
1 

 

An adaptive reversible data hiding scheme based on histogram shifting 

using decimal floating signed-digit stream 

Reza Ghorbandost Soveiri 
a
, Maryam Rajabzadeh Asaar 

b, *  

 

Abstract 

This paper proposes a novel method based on histogram shifting using signed digits for data hiding. Our proposed 

method takes the prediction errors obtained from the original image using a 4×4 block-wise prediction. Then, we embed 

the information in the prediction errors of the image using the histogram shifting technique. A crucial point regarding 

the embeddable data in this method is that we divide the binary stream into equal parts of two, three, or four bits. For 

each two, three, or four-bit digit, we consider a numerical equivalent using the approach described in this paper. 

Subsequently, based on each of the signed digits, assigned floating numbers are used to represent the embeddable 

information instead of the binary stream. Experimental results for a sample image, "Airplane", with four-bit data 

segmentation demonstrate an outstanding embedding capacity of 825,080 bits and a PSNR of 33.87 dB, indicating that 

our proposed scheme achieves a remarkably high embedding capacity while maintaining an acceptable visual quality. 

 

 
Keywords:  Reversible data  hiding, Histogram shifting, Prediction error, Signed digit stream, Floating numbers, 

Embedding capacity, Visual quality  

 

1. Introduction 
 

Authentication and safeguarding digital multimedia content and information have gained immense 

importance in today's world, and their significance continues to grow. In recent years, the concealment of 

data in digital multimedia has provided researchers with a vast field of study. With the digitization and 

networking of various customer services like administrative tasks, medical affairs, and authentication, the 

secure transfer of confidential information has become crucial. Data hiding can generally be categorized 

based on different criteria. It can be classified as non-blind, blind, or semi-blind data hiding, depending on 

the receiver's dependence on the original image, the lack thereof, and the utilization of data and parameters 

for information extraction [1]. 

Furthermore, we can base the classification on the type of confidential data stored in digital content, such 

as audio, images, or text. Additionally, data hiding techniques can be categorized as robust, fragile, or semi-

fragile based on the resilience of the watermark or embedded data against intentional or unintentional attacks 

[1]. Besides the mentioned classifications, other categorizations consider the domain of data hiding in 

multimedia (spatial or frequency domain) and the reversibility of the original image after extracting the 

embedded data (reversible or irreversible data hiding). In light of these classifications, we can define our 

method in this paper as follows: it belongs to the spatial domain reversible data hiding technique, utilizing 

the histogram shifting technique. We classify it as blind data hiding because it does not rely on data and 

parameters and original image for data extraction. 

   

 

  Reza Ghorbandost Soveiri   Tel.: +989112161637 

        reza.ghorbandost@srbiau.ac.ir 

 

*. Corresponding author.        Tel.: +989123832297 

      Maryam Rajabzadeh Asaar 

        asaar@srbiau.ac.ir 

        m.r.asaar@iau.ir 

a  Department of Electrical and Computer Engineering, Science 

    and Research Branch, Islamic Azad University, Tehran, Iran 

 

b  Department of Electrical and Computer Engineering, Science 

    and Research Branch, Islamic Azad University, Tehran, Iran 

mailto:reza.ghorbandost@srbiau.ac.ir
mailto:asaar@srbiau.ac.ir


2 

 

Additionally, it falls into the category of fragile and non-robust when facing intentional attacks. Considering 

these characteristics and features, we can effectively employ this method in applications like content 

integrity verification and identity authentication. Notably, in the spatial domain of digital images, two of 

the most prominent data-hiding techniques are difference expansion (DE) [2,3,4,5] and histogram shifting 

(HS) [6-31], known for their high data embeddability and the algorithms' reversibility. 

In 2003, the reversible data embedding method based on difference expansion was initially proposed by 

John Tian [2]. Since then, researchers have extensively utilized this technique and developed various 

schemes and approaches in recent years. In 2007, Todi and Rodriguez [32] introduced a method for 

reversible data embedding and concealment using prediction-error expansion (PEE). Since then, researchers 

have extensively utilized this technique with other base techniques for various schemes in recent years 

[6,24,31, 33-35]. In 2017, Jung [35] presented a data embedding method employing the PEE technique. 

Initially, Jung divided the image into non-overlapping 1×3 blocks, predicted the maximum and minimum 

values within each block, and then performed data embedding and image recovery using the PEE technique. 

