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Abstract 

This paper introduces a novel approach for predicting magnetorheological (MR) valve pressure drop using 

deep neural networks. Rather than regressing the pressure drop directly, the proposed methodology predicts 

magnetic flux densities across different valve zones and then uses these predictions to compute the MR 

fluid's yield stress and the valve's pressure drop. The proposed approach can be further deployed for 

optimization purposes and provides insight into the magnetic field distribution within the MR valve as a 

function of design parameters. The approach leverages finite element simulations encompassing 125 

variations of geometric parameters (gap sizes) and control parameters (electrical currents). A multilayer 

neural network architecture is tuned by testing 72 configurations of activation functions, numbers of hidden 

nodes, and layers, with model selection based on mean squared error and 𝑅2. The final model demonstrates 

high fidelity with 𝑅2 more than 0.98 for both training and testing. By capturing how magnetic flux density 

varies as a function of design and control parameters, the proposed framework facilitates efficient 

optimization and design of MR valves without exhaustive simulation. These results underscore the method's 

ability to capture the complex dynamics governing MR valve pressure drop and provide valuable insights 

for valve sizing and performance prediction. 

Keywords: design, deep neural networks, semi-active devices, magnetorheological valves, pressure drop, 

magnetorheological fluids 
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1 Introduction 

Magnetorheological (MR) fluids, serving as smart materials, exhibit controllable rheological properties 

when subjected to magnetic field stimuli. The evolution of these materials has matured with their 

widespread application in commercialized automotive MR dampers. It extends to diverse fields such as 

bridges [1], buildings [2], transportation [3], and medical devices [4], primarily in the form of MR dampers. 

The damper's main function lies in controlling energy dissipation, a task usually facilitated by the MR valve 

part [5]. This valve operates by creating obstructions and is controlled by exposure to magnetic fields. The 

conventional type of MR valve, allowing fluid to follow a simple path, has inherent limitations in 

controllability and damping force magnitude range. Consequently, various efforts have emerged to broaden 

the control range and achieve higher damping force magnitude. 

Various methods have been proposed to address these challenges. One approach involves altering the fluid 

path, introducing turns and twists to fit compact spaces while generating higher drop pressure with limited 

space. The studies include a simple combination of the annular and radial paths [6]. A more complex 

pattern, namely the meandering flow path type, is proposed in the previous literature [7]. Further 

modification is conducted by Zhu et al. [8] by developing a multistage concept. Another effort focuses on 

enhancing magnetic flux density by employing a serpentine magnetic flux path. The magnetic field is driven 

to go through several turns while keeping a relatively high density, namely serpentine [9]. Disk and helix 

flow have recently been utilized to obtain more effective exposure to magnetic field density areas with 

relatively easier modification than the previous approaches [10]. However, these methods share a common 

trait—the need to tune complex parameters to obtain optimal valve performance. Traditional parameter 

tuning methods involve trial and error or systematic observation, which can be time-consuming. Meta-

heuristic methods like genetic algorithms or particle swarm optimization offer automatic alternatives for 

parameter tuning [11]. The cost function needs to be carefully defined, consisting of models that can capture 

the correlation between the valve dimension and the pressure drop. Total pressure drop for MR devices is 

a combination of the drops at various paths affected directly by magnetic flux density distributions. 

Meanwhile, the distributions are affected by various aspects, such as the coil, materials, and valve 

dimension. Hence, the correlation between the valve dimension and pressure drop is highly nonlinear, as 

magnetic flux density is difficult to predict.  

Several ways exist in the literature for predicting magnetic flux densities along the flow path as a function 

of parameters. The first method directly includes the magnetic simulation software in the optimization loop, 

providing a detailed but time-consuming process [12]. Another method is simple linear regression with 

ANOVA to check the influence [13]. The interpolation using response surface methodology or multilinear 

regression can also be conducted [14]. The limitations of the methods are the limited range and low accuracy 
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for complex correlations, such as including numerous design parameters [8] or the time response 

consideration [15]. The more advanced modeling methods, such as machine learning, can be alternative 

solutions. The method can be considered a physic-informed-machine learning approach by including the 

information on the design parameter or geometric information toward the model [16].  

Machine learning approaches are available in the literature, including artificial neural networks (ANNs) 

[17], extreme learning machines (ELMs) [18], support vector regressions (SVRs) [19], and decision trees 

[20]. The models provide more accurate predictions and can accommodate more complex systems with 

more inputs. Various configurations are available depending on the complexity, from simple to deep neural 

networks (DNN). DNN has several advantages compared to classic machine learning methods, such as 

higher accuracy and the capability to learn complex behavior. Due to the advantages, the technique can be 

combined with various methods, such as reinforcement learning [21] and fuzzy logic algorithms [22]. It has 

been combined with multiple suspension models, including spring and hydraulic models, to predict the 

damper force [23]. In another damper device, Hu et al. [24] proposed a DNN application for predicting the 

hysteresis as a replacement for the Bouc-Wen model as a function of geometrical parameters. However, the 

existing works that employed DNN for predicting magnetic flux densities for an MR valve can be 

considered rare.  

Therefore, this work proposed an approach to predict magnetic flux densities using DNN. The article 

encompasses a detailed methodology, data acquisition procedures, and descriptions of simulation results, 

comparing drop pressure and magnetic flux density with experimental and simulated data. Then, the 

performance of various machine learning methods is systematically compared and discussed. 

2 Methodology 

2.1 Proposed Platforms 
Figure 1 outlines the sequential steps in building the proposed models, starting with the training process. In 

the training process, the model is utilized to predict magnetic flux densities, which are subsequently 

employed to forecast pressure drop using steady-state equations. Defining the input and output parameters 

of the deep learning-based feedforward neural networks requires a comprehensive understanding of the 

general structure of the MR valve. Deep learning, a subset of machine learning, utilizes artificial neural 

networks with multiple layers (deep architectures) to automatically extract features from input data, 

enabling highly accurate predictions. This study employs a relatively complex MR valve structure as a case 

study. This valve type with a meandering flow path has an advantage in compactness and peak drop 

pressure. Several parameters corresponding to the kind of paths need to be tuned, including the orifice, 

annular, and radial at the outer and inner part of the valve, as shown in Figure 2. Figure 3 provides an 
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overview of the input and output architecture of the proposed neural networks. Inputs include dimensions 

and electrical current, while outputs encompass magnetic flux densities across various regions. For 

predicting magnetic flux density, inputs are gap sizes and current.  

