [2] suggested the equal width (EW) wave equation of the following form 

𝑢𝑡 + 𝑢𝑢𝑥 − 𝜇𝑢𝑥𝑥𝑡 = 0,                                                   (2) 

where µ is a positive constant. 

 

The nonlinear partial differential equations arise in a wide variety of physical problems 

such as fluid dynamics, plasma physics, solid mechanics and quantum field theory [3]. In this 

study, the nonlinear EW equation used in solitary wave modeling will be investigated. Solitary 
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waves have attracted the interest of researchers due to the diversity of their applications [4]. 

The EW equation has solitary wave solutions displaying equilibrium between dispersive and 

nonlinear effects. Analytical and numerical solutions are frequently investigated in the 

solution of differential equations [5,6]. The exact solutions of the EW equation are limited 

availability [7–10]. So, many scientist have tried to obtain accurate numerical solutions of the 

EW equation such as; Gardner and Gardner used Galerkin method [11] based on cubic B-

spline, Dağ et al. [12] used quadratic B-spline finite element method, Doğan [13] applied linear 

finite element, Irk [14] used Galerkin method based on Adams-Moulton method, Saka et al. [15] 

applied quartic B-spline based Galerkin method, cosine expansion based differential quadrature 

method and meshless method, Saka [16] used quadratic Galerkin method with space-splitting 

technique, space , Haq et al. [17] applied collocation method based on septic B- spline, Raslan 

used collocation method based on quartic B-spline [18], quintic B- spline [19], and finite 

difference method with contribution of invariant imbedding method [20], Irk et al. [21] used 

collocation method based on cubic B-splines, Saka et al. [22] used cubic B-spline collocation 

method, Dağ and Saka [23] used cubic B-spline collocation method, Dağ and Ersoy [24] used 

exponential cubic B-spline collocation method, Ghafoor and Haq [25] used Haar wavelet 

method, Zaki used least-square method [26], and Petrov-Galerkin method [27], Gardner et al. [28] 

used Petrov-Galerkin method with quadratic B-spline function, Roshan [29] used Petrov- Galerkin 

method with two different order functions, Kaplan and Dereli [30] used radial basis function 

collocation method, Dereli [31] used augmented radial basis functions collocation method, 

Banaja and Bakodah [32] used method of lines, Uddin [33] used radial basis function based 

pseudo-spectral method, Esen and Kutluay [34] used linearized implicit finite-difference 

method, Esen [35] used lumped Galerkin method, İnan and Bahadır [36] used fully implicit finite 

difference method, Çelikkaya used operator splitting method [37], Ramos [38] used finite 

difference methods, Archilla [39] used spectral method, Arora et al. [40] used reduced 

differential transform method, Babolian et al. [41] used homotopy analysis method, Yağmurlu 

and Karakaş [42] used trigonometric cubic B-spline collocation method, Ali [43] used spectral 

method based on Chebyshev polynomials and Rasoulizadeh et.al. [44] used local meshless 

method. The novelty of the present study may be given as 

• Previously unexplored boundary-forced solutions of the EW equation are obtained. 

• By using two numerical methods and contribution of the Rubin-Graves 

linearizing technique great improvement is observed. 

• To see the difference between the present techniques with other classical methods, 

four applications existing in the literature with many different values of 

parameters are investigated and comparisons with nearly forty different techniques 

are reported. 

In this study, we aimed to obtain better results than those of earlier routine methods. Main 

difference of the present study is using two methods together and by means of the addition of 

advantages caused by two methods obtain successful results. In addition, obtaining boundary-

forced solutions of the EW equation, which have not been investigated in previous studies, will be 

an important contribution to the literature. In order to reduce the workload of the hybrid method, 

a modified cubic B-spline with diagonal dominant form is preferred. Using low order B-spline as 

base function also effect the accuracy of the method. Our fundamental technique differential 

quadrature method (DQM) which has introduced by Bellman et al. [45] using less number of mesh 

points and developed by many applications [45–55]. In this study, just like the Lie Algebra 
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Approach [56], DQM is used to solve a differential equation whose solution has not been 

investigated before. 

The second section of this paper presents the basic principles of DQM, the third section 

presents the application of numerical methods to the differential equation, the fourth section 

presents applications and results, and the last section concludes. 

 

2 The main idea of DQM 

Bellman et al. [45] suggested a practical and stronger method namely differential 

quadrature method (in short DQM) based on the integral quadrature idea. The fundamental 

formulae is below  

𝑑(𝑟)𝑓

𝑑𝑥(𝑟)
(𝑥𝑖) = ∑ 𝑤𝑖𝑗

(𝑟)𝑁
𝑗=1 𝑓(𝑥𝑗),   𝑖 = 1,2, … ,𝑁, 𝑟 = 1,2, … ,𝑁 − 1                                   (3) 

To obtain the weighting coefficients we need the r − th order derivative value of function f . 

For this purpose, we used as a test function modified cubic B-splines [57]. The advantages of the 

modification of the cubic B-splines do not create dummy points outside of the solution domain, 

so we do not need any additional equations. For detailed information on the derivation of modified 

cubic B-spline functions, see Ref. [57]. From Eq. (3) with value of 𝑟 = 1 and using modified 

cubic B-splines for the first nodal point x1 the following equation system is obtained 

[𝑀] [𝑊1
(1)
] = [𝐵1

(1)
]                                                                                                             (4) 

where 

  [𝑀] =

[
 
 
 
 
 
 
6 1
0 4 1

1 4 1
⋱ ⋱ ⋱

1 4 1
1 4 0

1 6 ]
 
 
 
 
 
 

,                                         

             [𝑊1
(1)
] = [𝑤1,1

(1)  𝑤1,2
(1)  𝑤1,3

(1)…   𝑤1,𝑁−1
(1)   𝑤1,𝑁

(1)  ]
𝑇

 

and 

           [𝐵1
(1)
] = [−6/ℎ   6/ℎ  0…    0  0 ]𝑇. 