Jung's method embeds two bits of data for every three pixels. Specifically, Jung 's approach exhibits a 

maximum embedding capacity of 2/3 of the total pixels in the images.   

In 2006, Ni et al. [7] introduced the concept of reversible data hiding based on histogram shifting. 

Subsequently, numerous researchers have developed methods and schemes utilizing this technique to 

achieve high embedding capacities (EC) [8,13,16]. In the recent years, researchers have also obtained 

significant results by leveraging prediction error histogram shifting [9-12, 14-31]. In 2009, Tsai et al. utilized 

linear prediction to increase the embedding capacity [11]. Hu et al. employed cascading block-wise 

prediction to enhance the embedding capacity. They divided the original image into 4×4 or 5×5 blocks and 

embedded data in the original image prediction error based on their prediction model [14].  

Furthermore, in 2020, Chang et al. achieved high embedding capacity while preserving visual image quality 

by utilizing cascading block-wise prediction and signed digits [19]. 

In 2021, Hu et al. [29] proposed a novel Convolutional Neural Network (CNN)-based prediction approach 

by luminously dividing a grayscale image into two sets and applying one set to predict the other set for data 

embedding. The proposed CNN predictor is a lightweight and computation-efficient network with the 

capabilities of multi receptive fields and global optimization. This CNN predictor can be trained quickly 

and well by using 1000 images randomly selected from ImageNet. Furthermore, they proposed a two stages 

of embedding scheme for this predictor. Their experimental results showed that the CNN predictor can make 

full use of more surrounding pixels to promote the prediction performance. Furthermore, in the their 

experimental way they  showed that the CNN predictor with expansion embedding and histogram shifting 

techniques can provide better embedding performance in comparison with those classical linear predictors. 

In 2024, Lu et al. [31] proposed an Optimized Convolutional Neural Network-based Predictors (OCNNP) 

technique that increased the zero-valued points in predicted images, significantly enhancing the embedding 

capacity. Additionally, they introduced a novel Lower Surround Background Complexity (LSBC)-based 

Prediction Error Expansion (PEE) method, which refines the sorting of prediction errors for data embedding, 

thereby reducing image distortion and improving overall embedding performance. 

This paper proposes a data-hiding method using histogram shifting, signed digits, floating numbers, and a 

4×4 cascading block-wise prediction. Initially, we use cascading block-wise prediction to calculate the 

prediction errors from the host image. Then, the binary stream data undergoes a two-step transformation 

(first transforming binary bits into signed digits and then converting signed digits into floating numbers). 

We embed these transformed data into the prediction errors of the image using histogram shifting. 

Experimental results demonstrate that our proposed method achieves an exceptionally high embedding 

capacity and maintains good image quality, considering the amount of embedded data compared to previous 

methods. We organize the remaining sections of this paper as follows: Section 2 presents the proposed 

method, Section 3 provides the experimental results and corresponding discussions, and finally, Section 4 

presents the conclusions. 

 

2. Proposed scheme 
In this section, we first introduce the proposed encoder and decoder model. Then, we examine the strategy 

of assigning signed digits to the binary stream. In the following, we describe the proposed prediction 

scheme, and at the end of this section, we describe the scheme of data embedding, data extraction, and 

recovery of the original image and end with an example. 



3 

 

2.1. Proposed encoder scheme 
 

According to Fig. 1, the details of our proposed scheme are presented, which we will describe. In the first 

step in the transmitter or encoder, the prediction (Pr)  is taken from the host image (Px) based on the cascade 

prediction of the proposed scheme. In the second step, the prediction error (d), (the difference between the 

original image and the image prediction function) is calculated. Next in the third step, data embedding in 

the image prediction error is done based on the histogram shifting scheme. Then, in the fourth step, we 

obtain the stego image from the sum of the prediction function of the original image and the embedded 

prediction error. The stego image is initially based on floating numbers, Finally in the fifth step, by placing 

the assigned key, the final stego image is obtained. It is noteworthy that the stego image based on the floating 

number on the receiver or decoder side helps to recover the original image prediction. For this reason, the 

image sent to the receiver is a stego image based on floating numbers.  