The proposed methods can be deployed for optimization in the future. The optimization process is based 

on pressure drops and control ranges influenced by magnetic fields. Magnetic fields are influenced by the 

designs or topologies and given electrical currents to the coil. The design or topologies are mainly affected 

by the paths. The paths consist of radial, annular, and orifice paths. Radial and annular affect the pressure 

drops, while the orifice is not too significant, as discussed in the previous studies [25]. One of the design 

parameters is annular and radial gaps. The correlation between the minimum and maximum values of 

pressure drops and electrical currents affects the control ranges. In other words, the gaps represent the 

design parameters, while the electrical currents represent the controllability. 

 

2.2 Machine Learning Methods 

The artificial neural network modeling utilizes a feedforward neural network architecture and various 

hyperparameter configurations that can be observed in Table 1. Mean Squared Error (MSE) is chosen as 

the cost function as the parameter for determining the number of hidden layers and neurons [23]. Increasing 

the number of hidden layers can enhance the accuracy performance of the artificial neural network at a 

certain point. However, excessive hidden layers can make the network difficult to train, leading to potential 

overfitting [26]. Commonly used activation functions include ReLU, sigmoid, or tanh, with the typical 

range for the number of neurons in the hidden layer being 10 to 100. Adam's method is selected as the 

optimization algorithm for its adaptive learning rate capabilities and popularity in various optimization 

problems within neural networks [27]. The learning rate is a critical hyperparameter, typically adjusted to 

a value between 1 and 10-6 [28]. The batch size represents a fraction of the training data used to estimate 

the gradient during weight updates. A smaller batch size accelerates the training process, while a larger one 

provides a more accurate gradient estimate. This work utilizes 32 batch sizes. The selected variations for 

learning rate and batch size in this artificial neural network modeling range from 10-1 to 10-5 and from 1 to 

32, respectively. 
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The dataset is divided into training, validation, and testing data sets with a 75%, 15%, and 15% ratio, 

respectively. The input data set, defined as , undergoes normalization using Eq. (1). The normalized input, 

denoted as 𝑥𝑛𝑜𝑟𝑚, is a function of the minimum value (𝑥𝑚𝑖𝑛 ) and the maximum value (𝑥𝑚𝑎𝑥) [29]. 

𝑥𝑛𝑜𝑟𝑚 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
  (1) 

The training process is conducted over 500 epochs. The accuracy of the modeling is measured using the R-

squared (𝑅2), calculated according to Eq. (2). Here, 𝑦𝑒 represents the target data, 𝑦𝑚𝑒𝑎𝑛 is the mean data, 

and 𝑦𝑝 denotes the predicted data sequentially. 𝐾 stands for the number of data sets [29]. 

𝑅2 = 1 −
∑ (𝑦𝑝−𝑦𝑒)

2𝐾
ℎ=1

∑ (𝑦𝑝−𝑦𝑚𝑒𝑎𝑛)
2𝐾

ℎ=1

 (2) 

The method employed to determine the optimal hyperparameters for this artificial neural network is grid 

search cross-validation. Grid search is an approach to hyperparameter optimization that systematically 

builds and evaluates models for each predefined combination of hyperparameters in a grid. Meanwhile, 

cross-validation is used to resample data for evaluating machine learning models [30]. Figure 4 illustrates 

the grid search cross-validation process. Initially, the dataset is randomly divided and grouped according to 

fold parameters, where each fold serves as testing data, and the remaining folds constitute the training data. 

Evaluation scores are recorded for each split and averaged to review the performance of the artificial neural 

network modeling. This process is repeated until the 𝑛-th hyperparameter combination and the combination 

yielding the best performance is selected. In the grid search cross-validation for this artificial neural network 

modeling, the folds are divided into three parts, and the accuracy performance of the neural network is 

assessed based on the Mean Squared Error (MSE) values. 

2.3 Data Preparation and Finite Element Method Magnetics 

The training process, depicted in Figure 1, relies on Finite Element Methods Magnetics (FEMM) modeling 

validated against experimental data. The training phase of the artificial neural network employs multilayer 

feedforward neural networks, enhancing the model's ability to capture the intricate relationships within the 

meandering flow path-type MR valve. The meandering flow path-type MR valve structure consists of three 

main components: casing, coil, and valve core. The casing, made of AISI 1010, guides magnetic flux 

efficiently and secures the internal structure. The coil, composed of copper and aluminum windings, 

determines the magnetic field strength and acts as a flow channel wall. The valve core consists of side cores, 

orifice cores, a center core, and aluminum spacers. The entire valve has an outer diameter of 50 mm and an 

overall length of 77 mm. 
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The MR valve is divided into male and female casings, each made of AISI 1010 with threaded connections, 

and features female BSPP (British Standard Pipe Parallel) ¼ inch fluid ports. The coil consists of copper 

and aluminum windings with O-ring slots for sealing. The valve core, including side cores, orifice cores, a 

center core, and aluminum spacers, maintains clearances between components. The inner coil diameter is 

15 mm. The annular and radial gaps and the channel length are varied to create a winding flow path. The 

casing thickness is 4 to 5 mm. Using 22 AWG copper wire, the coil has a total resistance of 2.23 Ω and is 

wound with 450 turns. A current limit of 1 A is applied to maintain a maximum power consumption of 2.23 

W. 

Numerical methods are employed to predict the magnetic circuit's performance in MR usage, evaluating 

magnetic field strength using finite element analysis with FEMM software. The MR valve's 2D 

axisymmetric projection is modeled, and material permeabilities are derived from B-H curves. The study 

incorporates the B-H curve of AISI 1010 for magnetic materials and aluminum for non-magnetic materials, 

as shown in Figure 5 [31]. The research presents the yield stress of MRF-132DG MR fluid from Lord 

Corporation graphically concerning magnetic flux density and yield stress.  