Similarly, for the other nodal points inside the solution domain 𝑥𝑖,  (2 ≤ 𝑖 ≤ 𝑁 − 1), 
respectively,  

[𝑀] [𝑊𝑖
(1)
] = [𝐵𝑖

(1)
]                                                                                                            (5) 

  the following equation system is obtained, where 

         [𝑊𝑖
(1)
] = [𝑤𝑖,1

(1)  …  𝑤𝑖,𝑖−1
(1)    𝑤𝑖,𝑖

(1)   𝑤𝑖,𝑖+1
(1)  … 𝑤𝑖,𝑁

(1) ]
𝑇

 

and 

          [𝐵𝑖
(1)
] = [0 …   0 − 3/ℎ  0  3/ℎ   0…  0 ]𝑇 .  
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For the last nodal point 𝑥𝑁      

[𝑀] [𝑊𝑁
(1)
] = [𝐵𝑁

(1)
]                                                                                                            (6) 

the following equation system is obtained, where 

         [𝑊𝑁
(1)
] = [𝑤𝑁,1

(1)
   𝑤𝑁,2

(1)
…  𝑤𝑁,𝑁−2

(1)
   𝑤𝑁,𝑁−1

(1)
   𝑤𝑁,𝑁

(1)
 ]
𝑇

 

and 

          [𝐵𝑁
(1)
] = [0    0…   0 − 6/ℎ     6/ℎ    ]𝑇 .  

Thus, weighting coefficients 𝑤𝑖,𝑗
(1)

 which are related to the nodal points 𝑥𝑖,  (𝑖 = 1,2, … ,𝑁), 

are found quite easily by solving the system of Eqs. (4) − (6) with Thomas algorithm. The second 

order weighting coefficients are obtained by the Shu’s recurrence formula [59]. 

 

3 Application of the method 

  We have discretized the EW wave equation (2) given as 

𝑈𝑡 + 𝑈𝑈𝑥 − 𝜇𝑈𝑥𝑥𝑡 = 0. 

We have implemented the Crank-Nicolson technique. Firstly Eq. (2) is discretized as, 

𝑈𝑛+1−𝑈𝑛

∆𝑡
+
(𝑈𝑈𝑥)

𝑛+1+(𝑈𝑈𝑥)
𝑛

2
− 𝜇

𝑈𝑥𝑥
𝑛+1−𝑈𝑥𝑥

𝑛

∆𝑡
= 0 .                                                              (7) 

Eq. (7) is arranged as follows, 

2𝑈𝑛+1 + ∆𝑡(𝑈𝑈𝑥)
𝑛+1 − 2𝜇𝑈𝑥𝑥

𝑛+1 = 2𝑈𝑛 − ∆𝑡(𝑈𝑈𝑥)
𝑛 − 2𝜇𝑈𝑥𝑥

𝑛  .                              (8) 

Then, Rubin and Graves linearization technique [60] is used to linearize the nonlinear 

terms and then we have obtained 

2𝑈𝑛+1 + ∆𝑡(𝑈𝑛+1𝑈𝑥
𝑛 +𝑈𝑛𝑈𝑥

𝑛+1) − 2𝜇𝑈𝑥𝑥
𝑛+1 = 2𝑈𝑛 − 2𝜇𝑈𝑥𝑥

𝑛   .                               (9) 

Now, let us define some terms to be used in Eq. (9) as 

𝐴𝑖
𝑛 = ∑ 𝑤𝑖𝑗

(1)𝑈𝑗
𝑛 = 𝑈𝑥𝑖

𝑛 ,𝑁
𝑗=1      𝐵𝑖

𝑛 = ∑ 𝑤𝑖𝑗
(2)𝑈𝑗

𝑛 = 𝑈𝑥𝑥𝑖
𝑛 ,𝑁

𝑗=1  

𝑈𝑥𝑖
𝑛+1 = ∑ 𝑤𝑖𝑗

(1)𝑈𝑗
𝑛+1,𝑁

𝑗=1       𝑈𝑥𝑥𝑖
𝑛+1 = ∑ 𝑤𝑖𝑗

(2)𝑈𝑗
𝑛+1,𝑁

𝑗=1                                                  (10)  

where 𝐴𝑖
𝑛 and 𝐵𝑖

𝑛 are the 1𝑠𝑡 and 2𝑛𝑑 order derivative approximations of function 𝑈 at 

the 𝑛𝑡ℎ time level on points 𝑥𝑖, respectively. By the substitution of definition (10) in Eq. (9) and 

reorganizing for each nodal points as follows, we obtain 

[2 + ∆𝑡(𝐴𝑖
𝑛 + 𝑈𝑖

𝑛𝑤𝑖𝑖
(1)) − 2𝜇𝑤𝑖𝑖

(2)] 𝑈𝑖
𝑛+1 + [ ∑ (∆𝑡𝑈𝑖

𝑛𝑤𝑖𝑗
(1) − 2𝜇𝑤𝑖𝑗

(2))𝑈𝑗
𝑛+1

𝑁

𝑗=1,𝑖≠𝑗

] = 𝑃𝑖
𝑛 

(11) 
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where 

𝑃𝑖
𝑛 = 2𝑈𝑖

𝑛 − 2𝜇𝐵𝑖
𝑛 ,  for  𝑖 = 1(1)𝑁. 