 

 

 

2.2. Proposed decoder scheme 

 
According to Fig. 2, in the first step on the receiver or decoder side, by placing the assigned key, the main 

stego image from the stego image based on floating number is obtained. In the second step, we recovery the 

original image prediction function from the stego image based on floating number. In the third step, the 

embedded prediction error (dnew), from the difference between the main stego image and the original image 

prediction function is calculated. Then in the fourth step, based on the histogram of the prediction error 

(dnew), we first extract the floating numbers stream and convert it into a binary stream with two conversion 

steps. In the fifth step, the embedded pixels of prediction error (dnew) are returned to their first state. Also, 
the non-embeddable pixels shifted in the transmitter before the data embedding step to separate the 

embedded pixels from the non-embedded pixels are returned to the first state. In this step, the prediction 

error of the original image is recovered. In the final step, we obtain the original image (Px) from the sum of 

the prediction function of the original image (Pr) and the recovered prediction error (drec).     

 

 

 

2.3. Strategy of assigning code to a binary stream  
 

In general, in stego images, the PSNR value of the stego image expresses the quality, clarity and fidelity of 

the marked image compared to the original image. The larger the PSNR size, the better the quality of the 

image, and the resolution of the image will be at an acceptable level. In examining the dependence of  PSNR 

in marked images, two factors cause PSNR reduction in images after data embedding, first data embedding 

in embeddable pixels, second the shift of unembeddable pixels equal to the maximum data size in the stream 

of embeddable secret data, which is used to avoid overlap between embedded and non-embedded pixels and 

separate them from each other. For example, in embedding the binary stream data (101000010)2 binary data 

of "0" will not cause any change in embeddable pixels; even, if their number is huge, they only play a role 

in occupying the embedding capacity. The binary data of "1" creates change by one unit in the embeddable 

pixels after embedding, if the number of 1's in the binary stream is high, after embedding all of them in the 

host image, it will cause extensive changes in embeddable pixels as a result cause  distortion in  the image 

visual quality and as a result reduce the amount of PSNR. Also, a one-unit shifting in non-embeddable pixels 

helps reduce their PSNR. In the method of this paper, which uses the method of signed digit, the effect of 

this data on reducing or increasing the PSNR of the image has been carefully examined, and the results of 

relevant experiments prove and confirm this effect in increasing or decreasing PSNR, which we will review 

and analyze. In the method of the paper, we assume that "Sbi"  is a stream of numbers of binary and this 

stream is supposed to be converted from binary numbers to signed digit. 

 

 

Fig. 1  Proposed encoder flowchart 
 

 

Fig. 2  Proposed decoder flowchart 

 



4 

 

In Fig. 3, n2, n3, and n4 respectively show the size of the division of this stream of binary data in 2-bit binary 

digit, 3-bit binary digit, 4-bit binary digit format.  In general, as the size of n increases, the image embedding 

capacity increases by the same amount according to the method used in the paper. The interpretation of this 

can be expressed according to Eq.1. ECNEW is the new embedding capacity (using the proposed signed digit 

stream), which is directly related to n. ECOLD is the embedding capacity (using a normal binary data stream) 

using the same prediction function and prediction error used in our proposed method. 

 

 

 

 

 

For example, if the maximum embedding capacity in the cover image is 200,000 bits, if we use  signed digit 

of two-digit, the new capacity will be 400,000 bits. If we use signed digit of three-digit, the embedding 

capacity will be 600,000 bits. By using signed digit of four-digit, we will achieve a capacity of 800,000 bits. 
With the same procedure, for larger n, the embedding capacity will increase and this increase will be 

accompanied by the loss of PSNR. In allocating the signed digit in the method of this paper, we have to say 

that this general rule is the same for 2-bit, 3-bit, and 4-bit binary numbers or binary numbers with more bits. 
For brevity, we refer to assigning the code to 3-bit digits of the binary data stream. 

(100,111,011,011,111,110,111,110,000,111,001,001,000)2 data stream which is divided into 3 bits to 

allocate the marking bits. According to the size of n, we separate the above binary data stream as 3 bits. So, 

based on conversion Table 1, data conversion code allocation is done.  

In general, we can prevent the reduction of PSNR in an image after data embedding by using the data 

transform strategy. In first step, we reduce the size of data stream by converting bits of data stream into 2-

bit, 3-bit, 4-bit or n-bit units. Subsequently we convert the  2-bit, 3-bit, 4-bit or n-bit units to signed digit. 