As proposed by Nguyen et al. [32], a polynomial approach is employed to establish the yield stress equation 

(𝜏(𝐵)) using the 𝐵 value, as shown in Eq. (3). 

𝜏(𝐵)  =  52.962𝐵4  +  176.51𝐵3  +  158.79𝐵2  +  13.708𝐵 +  0.1442 (3) 

From the equation, MRF-132DG reaches its saturation point at 1.2 T. The MR fluid's rheological properties 

are essential when determining the maximum current input for the coil in the meandering flow path-type 

MR valve design. Other crucial parameters include variables turn number and length of the coil.  

Figure 6 illustrates the two-dimensional axisymmetric design of the meandering flow path-type MR valve 

in FEMM software. The design results include running mesh and analysis and providing graphical data and 

magnetic flux density files along the channel in the meandering flow path-type MR valve. After creating 

lines along the effective area, as shown in Figure 7, the magnetic flux density data is utilized as the artificial 

neural network modeling dataset. The observation line is always in the middle of the gap. For example, if 

the gap is 1.0, the observation line will be 0.5 from both nearest walls.  

Figure 8 illustrates how the magnetic flux densities for training data are determined. The highest magnetic 

flux densities in annular, inner radial, and outer radial zones are treated as the training data. Meanwhile, the 

orifice and inner annular parts are assumed to be zero. The magnetic flux densities are considered to be 

symmetrical between the right and left parts of the MR valve. The assumption will be employed while 

calculating the pressure drops.  
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2.4 Pressure Drop Calculation 

The pressure drop (Δ𝑃) in the meandering flow path-type MR valve is divided into two components, which 

are viscous and yield pressure drops, as expressed in the quasi-steady Eq. (4). Eq. (5) illustrates that the 

viscous pressure drop for annular (Δ𝑃𝑣𝑖𝑠𝑐𝑜𝑢𝑠,𝑎𝑛𝑛𝑢𝑙𝑎𝑟) is related to the fluid's base viscosity (𝜂), flow rate 

(𝑄), the annular valve channel's length (𝐿), and inversely proportional to the channel radius (𝑅). On the 

other hand, Eq. (6) shows that the yield pressure drop is associated with the yield stress (𝜏(𝐵)), 𝐿, and the 

flow velocity coefficient (𝑐), inversely proportional to the gap size (𝑑). 𝑐 is calculated using Equation (7).  

∆𝑃 =  ∆𝑃𝑣𝑖𝑠𝑐𝑜𝑢𝑠 +  ∆𝑃𝑦𝑖𝑒𝑙𝑑 (4) 

∆𝑃𝑣𝑖𝑠𝑐𝑜𝑢𝑠,𝑎𝑛𝑛𝑢𝑙𝑎𝑟 =  
6𝜂𝑄𝐿

𝜋𝑑3𝑅
 (5) 

∆𝑃𝑦𝑖𝑒𝑙𝑑,𝑎𝑛𝑛𝑢𝑙𝑎𝑟 =  
𝑐𝜏(𝐵)𝐿

𝑑
 (6) 

𝑐 = 2.07 +  
12𝑄𝜂

12𝑄𝜂+0.8𝜋𝑅𝑑2𝜏(𝐵)
 (7) 

For MR valves with radial gaps, Eq. (8) and (9) describe viscous and yield pressure drops, respectively. 𝑅0 

and 𝑅𝑖 refer to the outer and inner radial gaps, respectively. The proposed MR valve design incorporates 

both annular and radial gaps, resulting in combined mathematical equations. For orifice gaps, as magnetic 

flux is assumed to not pass through them, the pressure drop equation is based on the MR fluid's viscous 

properties, expressed by Eq. (10). 

∆𝑃𝑣𝑖𝑠𝑐𝑜𝑢𝑠 =  
6𝜂𝑄𝐿

𝜋𝑑3𝑅
ln 

𝑅𝑜

𝑅𝑖
 (8) 

∆𝑃𝑦𝑖𝑒𝑙𝑑 =  
𝑐𝜏 (𝐵)

𝑑
 (𝑅𝑜 −  𝑅𝑖) (9) 

∆𝑃 =  
8𝜂𝑄𝐿

𝜋𝑅4  (10) 

Different parts of the MR valve have distinct magnetic flux densities. Hence, the valve gaps are divided 

into five zones: outer annular gap, outer radial gap, inner annular gap, inner radial gap, and orifice gap. 

These zones are further categorized into effective area and viscous resistance. The effective area includes 

the outer annular, outer radial, and inner radial gaps, while the viscous resistance consists of the inner 

annular and orifice gaps. Eq. (11) shows the pressure drops at various zones, and each zone is defined by 

Eq. (12)-(16).  

∆𝑃𝑣𝑎𝑙𝑣𝑒 =  ∆𝑃𝑎𝑛𝑛𝑢𝑙𝑎𝑟_𝑜𝑢𝑡𝑒𝑟 + ∆𝑃𝑟𝑎𝑑𝑖𝑎𝑙_𝑜𝑢𝑡𝑒𝑟 +  ∆𝑃𝑎𝑛𝑛𝑢𝑙𝑎𝑟_𝑖𝑛𝑛𝑒𝑟 +  ∆𝑃𝑟𝑎𝑑𝑖𝑎𝑙_𝑖𝑛𝑛𝑒𝑟 + ∆𝑃𝑜𝑟𝑖𝑓𝑖𝑐𝑒 (11) 
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∆𝑃𝑎𝑛𝑛𝑢𝑙𝑎𝑟_𝑜𝑢𝑡𝑒𝑟 = 2 [
6𝜂𝑄𝐿𝑎𝑜

𝜋𝑑𝑎𝑜
3 𝑅𝑎𝑜

+ 
𝑐𝑎𝜏𝑎 (𝐵)𝐿𝑎𝑜

𝑑𝑎𝑜
] (12) 

∆𝑃𝑟𝑎𝑑𝑖𝑎𝑙_𝑜𝑢𝑡𝑒𝑟 = 2 [
6𝜂𝑄

𝜋𝑑𝑟𝑜
3  𝑙𝑛 (

𝑅1

𝑅0_𝑜𝑢𝑡𝑒𝑟
) + 

𝑐𝑎𝜏𝑟𝑜 (𝐵)