The matrix form of the equation system is given below 

[
 
 
 
 
 
𝐿1,1 𝐿1,2 … 𝐿1,𝑁
𝐿2,1 𝐿2,2 … 𝐿2,𝑁
⋮ ⋮ ⋱ ⋮

𝐿𝑁−1,1 𝐿𝑁−1,2 … 𝐿𝑁−1,𝑁
𝐿𝑁,1 𝐿𝑁,2 … 𝐿𝑁,𝑁 ]

 
 
 
 
 

[
 
 
 
 
 
 
𝑈1
𝑛+1

𝑈2
𝑛+1

⋮

𝑈𝑁−1
𝑛+1

𝑈𝑁
𝑛+1]

 
 
 
 
 
 

=

[
 
 
 
 
 
𝑃1
𝑛

𝑃2
𝑛

⋮

𝑃𝑁−1
𝑛

𝑃𝑁
𝑛 ]
 
 
 
 
 

 .                                                     (12) 

Then, the boundary conditions have been applied to the system of Eqs. (12) and for 

obtaining a solvable system the first and last equations are eliminated. So, 

[
 
 
 
 
𝐿2,2 𝐿2,3 … 𝐿2,𝑁−1
𝐿3,2 𝐿3,3 … 𝐿3,𝑁−1
⋮ ⋮ ⋱ ⋮

𝐿𝑁−1,2 𝐿𝑁−1,3 … 𝐿𝑁−1,𝑁−1]
 
 
 
 

[
 
 
 
 
𝑈2
𝑛+1

𝑈3
𝑛+1

⋮

𝑈𝑁−1
𝑛+1]

 
 
 
 

=

[
 
 
 
 
 

𝑃2
𝑛 − 𝐿2,1𝑈1

𝑛+1 − 𝐿2,𝑁𝑈𝑁
𝑛+1

𝑃3
𝑛 − 𝐿3,1𝑈1

𝑛+1 − 𝐿3,𝑁𝑈𝑁
𝑛+1

⋮

𝑃𝑁−1
𝑛 − 𝐿𝑁−1,1𝑈1

𝑛+1 − 𝐿𝑁−1,𝑁𝑈𝑁
𝑛+1]

 
 
 
 
 

  (13)                              

is obtained. The systems can now be solved by Gauss elimination method. 

4 Numerical examples, results and comparisons 
 To check the performance of numerical method the error norms 𝐿2 and 𝐿∞ are used: 

 

𝐿2 = (ℎ∑ |𝑢𝑗 − 𝑈𝑗|
2𝑁

𝑗=1 )
1/2

,  𝐿∞ = max
1≤𝑗≤𝑁

|𝑢𝑗 − 𝑈𝑗|.                                                   (14) 

  

The three invariants [61] are calculated as below 

 

𝐼1 = ∫ 𝑈𝑑𝑥,      
∞

−∞
𝐼2 = ∫ (𝑈2 + 𝜇𝑈𝑥

2)𝑑𝑥,      
∞

−∞
𝐼3 = ∫ 𝑈3𝑑𝑥,      

∞

−∞
                                        (15) 

 

and relative changes of invariants are calculated as below 

 

𝐼𝑝
∗ =

𝐼𝑝
𝑓𝑖𝑛𝑎𝑙

−𝐼𝑝
𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝐼𝑝
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ,   𝑝 = 1,2,3.                                                                                       (16) 

 

The rate of convergence is computed by the formulae as below 

 

𝑅𝑂𝐶 ≅
ln(𝐸𝑟𝑟𝑜𝑟(𝑁1)/𝐸𝑟𝑟𝑜𝑟(𝑁2))

ln(𝑁1/𝑁2)
 . 

 

4.1 Motion of the single solitary wave 

The analytical solution of single solitary wave is given by Morrison et.al. [2] 

𝑈(𝑥, 𝑡) = 3𝑐 sech2[𝑘(𝑥 − 𝑥0 − 𝑐𝑡)],                                                                           (17) 
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where 𝑘 = √
1

4𝜇
  is the width of the solitary wave, 𝑐 is the velocity of the wave and 3𝑐 is the 

amplitude of the wave. 

The initial condition is obtained from Eq. (17) for the initial time 𝑡 = 0 as below 

𝑈(𝑥, 0) = 3𝑐 sech2[𝑘(𝑥 − 𝑥0)],                                                                                   (18) 

and the boundary conditions are taken as 𝑈(±∞) → 0. 

 The three invariants may be computed analytically as below [28] 

 𝐼1 =
6𝑐

𝑘
, 𝐼2 =

12𝑐2

𝑘
+
48𝑘𝑐2𝜇

5
, 𝐼3 =

144𝑐3

5𝑘
  . 

For the extensive survey of the solutions of the single solitary wave, four different velocity 

values are selected to see the performance of the present method. 

Firstly, for the high velocity we use 𝑐 = 1.0, 𝜇 = 1, 𝑥0 = 15, ∆𝑡 = 0.05  and 𝑁 = 1571  

at time domain [0, 40] at space interval 0 ≤ x ≤ 80. So, the three invariants obtained analytically 

by using invariant formulae given by Gardner et.al. [28] are I1 = 12.0, I2 = 28.8 and I3 = 57.6. 

Present numerical results are obtained with fixed parameters. The error norms L2 and L∞ and the 

three invariants are given at Table 1 with other existing results [13, 23, 28, 29, 32]. The fact that 

the present results are superior of all given results [13,23,28,29,32] may be seen at Table 1. The 

present invariants I1, I2 and I3 are almost constant and in compliance with analytic results. Relative 

change of invariants 𝐼1
∗,  𝐼2

∗  and 𝐼3
∗  at time t = 40 are −4.42×10−5,  −2.85×10−5 and −4.34×10−5 , 

respectively. Motion of the single solitary wave for the velocity 𝑐 = 1.0, during the simulation 

and maximum error between analytical and numerical results at time t = 40 are illustrated at 

Figure 1. Observation of the Figure 1 shows that the shape, amplitude and velocity of the single 

solitary wave preserved during the simulation and maximum error at both of the boundaries are 

zero. This is consistent with the solitary wave theory. The error norms and rate of the convergence 

related to the space are given at Table 2. By increasing the number of nodal points, the error 

values decreased and the rates of convergence increased. 