This data conversion helps to increase the embedding capacity in the image. However, when addressing the 

reduction of PSNR, we need to address two tasks: 

1. Which digit should we use for 2-bit, 3-bit, 4-bit or n-bit units allocation in bit stream? 

2. Which mechanism should we employ based on the repetition of these digits in the binary stream?  

After conducting experiments and analysis, we have reached a general conclusion. We can interpret the 

scenarios mentioned in Table 1 as follows: In cases 1 and 2, there is no difference in the assigned codes for 

signed digits. The maximum changes in embeddable pixels after data embedding is +7 or -7 units. Moreover, 

to separate the embeddable pixels from the non-embeddable pixels, we will have a shift equal to the 

Maximum positive and negative numerical size of the allocated code to a binary stream. Specifically, for 

cases 1 and 2, we will shift +7 units to the right for positive pixels and -7 units to the left for negative pixels. 

In the conducted experiments on several standard test image for sample, "airplane" image, the data was 

embedded according to cases 1 and 2, resulting in a PSNR of approximately 35.75 decibels. 

Furthermore, in cases 3 and 4, the assigned codes for generating the signed digits are the same. Based on 

the encoded information, the maximum producible distortion during data embedding in embeddable pixels 

will be -4 units for case 3 and +4 units for case 4. On the other hand, for distinguishing embeddable pixels 

from non-embeddable ones, we will have a shift in the image's histogram based on the maximum absolute 

numerical values of positive and negative digits in the assigned code stream. For case 3, this shift will be 

+3 units to the right for positive pixels and -4 units to the left for negative pixels, as illustrated in Fig. 4. 
Similarly, for case 4, this shift will be +4 units to the right for positive pixels and -3 units to the left for 

negative pixels, similar to Fig. 4.  

In our experiments on a standard image sample "Airplane", we embedded the data using cases 3 and 4, 

which improved image quality after embedding compared to cases 1 and 2 when using the encoded data 

arrangement. The PSNR value obtained was 39.5 dB. According to Table 1, the code allocation arrangement 

for cases 3 and 4 is more suitable than for cases 1 and 2. 

By considering cases 3 and 4 as the codes for the signed digit stream and taking into account a statistical 

parameter, namely the data repetition, we aim to achieve better results in terms of PSNR for the stego  image. 

Additionally, in case 5, the data comprises the same information as in cases 3 and 4, but their arrangement 

has been modified based on their repetition in the binary bit stream. Let us now delve into the analysis. 

(1)  
NEW OLDEC EC= ×n

Fig. 3  Strategy of to convert binary stream to signed digit stream 

 

Fig. 4  illustration of  non-embeddable pixel shifting and data embedding in embeddable 

pixels  for (n=3) 

 



5 

 

Within the 3-bit binary data stream (000, 001, 010, 011, 100, 101, 110, 111)2, we calculated the number of 

occurrences for each 3-bit code in the binary stream. Subsequently, we assigned the least impactful data 

code, in terms of its marginal effect on image distortion, based on the descending order of repetition during 

the embedding process. 

Through experiments on a standard image sample "Airplane" with an embedding capacity of 206,270 bits, 

we determined the repetitions of the binary codes of  000, 001, 010, 011, 100, 101, 110, and 111. We present 

the repetition counts in Table 2. 

As shown in Table 2, binary code 110 has the highest repetition  in the binary data stream, while binary 

code 010 has the lowest. Consequently, we initially assigned code 0 as the least impactful data regarding 

image distortion to the binary digit 110 and code -4 as the most impactful data to the binary digit 010. The 

remaining codes are allocated to suitable binary digits based on their influence on image distortion, 

considering their repetition. 

In continuation, using signed-digit pattern of the case 5, we achieved a PSNR of 39.96 dB in the standard 

"Airplane" image, indicating an improvement compared to the signed-digit pattern of the case 3 or case 4. 

Similarly, we define signed digits by n=2  for the bit stream (10, 01, 11, 01, 10, 11, 11, 11, 10, 11, 11, 10, 

00, 01, 11, 00, 10, 01, 00, 00)2, as shown in Tables 3 and 4.  

Likewise, for the bit stream (1001, 1101, 1011, 1111, 1011, 1110, 0001, 1100, 1001, 0000)2, we define by 

n=4 signed digits, as presented in Tables 5 and 6. 