𝑑𝑟𝑜
 ( 𝑅1 − 𝑅0_𝑜𝑢𝑡𝑒𝑟)] (13) 

∆𝑃𝑎𝑛𝑛𝑢𝑙𝑎𝑟_𝑖𝑛𝑛𝑒𝑟 = 3 
6𝜂𝑄𝐿𝑎𝑖

𝜋𝑑𝑎𝑖
3 𝑅𝑎𝑖

  (14) 

∆𝑃𝑟𝑎𝑑𝑖𝑎𝑙_𝑖𝑛𝑛𝑒𝑟 = 4 [
6𝜂𝑄

𝜋𝑑𝑟𝑖
3  𝑙𝑛 (

𝑅1

𝑅0_𝑖𝑛𝑛𝑒𝑟
) +  

𝑐𝑟𝑖𝜏𝑟𝑖 (𝐵)

𝑑𝑟𝑖
 ( 𝑅1 − 𝑅0_𝑖𝑛𝑛𝑒𝑟)] (15) 

∆𝑃𝑜𝑟𝑖𝑓𝑖𝑐𝑒 = 2 
8𝜂𝑄𝐿𝑜

𝜋𝑅0_𝑖𝑛𝑛𝑒𝑟
4 (16) 

The MRF-132DG MR fluid used in this study is commercially available from Lord Corp. Key parameters 

for the meandering flow path-type MR valve are presented in Table 2.  

The modeling with an artificial neural network aims to determine the magnetic flux density in the 

meandering flow path-type MR valve. The predicted values are then used in steady-state modeling to 

determine the pressure drop.  

 

3 Results and Discussion  

3.1 Hyper Parameter Variations 

The study conducted a hyperparameter exploration to determine the optimal configuration for a neural 

network. The variations included the number of neurons in each hidden layer (ranging from 10 to 100), the 

number of hidden layers (1 to 3), and activation functions (Sigmoid, Tanh, and ReLU). The GridSearchCV 

Hyper parameter variations for machine learning are not too strict. For obtaining the best accuracy, different 

datasets can have different configurations. As for the proposed works, they can be considered new. Seventy-

two configurations were tried, consisting of activation function variations, hidden node number variations, 

and layer number variations. Activation functions are sigmoid (sig), hyperbolic tangent (tanh), and rectifier 

linear units (ReLU). The hidden node numbers are small, medium, and large, consisting of 10, 50, and 100. 

Hidden node numbers in all hidden layers are the same. The process utilized the Adam optimization 

algorithm.  

Table 3 shows the MSE at various activation functions and hidden node numbers. To simplify the problem, 

the hidden node number is assumed to be the same for all layers. Based on the table, ReLU activation with 

100 neurons demonstrated the lowest mean squared error (MSE) of 0.07 for a single hidden layer. In the 

case of two hidden layers, the best configuration was 100 neurons in each layer, with ReLU activation in 
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both layers, resulting in an MSE of 0.06. Similarly, for three hidden layers, the optimal setup involved 100 

neurons in each layer. ReLU activation in the first two layers and Tanh activation in the third, achieving an 

MSE of 0.06. 

The findings indicate that the choice of the number of neurons in each hidden layer depends on the 

activation function and the number of hidden layers. Sigmoid activation was less suitable, consistently 

yielding higher MSE compared to the other two activation functions. The comparison of single, double, 

and triple hidden layer variations revealed that the architecture with three hidden layers performed the best, 

especially with 100 neurons in each layer containing ReLU, ReLU, and Tanh activations. From these three 

experiments with hidden layer variations, it can be concluded that the number of neurons in each hidden 

layer depends greatly on the activation function and the number of hidden layers to achieve the optimal 

number of neurons in each hidden layer. The sigmoid activation function appears less suitable for this 

artificial neural network modeling, as it consistently yields higher average MSE than the other two 

activation functions. Furthermore, variations with one, two, and three hidden layers are compared to 

determine the best artificial neural network model.  

Further refinements involve tuning the learning rate and batch size, as shown in Figure 9. The exploration 

revealed that a learning rate of 10-3 and a batch size 16 resulted in the lowest MSE of 0.06, indicating 

optimal model accuracy and mitigating the risk of overfitting. The selection of an appropriate learning rate 

is paramount, as an excessively high value can engender training divergence, whereas an exceedingly low 

value prolongs the training process. Thus, carefully selecting the learning rate enhanced the accuracy of the 

artificial neural network model. 
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The training results, represented by MSE values, are provided for different zones (annular outer, radial 

outer, and radial inner), as shown in Figure 10

 

Figure 9. MSE at various learning rates and batch sizes 

 

 

Figure 10. The trained model generally accurately predicts magnetic flux densities in various zones. The 

MSE reaches steady values at less than 100 epochs. Therefore, for the next training process, an early stop 

at an epoch of 100 can be applied to prevent training that is too long or hyperparameter tuning times. 

Furthermore, the optimization method to predict the best hyperparameter can be used at iteration less than 

100. The testing value has also been checked to identify the model's effectiveness for unlearned data, as 
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shown in Figure 11, with detailed information in Table 4. All 𝑅2 of the testing data show values of more 

than 0.8, demonstrating the machine learning capability for prediction.  

 

3.2 The Predicted Magnetic Simulations and Pressure Drop 

The predicted magnetic simulation values from the artificial neural networks are then compared with 

FEMM. Figure 12 compares the FEMM simulation results and DNN prediction at a given electrical current 

of 0.5 A. From Figure 12a, increasing the radial and annular gap can decrease the magnetic field at the 

annular zone because the magnetic flux needs to go through more resistance to complete one loop. Both 

simulation results give similar results. Several differences exist, but the machine learning method has still 

successfully captured the phenomena. The pattern seems different from that of the outer radial zone as the 

increase of the annular gap can increase the magnetic fields. It can be easily understood that the magnetic 

field must go through both outer annular and outer radial, as shown in Figure 2. Suppose the resistance in 

the outer annular increases, represented by the gap increase, while the radial gap is fixed. In that case, the 

magnetic field will gradually move to the outer radial part. In this phenomenon, the DNN can still predict 

the magnetic field with a similar pattern.  