Secondly, for the decreasing values of the velocity we use use 𝑐 = 0.1, 𝜇 = 1, 𝑥0 =
10, ∆𝑡 = 0.05  and 𝑁 = 261   at time domain [0, 80] at space interval 0 ≤ x ≤ 30. So, the three 

invariants are obtained analytically by using invariant formulae given by Gardner et.al. [28] I1 = 

1.2, I2 = 0.288 and I3 = 0.0576. The present numerical results are obtained with fixed parameters 

and very less number of mesh points 𝑁 = 261  . Comparison of error norms L2 and L∞ and three 

invariants are given at Table 3. The present results are superior of all given results 

[12,13,17,21,22,24,25, 28,29,32–37] in the literature at Table 3. The three invariants I1, I2 and I3 

remain almost constant and in compliance with analytic results given in Table 3. Relative change 

of invariants 𝐼1
∗,  𝐼2

∗  and 𝐼3
∗  at time t = 80 are 2.92 × 10−5, −1.04 × 10−5 and −1.74 × 10−5 , 

respectively. Motion of the single solitary wave for the velocity 𝑐 = 0.1, during the simulation 

and maximum error between analytical and numerical results at time t = 80 are illustrated at 

Figure 2. Observation of the Figure 2 shows that the shape, amplitude and velocity of the single 

solitary wave are preserved during the simulation. The results obtained reflect the characteristics 

of solitary waves. The overview of Figure 1 with Figure 2 together shows that by decreasing the 

amplitudes of the wave the maximum error is decreasing, too. As can be seen from the graphs, 
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the smaller the amplitude value, the smaller the errors in terms of numerical calculation. 

Thirdly, for the decreasing values of the velocity we use 𝑐 = 0.03, 𝜇 = 1, 𝑥0 = 10, ∆𝑡 =
0.05  and 𝑁 = 165    at time domain [0, 80] at space interval 0 ≤ x ≤ 30. So, three invariants 

obtained analytically by using invariant formulae given by Gardner et.al. [28] I1 = 0.36, I2 = 

0.02592, and I3 = 0.001555. The present numerical results are obtained with fixed parameters and 

very less number of mesh points 𝑁 = 165. Comparison of error norms L2 and L∞ and three 

invariants are given at Table 4. The present results are superior than the given earlier works 

[13,17,24,26,29,30,32,34–37] at Table 4. The three lowest invariants I1, I2 and I3 are computed 

almost constant and in compliance with analytic results given in Table 4. Relative change of 

invariants 𝐼1
∗,  𝐼2

∗  and 𝐼3
∗  at time t = 80 are 3.33× 10−5, 0.00×10−6 and 0.00×10−6, respectively. 

Observation of the Figure 3 shows that the shape, amplitude and velocity of the single solitary 

wave that has small amplitude preserved during the simulation. Even if the amplitude values were 

varied, the results exactly reflected the characteristics of solitary waves. The overview of Figure 

3 with Figures 1− 2 together shows that by decreasing the amplitudes of the waves the maximum 

error is decreasing, too. 

Fourthly, for the very small value of the velocity we use 𝑐 = 0.01, 𝜇 = 1, 𝑥0 = 10, ∆𝑡 =

0.05  and 𝑁 = 190 over time domain [0, 80] over space interval 0 ≤ x ≤ 30. So, three invariants 

obtained analytically by using invariant formulae given by Gardner et.al. [28] I1 = 0.12, I2 = 

0.00288, and I3 = 0.000058. The present numerical results are obtained with fixed parameters and 

very less number of mesh points 𝑁 = 190. The error norms L2 and L∞ are given at Table 5. The 

present error norms are superior of the given earlier works [13, 16, 26, 32, 34, 35] except the error 

norm L2 of the Galerkin method [16] at final time of simulation t = 80. We must say that the 

present method used fixed parameters and very less number of mesh points 𝑁 = 190 than all of 

the earlier works [13, 16, 26, 32, 34, 35] and also Galerkin method [16] N = 600. The three 

invariants I1, I2 and I3 are almost constant and in compliance with analytic results given in Table 

5. Relative change of invariants 𝐼1
∗,  𝐼2

∗  and 𝐼3
∗  at time t = 80 are 0.00 × 10−6, 0.00 × 10−6 and 0.00 

× 10−6, respectively. Observation of the Figure 4 shows that the shape, amplitude and velocity of 

the single solitary wave having small amplitude are preserved during the simulation. The 

overview of Figure 4 with Figures 1− 3 together show that by decreasing the amplitudes of the 

waves the maximum error is decreasing, too. 

4.2 Boundary-forcing 

The boundary-forced solution of the EW equation is firstly obtained in the present study. 

For this application the left boundary condition is chosen as follows 

𝑈(𝑎, 𝑡) =

{
 
 

 
 𝑈0

𝑡

𝜏
,                         0 ≤ 𝑡 ≤ 𝜏  

𝑈0,                    𝜏 ≤ 𝑡 ≤ 𝑡0 − 𝜏 

𝑈0
𝑡0−𝑡

𝜏
,          𝑡0 − 𝜏 ≤ 𝑡 ≤ 𝑡0

0,                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                     (19) 

Here, 𝑈0 is represent the impulse value and 𝜏 is represent the period of the impulse which 

is grows linearly from 0 to 𝑈0. The impulse is effective enough to generate solitary waves at    

𝑥 = 0, which grow at a rate determined by the magnitude of the forced boundary value. So, 

problem is also known as wave maker. The generation of the waves is stopped until the forcing 

conditions lose. Various values of the impulse 𝑈0 is chosen to observe the behavior of the waves 
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clearly. The period is fixed as 𝜏 = 0.1 with total period of t0 = 30 for all applications. All of the 

applications are simulated over the region 0 ≤ x ≤ 300 with ∆𝑡 = 0.1 and h = 0.1. 

Firstly, a small value of impulse 𝑈0 = 1 is chosen. At the time close to t = 50 two great 

waves and behind them one small wave is occurred. At the end of the simulation, the generated 

waves are seen clearly. Simulations of the first application is given in Figure 5. 