 

2.4. Proposed cascading block-wise prediction scheme  
 

Fig.5 and  algorithm 1 and algorithm 2 illustrates that we initially divided the original image into 4x4 blocks. 

In each block, we select the pixel P33 as the reference pixel, and by replacing it with P22, P24, P42, and 

P44, we obtain the prediction matrix of the proposed method presented in this paper. Finally, the difference 

of the original image is taken from the prediction matrix, which leads to the prediction error of the original 

image. The critical point is that according to the characteristics of the prediction function in the method of 

this paper, in each block of the image, 0.75 of each block finds the ability to embed information. 

 

 Fig. 5  Prediction method to calculate prediction error  

 



6 

 

2.5. Data embedding 
 

According to the proposed method in this paper, the data embedding process in the original image consists 

of the following steps. Here, the binary data stream is divided into a certain number of bits, considering a 

value of 3 to create the signed digit stream. The embedding steps follow the same procedure for the binary 

data stream with n = 2 and n = 4. 

Input: The original image (Px)  and  the converted secret data (S) 

Output: The marked image (Pxnew) 

Step1: Conversion of binary data  stream “S” with two conversion steps to floating number data stream 

Step2: Calculation of the prediction function of the original image (Pr) based on our Proposed method (Fig. 

5) 

Step3: Calculation of the prediction error of the original image (d) according to Eq. (2) 

 

(2)  

Step 4: Based on the data in the signed digits (maximum positive and negative values in the signed digits), 

according to Tables (2, 4, 6), we shift the non-embeddable pixels related to the prediction errors of the 

original image based on those values. Please refer to equations (3-5). 

 

(3)  
 

  

new

d +1          if    zero point > d > peak point
for(n = 2)  d =

d - 2          if  - zero point < d < peak point



 

 

(4) 
new

d +3         if  zero point > d > peak point
for(n= 3)  d =

d - 4         if  - zero point < d < peak point





 

 

(5) 
new

d +7          if  zero point > d > peak point
for(n = 4)  d =

d - 8          if  - zero point < d < peak point





 

 

Step5: Embedding the floating number stream data in embeddable pixels Eq. (6) 

 

 

 

(6) 
new new

new

new

d + S       if  d = 0
for(n = 2)&(n = 3)&(n = 4)    d =

d              otherwise





 

 

Step6: The sum of the embedded prediction error (dnew) with the prediction of the original image (Pr) 

 

(7) 
xnew new rP = d +P  

Step7: Replacing signed digit instead of the floating number and finally creating the stego image 

 

Fig. 4 shows a representation of the non-embeddable pixel shifting and the embedding of signed digit stream 

in embeddable pixels. 

 

2.6. Data extraction and original image recovery 
 

According to the method of this paper, the steps of data extraction  and original image recovery for n=3 are 

performed as follows. These steps are the same for n=2 and n=4. 

 

Input: The marked image (Pxnew) 

Output: The extracted secret data (S) and the recovered original image (Px)    

x rP Pd  



7 

 

Step1: Calculation of the prediction function of the original image (Pr) and the stego image (Pxnew) from the 

stego image based on the floating number 

Step2: Calculation of the prediction error of the stego image (dnew) according to Eq. (8)   

 

 

 

(8) 
new xnew rd = P - P  

  

Step3: The extraction of embedded data and the two-step conversion of that data into a stream of binary 

bits for n=2, n=3, and n=4 are the same. For example, the extraction method for the signed digit with n=3 

is performed according to Eq. (9). For the signed digit with n=2 and n=4, the extraction method is done in 

the same way. 

 

 

 

 

Step 4: The prediction error recovery of the original image (drec) for the signed digit with n=3 is done 

according to Eqs, (10) and (11).  

 

 

 

 

 

 

 
(9) 

 

new

new

new

new

new

new

     0           if      d = 0 

     1            if      d = 1 

     2           if      d = 2

     3           if      d = 3
S = 

   -1           if      d = -1

  - 2           if      d = - 2

  - 3     new

new

  

      if      d = - 3

  - 4           if      d = - 4















 

 

 

 

 
(10) 

 

new

new new

new new

new new

rec new new

new

     0                 if      d = 0 

     d -1         if      d =  1  

     d - 2        if      d =  2

     d - 3        if      d =  3

d =      d +1       if      d = -1

     d +2      i

  

new

new new

new new

new

f      d = - 2

     d +3       if      d = - 3

     d +4       if      d = - 4

     d                     otherwise

















 



8 

 

 

 

(11) 
       

rec rec

rec

rec rec

d -  3               if     zero point > d > peak point
d =

d +4               if   - zero point < d < peak point





 

 

Step5: The sum of the recovered prediction error (drec) with the prediction of the original image (Pr) 

according to Eq. (12). 