The capabilities of the DNN for capturing the effect of electrical current toward the predicted magnetic 

field densities are also observed. Figure 13 shows that, in general, DNN can replicate the pattern at various 

given electrical currents. The increase of the given electrical current can affect the magnetic field densities. 

Several parameters also affect the correlation, including dimension and the obstacle for performing a loop 

magnetic field. It is observed that the higher electrical current has a slight difference from the FEMM 

simulation results. The reason can be caused by the high nonlinearity for higher electrical current while 

predicting a high magnetic field density value.  

The comparison is also conducted to check the visual representation along the observation lines, as shown 

in Figure 14. The annular and radial parts are the only pressure drops calculated, while the inner annular 

and orifices are ignored. The DNN predictions are slightly higher at inner radial gaps than the FEMMs. 

However, the visualization generally shows a good agreement between the DNN and FEMM magnetic flux 

lines.  

 

The nonlinearity, proportional, and inverse proportional relation can also be identified using Pearson 

correlation among the variables. Table 5 reveals that electrical current exhibits the strongest positive 

correlation with both annular and outer radial magnetic field density, with correlation coefficients of 0.88 

and 0.66, respectively. This strong positive relationship is expected, as increasing current typically enhances 
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the magnetic flux density within the valve. Conversely, radial gaps display a negative correlation with 

𝐵𝑟𝑎𝑑𝑖𝑎𝑙,𝑜𝑢𝑡𝑒𝑟 (-0.53) and a moderate negative correlation with 𝐵𝑎𝑛𝑛𝑢𝑙𝑎𝑟 (-0.18). These negative correlations 

suggest that larger radial gaps may impede the magnetic flux, reducing the magnetic field density in these 

regions. Annular gaps show a negative correlation with 𝐵𝑎𝑛𝑛𝑢𝑙𝑎𝑟 (-0.26). All gap sizes have a negative 

correlation with all predicted magnetic field densities, except magnetic field density at the outer radial 

𝐵𝑟𝑎𝑑𝑖𝑎𝑙,𝑜𝑢𝑡𝑒𝑟 as discussed and shown in Figure 13 previously.  

The presence of nonlinear correlations is evident from the relatively low Pearson coefficients in some 

instances, such as the weak negative correlation between radial gaps and 𝐵𝑎𝑛𝑛𝑢𝑙𝑎𝑟 (-0.18). These lower 

values suggest that the relationship between these variables may not be strictly linear, potentially due to 

complex geometric configurations or saturation effects within the magnetic material. As a result, relying 

solely on linear correlation may not fully capture the intricacies of these interactions, highlighting the 

importance of employing nonlinear modeling techniques like DNN to predict magnetic flux densities and 

subsequent pressure drops accurately.  

The derived yield pressure drop based on the magnetic flux predicted by the DNN and FEMM values are 

also compared. The yield pressure drop is the pressure drop that is affected by magnetic field density, as 

shown in Eq. 6 and 9. When calculating the total pressure drop, the yield pressure drop will be combined 

with a viscous pressure drop affected by only the flow rate. Figure 15 compares the pressure drop yield 

between DNN and FEMM at various radial gap sizes at 1 A. The pressure drop from DNN is slightly higher 

than that of the FEMM-based pressure drop. The reason can be caused by the fact the training data is taken 

from the highest magnetic field at the zone. The pressure drops at 0.5 mm of annular and radial gaps also 

have similar results to the described peak pressure drop in the previous work [7]. The experimental and 

predicted DNN results have a difference of approximately 9.45%. 

4 Conclusion 

In conclusion, this study introduces a novel approach for predicting pressure drop in meandering MR valves 

using DNNs. The DNNs are trained to predict magnetic flux density, which is then utilized to forecast MR 

fluid yield stress and calculate pressure drop. The proposed models exhibit significant agreement with 

experimental results, highlighting the effectiveness of DNNs in capturing the intricate dynamics associated 

with pressure drop in meandering MR valves. The meandering flow path-type MR valve structure 

considered in this study involves complex geometries and various parameters, including annular and radial 

gaps, current, and channel lengths. The DNN models are carefully tuned using grid search cross-validation, 

exploring hyperparameters such as the number of hidden layers, the number of neurons in each layer, and 

activation functions. The results demonstrate that a three-layer DNN with ReLU activation in the first two 
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layers and Tanh activation in the third layer with 100 neurons yields optimal performance. The DNN models 

are validated through comparisons with finite element simulations using FEMM software. The predictions 

of magnetic flux density at different zones, including annular and outer radial, show good agreement with 

the referenced data. 

Additionally, the DNN models successfully capture the impact of electrical current variations on magnetic 

field densities. The study also compares the yield pressure drop values predicted by DNNs with those 

obtained from FEMM simulations. While the DNN-predicted values are slightly higher, the overall 

agreement indicates the capability of DNNs to predict pressure drop in meandering MR valves. In summary, 

the application of DNN in predicting pressure drop in meandering MR valves proves to be a promising and 

effective approach. The developed models accurately capture complex relationships within the valve 

structure, making them valuable for optimizing and enhancing the performance of smart materials in 

engineering applications.  

Future work will focus on expanding the range of design parameters to accommodate more complex valve 

geometries and diverse operational conditions. Integrating the surrogate DNN model with metaheuristic 

optimization algorithms will enable multi-objective valve design optimization. Further experimental 

validations across a broader spectrum of design parameters will enhance the model's accuracy and 

reliability.  

Acknowledgment 

This study is supported by Universitas Gadjah Mada Through Collaboration Research Program Southeast 

and South Asia And Taiwan Universities Joint Research Scheme (SATU JRS) 2023 with no 

8778/UN1.P.II/Dit-Lit/PT.01.03/2023. 

References 

1.  Tell, S., Andersson, A., Najafi, A., et al., “Real-time hybrid testing for efficiency assessment of 

magnetorheological dampers to mitigate train-induced vibrations in bridges”, Int. J. Rail Transp., 

00(00), pp. 1–20 (2021). https://doi.org/10.1080/23248378.2021.1954560. 