Secondly, a greater impulse value is chosen as 𝑈0 = 2. The simulations plotted and given 

in Figure 6. The waves occur step by step and five different waves are occurred at the time close 

to t = 50. At the end of the simulation five separated waves are seen clearly. 

Lastly, the greatest impulse value is chosen as 𝑈0 = 3. The simulations are plotted and 

given in Figure 7. The generation of the waves continue until to time t = 50. Seven different 

waves are generated. 

The three invariants are computed for all applications and reported in Table 6. The invariant 

values are observed almost constant after the time t = 50. This means that generation of the waves 

are finished. The graph of the development of the conserved quantities is given in Figure 8. 

4.3 The wave undulation 

The wave undulation has the initial condition [28] as follow 

 𝑈(𝑥, 0) =
𝑈0

2
[1 − tanh (

𝑥−𝑥𝑐

𝑑
)]. 

The height of the water level from equilibrium is represented by 𝑈(𝑥, 0) and 𝑥𝑐 denotes 

the center of the magnitude 𝑈0. The steepness of the change is measured by 𝑑. The left boundary 

condition is given as 𝑈 → 𝑈0 when 𝑥 → −∞ and 𝑈 → 0 when 𝑥 → ∞. The conservation 

quantities are increased linearly and their rates can be calculated as [28] 

 𝑀1 =
𝑑

𝑑𝑡
𝐼1 =

𝑑

𝑑𝑡
∫ 𝑢𝑑𝑥
∞

−∞
= 0.5(𝑈0)

2, 

 𝑀2 =
𝑑

𝑑𝑡
𝐼2 =

𝑑

𝑑𝑡
∫ (𝑢2 + 𝜇(𝑢𝑥)

2)𝑑𝑥
∞

−∞
=

2(𝑈0)
3

3
, 

 𝑀3 =
𝑑

𝑑𝑡
𝐼3 =

𝑑

𝑑𝑡
∫ 𝑢3𝑑𝑥
∞

−∞
=

3(𝑈0)
4

4
 . 

The chosen constant parameters are 𝜇 = 1/6, 𝑈0 = 0.1, the computed results are obtained 

as M1 = 0.005000, M2 = 0.000667, M3 = 0.000075. The growth rates for invariants are calculated 

numerically by the following formulae 

𝑀𝑗 =
𝐼𝑗
𝑓𝑖𝑛𝑎𝑙

−𝐼𝑗
𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒
,   𝑗 = 1,2,3.                                                                                         (20) 

Numerical simulations are obtained over the domain −20 ≤ x ≤ 50 for various values of the 

steepness 𝑑 = 1, 𝑑 = 2, 𝑑 = 5, 𝑑 = 10. The numerical values are obtained from formulae (20) 

for 𝑑 = 1 as 𝑀1 = 0.00499998, 𝑀2 = 0.00066678, 𝑀3 = 0.0000750425. Numerical results are in 

good agreements with analytical ones. Numerical results for all of the values of the steepness are 

collected and given in Table 7. The three invariants, their locations and the amplitudes have small 
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differences. To be able to observe the effect of the steepness the graphs are given separately in 

Figures 9−12. 

When steepness value is increased the undulation of the wave decreased and by the 

decreasing of the steepness value the propagation of the waves are getting faster. 

5 Conclusion 

The equal width wave equation has been solved numerically with high accuracy by using 

very less number of mesh points. Solitary wave, boundary-forcing and wave undulation solutions 

of the nonlinear EW equation obtained successfully. The boundary-forcing solutions of the EW 

equation is firstly obtained and introduced in the present study. Two efficient numerical methods 

are used together and better results are obtained by using the same parameters with earlier 

methods in the literature. To observe the behaviour of the waves, all test problems for all different 

values of parameters are illustrated with details. This stronger joined method may be useful for 

the studies planned in the future. On the other hand, in this study, solutions of equations with a 

single nonlinear term are investigated. The effectiveness of the method for more complex 

problems can be tested in future studies. 
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Figure and Table captions 

Figure 1: Motion of single solitary wave and maximum error: 𝑐 = 1.0 

Figure 2: Motion of single solitary wave and maximum error: 𝑐 = 0.1 

Figure 3: Motion of single solitary wave and maximum error: 𝑐 = 0.03 

Figure 4: Motion of single solitary wave and maximum error: 𝑐 = 0.01 

Figure 5: The boundary-forcing: 𝑈0 = 1 

Figure 6: The boundary-forcing: 𝑈0 = 2 

Figure 7: The boundary-forcing: 𝑈0 = 3 

Figure 8: The invariants for boundary-forcing: 𝑈0 = 1, 𝑈0 = 2, 𝑈0 = 3 

Figure 9: The wave undulation: 𝑑 = 1 

Figure 10: The wave undulation: 𝑑 = 2 

Figure 11: The wave undulation: 𝑑 = 5 

Figure 12: The wave undulation: 𝑑 = 10 

Table 1: Single solitary wave: 𝑐 = 1.0, 𝜇 = 1, 0 ≤ 𝑥 ≤ 80. 

Table 2: Error norms and rates of convergence at 𝑡 = 40 ∶ 𝑐 = 1.0, 𝜇 = 1, 0 ≤ 𝑥 ≤ 80. 

Table 3: Single solitary wave: 𝑐 = 0.1, 𝜇 = 1, 0 ≤ 𝑥 ≤ 30. 

Table 4: Single solitary wave: 𝑐 = 0.03, 𝜇 = 1, 0 ≤ 𝑥 ≤ 30. 

Table 5: Single solitary wave: 𝑐 = 0.01, 𝜇 = 1, 0 ≤ 𝑥 ≤ 30. 