 

 

(12) 
x rec rP = d +P  

 

Fig. 6 shows a representation of data extraction from embedded pixels and the inverse shifting of non-

embedded pixels. 

 

2.7. Example of the proposed scheme 

 

This section provides an example of the data embedding process based on the proposed method in this paper. 

we follow the procedure depicted in Fig. 7 and take the following steps: 

Firstly, the procedure begins with obtaining the prediction error from the original image using the suggested 

cascading block-wise prediction. After shifting the non-embeddable pixels, we embed the secret data into 

the remaining embeddable pixels. In this example, we set the length of the signed digit stream to n=3. In 

the first step, we transform the binary bit stream (100,111,011,011,111,110,111,110,000,111,001,001)₂ into 

signed digits (-3 -2 -1 -1 -2  0 -2  0  2 -2  1 1) sd based on n=3 using Table 2. Then, in the second step, the 

signed digit stream is converted into a floating number stream (0.401  0.714  0.381  0.366  0.711  0.655 

0.761   0.689   0.066   0.715   0.102   0.179)fn using Eq. (15). The data embedded in the embeddable pixels 

of the image prediction error is the same stream of floating number data, then the embedded prediction error 

is added to the prediction of the original image, the result is a marked image with data content of floating 

numbers. If we replace the embedded floating data with the equivalent of the signed digit according to 

Eq.(16), we will get the final marked image result. 

 

 

 

 

 

 
 

 
(13) 

 

 

 

 

0 i

0.1 i

sd fn

0.2 i

0.3 i

     0 < β < 0.1                if   S = 1  

  0.1< β < 0.2              if   S = -1       
(data) to (data)  

  0.2 < β < 0.3              if   S = - 2

  0.3 < β < 0.4              if   S = 0










 

 

 

Fig. 6  illustration  of data extraction from embedded pixels and reverse shifting of non-embedded 

pixels for (n=3) 

 

Fig. 7  Example of  data embedding 

 



9 

 

 

 
(14) 

 

 

i 0

i 0.1

fn sd

i 0.2

i 0.3

   S = 1                 if      0 < β < 0.1

   S = -1               if   0.1< β < 0.2      
(data) to (data)

   S = - 2              if   0.2 < β < 0.3

   S = 0                if   0.3 < β < 0.4





 




 

 

 

 

 

 

 
 
 

 

 
 

(15) 

 

 

 

 

 

 

 

0 i

0.1 i

0.2 i

0.3 i

sd fn

0.4

       0 < β < 0.1                if   S = 2  

    0.1< β < 0.2              if   S = 1       

   0.2 < β < 0.3              if   S = - 4

   0.3 < β < 0.4              if   S = -1
(data) to (data)

   0.4 < β < 0.


i

0.5 i

0.6 i

0.7 i

5              if   S = - 3

   0.5 < β < 0.6              if   S = 3

   0.6 < β < 0.7             if   S = 0

   0.7 < β < 0.8             if   S = - 2















 

 

 

 
(16) 

i 0

i 0.1

i 0.2

i 0.3

fn sd

i

    S = 2                 if      0 < β < 0.1

    S = 1                 if   0.1< β < 0.2      

    S = - 4              if   0.2 < β < 0.3

    S = -1               if   0.3 < β < 0.4
(data) to (data)

    S = - 3


0.4

i 0.5

i 0.6

i 0.7

              if   0.4 < β < 0.5 

    S = 3                if   0.5 < β < 0.6

    S = 0                if   0.6 < β < 0.7 

    S = -2              if   0.7 < β < 0.8 















 

 

 

 

 

 

 

 



10 

 

 

 

 

 

 

 
 
 

(17) 

 

 

 

 

0 i

0.05 i

0.1 i

0.15 i

sd fn

         0 < β < 0.05             if   S = - 2  

    0.05 < β < 0.1            if   S = - 4       

      0.1< β < 0.15           if   S = -6

    0.15 < β < 0.2            if   S = 2

      0.2 < β

(data) to (data) 