2.  Zhang, Y., Guo, J., Yang, J., et al., “Recent Structural Developments and Applications of 

Magnetorheological Dampers (MRD): A Review”, Magnetochemistry, 9(4), p. 90 (2023). 

https://doi.org/10.3390/magnetochemistry9040090. 

3.  Wu, Y., Zeng, J., Shi, H., et al., “A hybrid damping control strategy for high-speed trains running 

on existing tracks”, J. Low Freq. Noise Vib. Act. Control, 41(3), pp. 1258–1271 (2022). 

https://doi.org/10.1080/23248378.2021.1954560
https://doi.org/10.3390/magnetochemistry9040090


14 

https://doi.org/10.1177/14613484221087513. 

4.  Liu, G., Gao, F., Wang, D., et al., “Medical applications of magnetorheological fluid: a systematic 

review”, Smart Mater. Struct., 31(4), p. 043002 (2022). https://doi.org/10.1088/1361-

665X/ac54e7.  

5.  Gołdasz, J., Sapiński, B., Kubík, M., et al., “Review: A Survey on Configurations and 

Performance of Flow-Mode MR Valves”, Appl. Sci., 12(12) (2022).  

https://doi.org/10.3390/app12126260. 

6.  Abdalaziz, M., Vatandoost, H., Sedaghati, R., et al., “Development and experimental 

characterization of a large-capacity magnetorheological damper with annular-radial gap”, Smart 

Mater. Struct., 31(11), p. 115021 (2022). https://doi.org/10.1088/1361-665X/ac9a16. 

7.  Imaduddin, F., Amri Mazlan, S., Azizi Abdul Rahman, et al., “A high performance 

magnetorheological valve with a meandering flow path”, Smart Mater. Struct., 23(6), p. 065017 

(2014). https://doi.org/10.1088/0964-1726/23/6/065017. 

8.  Zhu, J., Yang, X., Xie, G., et al., “Design and damping performance analysis of a multistage 

meandering hybrid valved magnetorheological damper”, Phys. Scr., 99(4), p. 045517 (2024). 

https://doi.org/10.1088/1402-4896/ad31ed. 

9.  Idris, M. H., Imaduddin, F., Ubaidillah, et al., “A Concentric Design of a Bypass 

Magnetorheological Fluid Damper with a Serpentine Flux Valve”, Actuators, 9(1), p. 16 (2020). 

https://doi.org/10.3390/act9010016. 

10.  Hu, G., Qi, H., Zheng, K., et al., “Design and performance evaluation of a magnetorheological 

valve with mosquito-coil-plate fluid flow channels”, Sensors Actuators A Phys., 347(November), 

p. 113983 (2022). https://doi.org/10.1016/j.sna.2022.113983. 

11.  Jiang, M., Rui, X., Yang, F., et al., “Multi-objective optimization design for a magnetorheological 

damper”, J. Intell. Mater. Syst. Struct., 33(1), pp. 33–45 (2022). 

https://doi.org/10.1177/1045389X211006907. 

12.  Keshav, M., Bhagyarajan, A., and Chandramohan, S., “Regression models for magnetic flux 

density using DoE techniques and geometric optimization of MR valve”, Smart Mater. Struct., 

28(7), p. 075008 (2019). https://doi.org/10.1088/1361-665X/ab1e1b. 

13.  Olivier, M. and Sohn, J. W., “Design and geometric parameter optimization of hybrid 

magnetorheological fluid damper”, J. Mech. Sci. Technol., 34(7), pp. 2953–2960 (2020). 

https://doi.org/10.1177/14613484221087513
https://doi.org/10.1088/1361-665X/ac54e7
https://doi.org/10.1088/1361-665X/ac54e7
https://doi.org/10.3390/app12126260
https://doi.org/10.1088/1361-665X/ac9a16
https://doi.org/10.1088/0964-1726/23/6/065017
https://doi.org/10.1088/1402-4896/ad31ed
https://doi.org/10.3390/act9010016
https://doi.org/10.1016/j.sna.2022.113983
https://doi.org/10.1177/1045389X211006907
https://doi.org/10.1088/1361-665X/ab1e1b


15 

https://doi.org/10.1007/s12206-020-0627-0. 

14.  Hu, G., Wu, L., Deng, Y., et al., “Optimal design and performance analysis of magnetorheological 

damper based on multiphysics coupling model”, J. Magn. Magn. Mater., 558, p. 169527 (2022). 

https://doi.org/10.1016/j.jmmm.2022.169527.  

15.  Strecker, Z., Jeniš, F., Kubík, M., et al., “Novel approaches to the design of an ultra-fast 

magnetorheological valve for semi-active control”, Materials (Basel)., 14(10) (2021). 

https://doi.org/10.3390/ma14102500. 

16.  Yucesan, Y. A., Viana, F. A. C., Manin, L., et al., “Adjusting a torsional vibration damper model 

with physics-informed neural networks”, Mech. Syst. Signal Process., 154, p. 107552 (2021). 

https://doi.org/10.1016/j.ymssp.2020.107552. 

17.  Luong, Q.-V., Jo, B.-H., Hwang, J.-H., et al., “A Supervised Neural Network Control for 

Magnetorheological Damper in an Aircraft Landing Gear”, Appl. Sci., 12(1), p. 400 (2021). 

https://doi.org/10.3390/app12010400. 

18.  Saharuddin, K. D., Ariff, M. H. M., Mohmad, K., et al., “Prediction Model of Magnetorheological 

(MR) Fluid Damper Hysteresis Loop using Extreme Learning Machine Algorithm”, Open Eng., 

11(1), pp. 584–591 (2021). https://doi.org/10.1515/eng-2021-0053. 

19.  Wang, G., Qu, W., Chen, C., et al., “A road level identification method for all-terrain crane based 

on Support Vector Machine”, Measurement, 187, p. 110319 (2022). 

https://doi.org/10.1016/j.measurement.2021.110319. 

20.  Lv, H., Sun, Q., and Ma, W., “Data-driven prediction-control system modeling for 

magnetorheological damping force”, J. Intell. Mater. Syst. Struct., 34(2), pp. 155–167 (2023). 

https://doi.org/10.1177/1045389X221103784. 