Table 6: The three invariants for boundary-forcing: 𝑈0 = 1, 𝑈0 = 2, 𝑈0 = 3 

Table 7: The three invariants, location and amplitude of the leading undulation: ∆𝑡 = 0.2, 

ℎ = 0.2. 
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Figure 1: Motion of single solitary wave and maximum error: 𝑐 = 1.0 
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Figure 2: Motion of single solitary wave and maximum error: 𝑐 = 0.1 
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Figure 3: Motion of single solitary wave and maximum error: 𝑐 = 0.03 

 



18  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Motion of single solitary wave and maximum error: 𝑐 = 0.01 
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Figure 5: The boundary-forcing: 𝑈0 = 1 
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Figure 6: The boundary-forcing: 𝑈0 = 2 
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Figure 7: The boundary-forcing: 𝑈0 = 3 
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Figure 8: The invariants for boundary-forcing: 𝑈0 = 1, 𝑈0 = 2, 𝑈0 = 3 
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Figure 9: The wave undulation: 𝑑 = 1 
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Figure 10: The wave undulation: 𝑑 = 2 
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Figure 11: The wave undulation: 𝑑 = 5 
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Figure 12: The wave undulation: 𝑑 = 10 
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Table 1: Single solitary wave: 𝑐 = 1.0, 𝜇 = 1, 0 ≤ 𝑥 ≤ 80. 
Method N Δt t L₂×10³ L∞×10³ I₁ I₂ I₃ 

DQM(Pres.) 1571 0.05 0 0.000 0.000 11.99999 28.79999 57.59996 

   10 1.313 0.758 11.99998 28.80124 57.60366 

   20 2.406 1.270 11.99947 28.79881 57.59649 

   30 2.998 1.669 11.99987 28.80158 57.60478 

   40 3.793 2.001 11.99946 28.79917 57.59746 

PG [29] 1600 0.05 0 0.000 0.000 11.9994 28.8 57.6 

   10 4.785 2.937 12.0 28.8 57.6 

   20 7.211 4.287 12.0 28.8 57.6 

   30 9.733 5.649 12.0 28.8 57.6 

   40 12.294 7.016 12.0 28.8 57.6 

Coll. [23] 2000 0.04 40 6.651 3.903 12.00137 28.80644 57.61935 

 1600 0.05 40 17.189 9.359 11.99997 28.79944 57.59833 

 1200 0.05 40 16.136 9.013 12.00021 28.80143 57.60430 

 800 0.1 40 63.380 34.677 12.00023 28.80085 57.60250 

 400 0.1 40 95.670 53.915 12.00010 28.80053 57.60130 

 800 0.2 40 222.500 119.881 12.00050 28.80165 57.60463 

 400 0.2 40 252.869 138.091 12.00060 28.80230 57.60610 

Gal. [13] 2000 0.04 40 7.514 - 11.9935 28.8177 57.6549 

 1600 0.05 40 37.365 - 11.9977 28.7842 57.5548 

 800 0.1 40 68.558 - 12.0079 28.8247 57.6826 

 400 0.2 40 218.173 - 12.0474 28.9512 58.0881 

PG [28] 2000 0.04 40 24.6 - 12.0157 28.8660 57.7996 

 1600 0.05 40 5.4 - 12.0119 28.8416 57.7270 

 1200 0.05 40 33.0 - 11.9972 28.7884 57.5692 

 800 0.1 40 91.7 - 12.0003 28.7976 57.6014 

 400 0.1 40 123.8 - 12.0001 28.7895 57.6018 

 800 0.2 40 339.0 - 11.9999 28.7965 57.5981 

 400 0.2 40 367.2 - 12.0001 28.7891 57.6011 

MOL [32] 2000 0.04 40 15.4 - 12.0000 28.7995 57.6 

 1600 0.05 40 24.1 - 12.0000 28.7993 57.6 

 800 0.1 40 96.5 - 12.0000 28.7971 57.5998 

 400 0.2 40 386.2 - 12.0000 28.7868 57.5944 

Analytic      12.00000 28.80000 57.60000 

 

 

Table 2: Error norms and rates of convergence at 𝑡 = 40 ∶ 𝑐 = 1.0, 𝜇 = 1, 0 ≤ 𝑥 ≤ 80. 

 
Method N L₂×10³ ROC L∞×10³ ROC 

Present 241 26.524 - 13.997 - 

 

481 20.089 0.402 10.610 0.401 

 

981 16.884 0.243 8.922 0.243 

 

1291 12.535 1.084 6.743 1.020 

 

1571 3.793 6.089 2.001 6.189 
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Table 3: Single solitary wave: 𝑐 = 0.1, 𝜇 = 1, 0 ≤ 𝑥 ≤ 30. 

 
Method N Δt t L₂×10³ L∞×10³ I₁ I₂ I₃ 

DQM(Pres.) 261 0.05 0 0.000000 0.000000 1.199948 0.288000 0.057600 

   10 0.015089 0.020041 1.199960 0.287999 0.057600 

   20 0.006261 0.007373 1.199980 0.287999 0.057600 

   30 0.004022 0.003504 1.199989 0.288000 0.057600 

   40 0.005138 0.003361 1.199989 0.287996 0.057599 

   50 0.005324 0.003527 1.199991 0.287996 0.057599 

   60 0.006455 0.004052 1.199993 0.287996 0.057599 

   70 0.006413 0.003664 1.199994 0.287998 0.057600 

   80 0.008143 0.006568 1.199983 0.287997 0.057599 

Gal. [12] 1000 0.05 80 0.040 0.024 1.19998 0.28800 0.05759 

Gal. [13] 1000 0.05 80 24.697 16.425 1.23387 0.29915 0.06097 

Coll. [17] 1000 0.05 80 0.03962 0.05446 1.20004 0.28800 0.05760 

Coll. [21] 1000 0.05 80 0.062 0.053 1.200047 0.288000 0.057600 

Coll. [22] 1000 0.05 80 0.0490 0.0336 1.199994 0.28800 0.05756 

Coll. [24]p=1 1000 0.05 80 0.089 0.054 1.1999 0.2878 0.0576 

Coll. [24] 