0.2 i

0.25 i

0.3 i

0.35 i

0.4 i

0.4

< 0.25           if   S = -1

    0.25 < β < 0.3            if   S = - 8

      0.3 < β < 0.35           if   S = 7

    0.35 < β < 0.4            if   S = 0

      0.4 < β < 0.45           if   S = - 5

    0.45 < β 5 i

0.5 i

0.55 i

0.6 i

0.65 i

0.7

< 0.5            if   S = 3

      0.5 < β < 0.55           if   S = -7

    0.55 < β < 0.6            if   S = 6

      0.6 < β < 0.65           if   S = 4

    0.65 < β < 0.7            if   S = 5

      0.7 < β < 0.7 i

0.75 i

5           if   S = 1

    0.75 < β < 0.8            if   S = - 3



























 

 

 

 

 



11 

 

 

 

 

 

 

 
(18) 

 
 

i 0

i 0.05

i 0.1

fn sd

    S = - 2                if       0 < β < 0.05                 

    S = - 4                if  0.05 < β < 0.1                     

    S = -6                if    0.1< β < 0.15            

(data) to (data) 

i 0.15

i 0.2

i 0.25

i

    S = 2                 if   0.15 < β < 0.2              

    S = -1                if    0.2 < β < 0.25           

    S = - 8               if   0.25 < β < 0.3              

    S = 7                 if   0.3

i 0.35

i 0.4

i 0.45

  0.3 < β < 0.35            

    S = 0                 if   0.35 < β < 0.4               

    S = - 5               if     0.4 < β < 0.45            

    S = 3                 if   0.45 < β < 0.5             

 i 0.5

i 0.55

i 0.6

i

   S = -7               if     0.5 < β < 0.55           

    S = 6                 if   0.55 < β < 0.6              

    S = 4                 if     0.6 < β < 0.65             

    S = 5                 if   0 0.65

i 0.7

i 0.75

.65 < β < 0.7            

    S = 1                 if     0.7 < β < 0.75            

    S = - 3               if   0.75 < β < 0.8             



























 

 

 

 

To convert the signed digit stream into a floating number stream or vice versa, Eqs (13-18) are used during 

the embedding and extraction steps, depending on the length of the n- bit units ( n=2 or n=3 or n=4) to create 

signed digit. To extract data and recover the original image, we follow the procedure depicted in Fig. 8 and 

take the following steps: 

Firstly, we replace the stego image matrix, which contains the embedded data based on the floating number 

stream, with the equivalent signed digit stream. Subsequently, we receive the marked image at the receiver's 

side. Then, we obtain the prediction error from the marked image using prediction recovery. Based on the 

obtained prediction error, which includes the embedded data, we extract the data from the embedded pixels 

in the first step. We restore the non-embeddable pixels that were shifted at the sender's side to their initial 

state through an inverse shift in the second step and we obtain the prediction error of the original image. 
Finally, we recover the original image by adding the recovered prediction error of the image to the image 

prediction function. 

 

 

 

3. Experimental results 

 
All of the experiments were implemented on Matlab R2016a on Windows 10. Standard images with various 

textures and dimensions of 512×512 with gray scale were selected from [38] and [39] to conduct the 

experiments, as illustrated in Fig. 9. Also KODAK dataset [40] is considered which contains 12 images in 

bmp image file format with size of 768×512 were selected as test images, see Fig. 10. Peak Signal-to-Noise 

Ratio (PSNR) and Structural Similarity Index Measure (SSIM) and Mean Square Error (MSE) were applied 

to compare the performance quality of the proposed algorithm with related methods, whose formulas are 

shown in Eq. (19) and Eq. (20) and Eq. (21) and Eq. (22) and Eq. (23) and Eq. (24).  