21.  Gupta, P., Pal, A., and Vittal, V., “Coordinated Wide-Area Damping Control Using Deep Neural 

Networks and Reinforcement Learning”, IEEE Trans. Power Syst., 37(1), pp. 365–376 (2022). 

https://doi.org/10.1109/TPWRS.2021.3091940. 

22.  Lv, Y., Hui, J., Zhong, et al., “Online Learning Deep Neural Network Fuzzy Control of Structures 

Under Earthquake Motions: Numerical and Experimental Tests”, Int. J. Struct. Stab. Dyn. (2024). 

https://doi.org/10.1142/S0219455425501433. 

23.  Duchanoy, C. A., Moreno-Armendáriz, M. A., Moreno-Torres, J. C., et al., “A deep neural 

network based model for a kind of magnetorheological dampers”, Sensors (Switzerland), 19(6), 

https://doi.org/10.1007/s12206-020-0627-0
https://doi.org/10.1016/j.jmmm.2022.169527
https://doi.org/10.3390/ma14102500
https://doi.org/10.1016/j.ymssp.2020.107552
https://doi.org/10.3390/app12010400
https://doi.org/10.1515/eng-2021-0053
https://doi.org/10.1016/j.measurement.2021.110319
https://doi.org/10.1177/1045389X221103784
https://doi.org/10.1109/TPWRS.2021.3091940
https://doi.org/10.1142/S0219455425501433


16 

pp. 1–18 (2019). https://doi.org/10.3390/s19061333. 

24.  Hu, Y., Guo, W., Long, Y., et al., “Physics-informed deep neural networks for simulating S-

shaped steel dampers”, Comput. Struct., 267 (2022). 

https://doi.org/10.1016/j.compstruc.2022.106798. 

25.  Imaduddin, F., Mazlan, S. A., Ubaidillah, et al., “Characterization and modeling of a new 

magnetorheological damper with meandering type valve using neuro-fuzzy”, J. King Saud Univ. - 

Sci., 29(4), pp. 468–477 (2017). https://doi.org/10.1016/j.jksus.2017.08.012. 

26.  Saharuddin, K. D., Ariff, M. H. M., Bahiuddin, I., et al., “Non-parametric multiple inputs 

prediction model for magnetic field dependent complex modulus of magnetorheological 

elastomer”, Sci. Rep., 12(1), p. 2657 (2022). https://doi.org/10.1038/s41598-022-06643-4. 

27.  Reyad, M., Sarhan, A. M., and Arafa, M., “A modified Adam algorithm for deep neural network 

optimization”, Neural Comput. Appl., 35(23), pp. 17095–17112 (2023). 

https://doi.org/10.1007/s00521-023-08568-z. 

28.  Yang, X., Bi, F., Cheng, J., et al., “A Multiple Attention Convolutional Neural Networks for 

Diesel Engine Fault Diagnosis”, Sensors, 24(9) (2024). https://doi.org/10.3390/s24092708. 

29.  Bahiuddin, I., Imaduddin, F., Mazlan, S. A., et al., “Accurate and fast estimation for field-

dependent nonlinear damping force of meandering valve-based magnetorheological damper using 

extreme learning machine method”, Sensors Actuators A Phys., 318, p. 112479 (2021). 

https://doi.org/10.1016/j.sna.2020.112479. 

30.  Vu, H. L., Ng, K. T. W., Richter, A., et al., “Analysis of input set characteristics and variances on 

k-fold cross validation for a Recurrent Neural Network model on waste disposal rate estimation”, 

J. Environ. Manage., 311, p. 114869 (2022). https://doi.org/10.1016/j.jenvman.2022.114869. 

31.  Carmona, I. C., Kumbhare, D., Baron, M. S., et al., “Quintuple AISI 1010 carbon steel core coil 

for highly focused transcranial magnetic stimulation in small animals”, AIP Adv., 11(2), pp. 1–8 

(2021). https://doi.org/10.1063/9.0000219. 

32.  Nguyen, Q. H., Choi, S. B., and Wereley, N. M., “Optimal design of magnetorheological valves 

via a finite element method considering control energy and a time constant”, Smart Mater. Struct., 

17(2) (2008). https://doi.org/10.1088/0964-1726/17/2/025024. 

  

https://doi.org/10.3390/s19061333
https://doi.org/10.1016/j.compstruc.2022.106798
https://doi.org/10.1016/j.jksus.2017.08.012
https://doi.org/10.1038/s41598-022-06643-4
https://doi.org/10.1007/s00521-023-08568-z
https://doi.org/10.3390/s24092708
https://doi.org/10.1016/j.sna.2020.112479
https://doi.org/10.1016/j.jenvman.2022.114869
https://doi.org/10.1063/9.0000219
https://doi.org/10.1088/0964-1726/17/2/025024


17 

List of Figures 

Figure 1. The proposed systematic procedure to predict pressure drops ...................................... 17 

Figure 2. Meandering Flow Path .................................................................................................. 18 

Figure 3. The proposed DNN architectures .................................................................................. 18 

Figure 4. Grid Search Cross-Validation Process .......................................................................... 19 

Figure 5. AISI 1010 Carbon steel BH Curve [31] ........................................................................ 19 

Figure 6. 2D axisymmetric Design of MR valve with meandering flow path type in FEMM 

Software ........................................................................................................................................ 20 

Figure 7. The observation line for measuring the magnetic flux densities ................................... 20 

Figure 8. Illustration of the training data determination ............................................................... 21 

Figure 9. MSE at various learning rates and batch sizes .............................................................. 21 

Figure 10. MSE over epochs at various zones for the training process ........................................ 22 

Figure 11. Testing regression plot at (a) annular zone, (b) outer radial zone, (c) inner radial zone

....................................................................................................................................................... 23 

Figure 12. Magnetic flux density at annular zone (a) and outer radial zone (b) as a function of 

various gap dimensions ................................................................................................................. 24 

Figure 13. Magnetic flux density at annular zone (a) and inner radial zone (b) as a function of the 

given electrical currents ................................................................................................................ 24 

Figure 14. Magnetic flux densities comparison along the observation line ................................. 25 