p=0.0000340714 

1000 0.05 80 0.017 0.0073 1.1999 0.2880 0.0576 

Coll. [24]p=1 2000 0.05 80 1.9 1.2 1.1999 0.2880 0.0576 

Coll. [24] 

p=0.0000039997 

2000 0.05 80 0.59 0.26 1.2000 0.2880 0.0576 

Coll. [25]  0.05 80 0.022685 0.012647 1.19999 0.28799 0.05759 

PG [28] 1000 0.05 80 3.849 2.646 1.1910 0.2855 0.05582 

PG [29] 1000 0.05 80 0.038815 0.051514 1.20004 0.288 0.0576 

Lum.Gal. [35] 1000 0.05 80 0.029 0.021 1.19995 0.28798 0.05759 

FIFDM [36] 1000 0.05 80 0.12476 0.07254 1.20004 0.28800 0.05760 

RBF-PS. [33] RK4(MQ) 200 0.05 80 0.01306 0.007373 1.19399 0.28656 0.05731 

RBF-PS. [33] RK4(∅𝟐,𝟑) 200 0.05 80 0.02301 0.007373 1.19399 0.28656 0.05731 

RBF-PS. [33] 

ode113(MQ) 

200 0.05 80 0.05343 0.01363 1.19399 0.28656 0.05731 

RBF-PS. [33] 

ode113(∅𝟐,𝟑) 

200 0.05 80 0.04813 0.01362 1.19399 0.28656 0.05731 

FDM. [34] 250 0.05 80 1.84643 1.12832 - - - 

 500 0.05 80 0.46614 0.28405 - - - 

 1000 0.05 80 0.12476 0.07254 - - - 

 2000 0.05 80 0.05031 0.05365 - - - 

MOL. [32] 1000 0.05 80 0.183785 0.095878 1.20004 0.287997 0.0576 

OS. [37] A-B 600 0.05 80 0.057386 0.052850 1.200041 0.288000 0.057600 

OS. [37] B-A 600 0.05 80 0.057386 0.052850 1.200041 0.288000 0.057600 

OS. [37] A-B-A 600 0.05 80 0.057386 0.052850 1.200041 0.288000 0.057600 

OS. [37] B-A-B 600 0.05 80 0.054761 0.052850 1.200041 0.288000 0.057600 

Analytic      1.200000 0.288000 0.057600 
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Table 4: Single solitary wave: 𝑐 = 0.03, 𝜇 = 1, 0 ≤ 𝑥 ≤ 30. 

 
Method N Δt t L₂×10³ L∞×10³ I₁ I₂ I₃ 

         

DQM(Pres.) 165 0.05 0 0.000000 0.000000 0.359985 0.025920 0.001555 

   10 0.009388 0.012107 0.359977 0.025920 0.001555 

   20 0.006973 0.008969 0.359983 0.025920 0.001555 

   30 0.005183 0.006645 0.359986 0.025920 0.001555 

   40 0.003948 0.004923 0.359991 0.025920 0.001555 

   50 0.003081 0.003647 0.359995 0.025920 0.001555 

   60 0.002315 0.002702 0.359996 0.025920 0.001555 

   70 0.001721 0.002001 0.359996 0.025920 0.001555 

   80 0.001433 0.001483 0.359997 0.025920 0.001555 

Gal. [13] 600 0.05 0 0.004 0.016 0.35998 0.02592 0.00156 

   10 0.285 0.152 0.36081 0.02600 0.00156 

   20 0.579 0.329 0.36164 0.02608 0.00157 

   30 0.884 0.529 0.36247 0.02616 0.00158 

   40 1.204 0.750 0.36330 0.02625 0.00159 

   50 1.541 0.993 0.36413 0.02633 0.00159 

   60 1.898 1.255 0.36497 0.02641 0.00160 

   70 2.278 1.536 0.36581 0.02649 0.00161 

   80 2.683 1.836 0.36665 0.02658 0.00162 

MOL[32] 600 0.05 80 0.0471519 0.0247077 0.360013 0.0259194 0.0015552 

OS [37] B-A-B 600 0.05 80 0.021446 0.014528 0.360014 0.025920 0.001555 

Coll.[24]p=1 1000 0.05 80 0.014 0.015 0.36 0.0259 0.0016 

Coll.[24]p=0.0000339263 1000 0.05 80 0.0039 0.0017 0.36 0.0259 0.0016 

Coll.[24]p=1 2000 0.05 80 0.27 0.20 0.36 0.0259 0.0016 

Coll.[24]p=0.0000010587 2000 0.05 80 0.067 0.025 0.36 0.0259 0.0016 

Coll. [17] 2000 0.05 80 0.01064 0.01485 0.36001 0.02592 0.00156 

PG [29] 600 0.05 80 0.010249 0.014128 0.360013 0.02592 0.0015552 

FDM. [34] 600 0.05 80 0.0436 0.0309 0.36001 0.02592 0.00156 

Lum.Gal. [35] 600 0.05 80 0.013 0.007 0.36000 0.02592 0.00156 

FIFDM[36] 600 0.05 80 0.04360 0.03095 0.36001 0.02592 0.00156 

LS[26] 0≤x≤20 200 0.05 80 0.22 0.16 0.3593 0.0259 0.00155 

RBFC [30] MQ 200 0.5 80 0.03566 0.01918 0.359971 0.025921 0.001555 

RBFC [30] G 200 0.5 80 0.00401 0.00151 0.360016 0.025921 0.001555 

RBFC [30] IQ 200 0.5 80 0.06510 0.07056 0.359976 0.025920 0.001555 

RBFC [30] IMQ 200 0.5 80 0.18717 0.16896 0.360385 0.025920 0.001555 

Analytic      0.360000 0.025920 0.001555 
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Table 5: Single solitary wave: 𝑐 = 0.01, 𝜇 = 1, 0 ≤ 𝑥 ≤ 30. 

 
Method N Δt t L₂×10³ L∞×10³ I₁ I₂ I₃ 

DQM(Pres.) 190 0.05 0 0.000000 0.000000 0.119995 0.002880 0.000058 

   10 0.003775 0.004929 0.119990 0.002880 0.000058 

   20 0.003412 0.004460 0.119991 0.002880 0.000058 

   30 0.003097 0.004036 0.119992 0.002880 0.000058 

   40 0.002796 0.003652 0.119992 0.002880 0.000058 

   50 0.002534 0.003304 0.119993 0.002880 0.000058 

   60 0.002297 0.002990 0.119994 0.002880 0.000058 

   70 0.002076 0.002705 0.119994 0.002880 0.000058 

   80 0.001889 0.002448 0.119995 0.002880 0.000058 

Gal. [13] 600 0.05 0 0.001 0.005 0.11999 0.00288 0.000058 

   10 0.039 0.030 0.12009 0.00288 0.000058 

   20 0.083 0.061 0.12021 0.00289 0.000058 

   30 0.130 0.091 0.12033 0.00289 0.000058 

   40 0.174 0.119 0.12045 0.00290 0.000058 

   50 0.215 0.144 0.12056 0.00290 0.000058 

   60 0.254 0.167 0.12067 0.00291 0.000058 

   70 0.292 0.188 0.12078 0.00291 0.000058 

   80 0.330 0.206 0.12088 0.00291 0.000059 

MOL. [32] 600 0.05 80 0.005536 0.002853 0.120000 0.00287993 0.0000576 

FDM. [34] 600 0.05 80 0.0054 0.0036 0.12000 0.00288 0.00006 

Lum.Gal.[35] 600 0.05 80 0.003 0.002 0.12000 0.00288 0.000058 

Gal. [16] 600 0.05 80 0.001757 0.002448 0.12000 0.00288 0.000058 

LS[26] 0≤x≤20 200 0.1 80 0.0177 0.0127 0.1200 0.00288 0.000058 

Analytic      0.120000 0.002880 0.000058 

 

Table 6: The three invariants for boundary-forcing: 𝑈0 = 1, 𝑈0 = 2, 𝑈0 = 3 

 

 𝑼𝟎 = 𝟏 𝑼𝟎 = 𝟐 𝑼𝟎 = 𝟑 

t I₁ I₂ I₃ I₁ I₂ I₃ I₁ I₂ I₃ 

10 5.15014 5.58966 5.56139 20.00252 48.03358 103.8709 45.7195 173.2326 580.634 

20 10.04755 12.06387 13.03831 40.77405 104.72660 236.4028 90.0124 349.9052 1185.730 

30 13.67962 17.79670 19.47428 56.76358 149.82370 333.5779 130.0428 518.6323 1736.460 

40 14.02851 17.66647 19.53212 58.17610 148.63920 334.3503 132.5307 515.4232 1742.136 

50 14.12945 17.64571 19.53544 58.25787 148.63780 334.3793 132.5353 515.4432 1742.433 

60 14.19259 17.64000 19.53659 58.26126 148.63720 334.3772 132.5386 515.4442 1742.473 

70 14.22699 17.63861 19.53675 58.26175 148.63520 334.3619 132.5415 515.4479 1742.531 

80 14.24390 17.63826 19.53655 58.26214 148.63730 334.3849 132.5442 515.4539 1742.634 

90 14.25181 17.63812 19.53623 58.26252 148.63680 334.3820 132.5466 515.4496 1742.560 

100 14.25541 17.63806 19.53592 58.26282 148.63710 334.3831 132.5488 515.4499 1742.571 

110 14.25705 17.63800 19.53567 58.26313 148.63840 334.3971 132.5506 515.4500 1742.581 

120 14.25781 17.63799 19.53554 58.26342 148.63780 334.3920 132.5524 515.4542 1742.626 

130 14.25816 17.63801 19.53554 58.26368 148.63700 334.3807 132.5538 515.4551 1742.646 

140 14.25834 17.63804 19.53564 58.26393 148.63750 334.3889 132.5552 515.4460 1742.505 

150 14.25843 17.63810 19.53587 58.26418 148.63960 334.4076 132.5564 515.4534 1742.625 
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Table 7: The three invariants, location and amplitude of the leading undulation: ∆𝑡 = 0.2, 

ℎ = 0.2. 
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d t I₁ I₂ I₃ 𝒙 U 

1 0 2.009999 0.196555 0.019350 - - 

 200 3.010007 0.329909 0.034358 9.6 0.17748 

 400 4.010017 0.463265 0.049367 21.6 0.18114 

 600 5.010021 0.596621 0.064375 25.6 0.17485 

 800 6.009983 0.729979 0.079384 41.6 0.17976 

2 0 2.010000 0.191278 0.018600 - - 

 200 3.010007 0.324627 0.033606 9.4 0.17607 

 400 4.010014 0.457983 0.048615 21.4 0.18177 

 600 5.010022 0.591340 0.063624 25.4 0.17261 

 800 6.010003 0.724696 0.078633 41.2 0.18153 

5 0 2.010080 0.176127 0.016352 - - 

 200 3.010088 0.309468 0.031355 8.8 0.16054 

 400 4.010093 0.442822 0.046363 20.4 0.17936 

 600 5.010102 0.576179 0.061372 32.6 0.18013 

 800 6.010105 0.709535 0.076381 44.8 0.18280 

10 0 2.018873 0.152827 0.012865 - - 

 200 3.018983 0.286180 0.027867 7.8 0.09274 

 400 4.018984 0.419525 0.042872 19.2 0.16704 

 600 5.018990 0.552880 0.057880 31.0 0.17951 

 800 6.018996 0.686235 0.072889 43.2 0.18074 