Figure 15. Comparison of yield pressure drop values between DNN and FEMM simulations ... 26 

 

 

 

Figure 1. The proposed systematic procedure to predict pressure drops 

Training 

data

User 

Inputs

Model Training

Prediction

Magnetic 

flux 

densities

Pressure Drop 

Calculation

Pressure 

Drop



18 

 

Figure 2. Meandering Flow Path 

 

Figure 3. The proposed DNN architectures 
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Figure 4. Grid Search Cross-Validation Process 

 

Figure 5. AISI 1010 Carbon steel BH Curve [31] 
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Figure 6. 2D axisymmetric Design of MR valve with meandering flow path type in FEMM Software 

 

 

Figure 7. The observation line for measuring the magnetic flux densities 
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Figure 8. Illustration of the training data determination 

 

Figure 9. MSE at various learning rates and batch sizes 
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Figure 10. MSE over epochs at various zones for the training process 
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(a)        (b) 
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Figure 11. Testing regression plot at (a) annular zone, (b) outer radial zone, (c) inner radial zone 
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(a)        (b) 

Figure 12. Magnetic flux density at annular zone (a) and outer radial zone (b) as a function of various gap 

dimensions 

 

  

(a)        (b) 

Figure 13. Magnetic flux density at annular zone (a) and inner radial zone (b) as a function of the given electrical 

currents 
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Figure 14. Magnetic flux densities comparison along the observation line 
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Figure 15. Comparison of yield pressure drop values between DNN and FEMM simulations  
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Table 1. DNN Hyperparameters 

Hyperparameters Values 

Hidden layer Number 1-3 layer 

Hidden Neuron 

Number 
10 - 100 

Activation Functions ReLU, sigmoid, tanh 

Learning Rate 10−1 - 10−5 

Batch size 11,689 

 

Table 2. MR valve parameters 

Parameters Descriptions Value Units 

𝜂 (MRF-132DG) Fluid viscocity 0.112 Pa s 

𝑄 Flow rate 40 ml/s 

𝑑𝑎𝑜 Outer annular gap size 0.5 - 2 mm 

𝑑𝑟 =  𝑑𝑟𝑜 =  𝑑𝑟𝑖 Radial gap size 0.5 - 2 mm 

𝑑𝑎𝑖 Inner annular gap size 1 mm 

𝐿𝑎𝑜 Outer annular channel length 10 mm 

𝐿𝑎𝑖 Inner annular channel length 6 - 2𝑑𝑟 mm 

𝐿𝑜 Orifice channel length 5 mm 

𝑅1 Outer radius of radial gap 6.5 mm 

𝑅0_𝑜𝑢𝑡𝑒𝑟  Inner radius of the outer radial gap 2.5 + 𝑑𝑎𝑜 mm 

𝑅0_𝑖𝑛𝑛𝑒𝑟 Inner radius of the inner radial gap 2.5 mm 
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Table 3. MSE training at various hidden node numbers 

Activation Function MSE at Hidden Number of 

First Layer Second Layer Third Layer 10 50 100 

Sig - - 0.17 0.14 0.12 

Tanh - - 0.1 0.08 0.08 

ReLU - - 0.12 0.08 0.07 

Sig Sig - 0.16 0.16 0.16 

Sig Tanh - 0.17 0.12 0.14 

Sig ReLU - 0.14 0.13 0.11 

Tanh Sig - 0.13 0.08 0.08 

Tanh Tanh - 0.09 0.08 0.08 

Tanh ReLU - 0.09 0.07 0.07 

ReLU Sig - 0.25 0.08 0.07 

ReLU Tanh - 0.11 0.07 0.07 

ReLU ReLU - 0.09 0.07 0.07 

Sig Sig Sig 0.35 0.17 0.17 

Tanh Tanh ReLU 0.08 0.07 0.06 

Tanh ReLU Sig 0.11 0.07 0.06 

Tanh ReLU Tanh 0.08 0.07 0.06 

Tanh ReLU ReLU 0.08 0.06 0.06 

ReLU Sig Sig 0.26 0.08 0.1 

ReLU Tanh Sig 0.14 0.07 0.07 

ReLU Tanh Tanh 0.09 0.07 0.07 

ReLU Tanh ReLU 0.08 0.06 0.06 

ReLU ReLU Sig 0.12 0.07 0.06 

ReLU ReLU Tanh 0.08 0.07 0.06 

ReLU ReLU ReLU 0.08 0.07 0.06 

 

Table 4. 𝑅2 training and testing at selecting schemes 

Activation Functions 𝑅2 Training 𝑅2 Test 

1st Layer 2nd Layer 3rd layer Output 1 Output 2 Output 3 Output 1 Output 2 Output 3 

Relu ReLU ReLU 0.99 1.00 1.00 0.99 0.99 1.00 

ReLU ReLU Tanh 0.99 1.00 1.00 0.99 0.98 0.99 

Sigmoid Tanh ReLU 0.98 1.00 1.00 0.99 0.98 1.00 

ReLU Sigmoid ReLU 0.89 1.00 1.00 0.96 0.90 0.99 
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Table 5. Correlation among variables 

 Annular Gap Radial Gap Current 𝐵𝑎𝑛𝑛𝑢𝑙𝑎𝑟 𝐵𝑟𝑎𝑑𝑖𝑎𝑙,𝑜𝑢𝑡𝑒𝑟 𝐵𝑟𝑎𝑑𝑖𝑎𝑙,𝑖𝑛𝑛𝑒𝑟 

Annular Gap 1 0 0 -0.26 0.08 -0.03 

Radial Gap 0 1 0 -0.18 -0.53 -0.47 

Current 0 0 1 0.88 0.66 0.77 

𝐵𝑎𝑛𝑛𝑢𝑙𝑎𝑟 -0.26 -0.18 0.88 1 0.69 0.83 

𝐵𝑟𝑎𝑑𝑖𝑎𝑙,𝑜𝑢𝑡𝑒𝑟 0.08 -0.53 0.66 0.69 1 0.97 

𝐵𝑟𝑎𝑑𝑖𝑎𝑙,𝑖𝑛𝑛𝑒𝑟 -0.03 -0.47 0.77 0.83 0.97 1 
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