 

Fig. 8  Example of  data extraction and original image recovery 

 



12 

 

 

(19) 

 

2

10

255
PSNR = 10×log  (dB)

MSE
 

 

(20) 
H W

2

i=1 j=1

1
MSE = × (P(i, j) - P (i, j))

H ×W


 

(21) 
α β γSSIM(P,P )= [l(P,P )] ×[C(P,P )] ×[S(P,P )]

where α = β = γ = 1

     

(22) 2 2

2× p× p +c
l(p, p )=

p ×(p ) +c





 

(23) 

p p

2 2

p p

2δ δ +c
c(p, p )=

+ +cδ δ





  

(24) 

 

p p

p p

δ +c
s(p, p )=

δ δ +c





  

3.1. Performance of the proposed scheme  
 

Based on the analysis of the curves depicted in Fig. 11, the bar chart in Fig. 12 and Fig. 13, and the data 

presented in Table 7 and Table 8, we observe a direct relation between the embedding Capacity and the 

number of bits n used for creating the signed digit. Generally, for n=2, the embedding capacity is twice that 

of the typical case using an embeddable binary bit stream. For n=3, it is three times; for n=4, it is four times 

the typical embeddable binary bit stream. The PSNR value of the image, which indicates the quality and 

level of distortion caused by data embedding, is influenced by two factors. The first factor is the distortion 

resulting from the shift of non-embeddable pixels, differentiating between embeddable and non-embeddable 

pixels. The second factor is the embedding of signed digits in the embeddable pixels. For instance, in the 

case of the "Lena" image, when the data is in the form of a binary stream, the embedding capacity is 202,990 

bits, and the corresponding PSNR value is 51.28 dB. When embedding the signed digit stream with n=2 in 

the image, the embedding capacity doubles compared to the usual case. This embedding capacity reaches 

405,980 bits, and the corresponding PSNR is 45.89 dB. Similarly, when embedding the signed digit stream 

with n=3 in the image, the embedding capacity becomes three times the usual case. In this case, the 

embedding capacity is 608,970 bits, and the related PSNR is 39.90 dB. Finally, when embedding the signed 

digit stream with n=4 in the image, the embedding capacity increases fourfold compared to the usual case. 

The embedding capacity reaches 811,960 bits in this instance, and the corresponding PSNR is 33.79 dB. 

 

 

Fig. 9  Test images: (a) Lena, (b) Boat, (c) Barbara, (d) Pepper in [38, 39]  

 

 

 

 

 

 

 

Fig. 10  Kodak image dataset in [40]  

 

 

 

 

 

 

 



13 

 

 

 

 

 

 

 

 

 

3.2. Security analysis of the proposed scheme 
 

One of the crucial aspects of data hiding in multimedia is accessing the embedded data securely. Based on 

the discussions in sections 2.3, we employ a two-step transformation process for embedding binary stream 

data. In the first step, we convert the binary data into a signed digit stream, and in the second step, we 

transform it into a decimal floating number stream. Both transformations utilize the numbers' statistical 

properties and floating nature, acting as a key provided by the sender and securely transmitted through a 

secure channel to the trusted receiver. For example, for n=3, we assigned a code to each 3-bit binary digit 

in binary stream based on their calculated the number of repetitions properties. For instance, (000)2 

corresponds to the number 2, (001)2 corresponds to the number 1, and (111)2 corresponds to the number -2. 

This digit assignment serves as a key and code for each 3-bit binary digit in the binary stream. If 

unauthorized individuals gain access to the signed digit stream, which includes the assigned codes, on the 

receiver's side, the data becomes practically untranslatable without possessing the key. 

Additionally, each signed digit is associated with a floating number during the embedding step. In the first 

step on the receiver's side, we need to convert this floating number back to a signed digit. In the second step, 

with the help of the key, we transform the signed digit into a binary bit stream representing the original data. 

 

3.3. Performance comparison of the proposed method with other related methods 
 

This section compares the performance and effectiveness of the proposed method with three other methods 

[6, 29, 31] based on two criteria: Embedding Capacity (EC) and PSNR. The results are illustrated in the 

curves Fig. 14. It is important to note that this comparison is between three related methods. Fig.14 shows 

that the proposed method exhibits a significantly increased PSNR compared to the three other methods. 

Additionally, Fig. 14 presents the ratio of embedding capacity to PSNR for four sample images "Lena", 

"Boat" and "Barbara" and "Pepper". for instance, on the curve of the "Lena" image, when we embed the 

binary data size of 10,000 bits, the PSNR is 64.36 dB and when we embed the binary data size of 40,000 

bits, the PSNR is 58.32 dB. in the same way after embedding the binary data size of 80,000 bits, the PSNR 

is 55.33 dB and after embedding the binary data size of 120,000 bits, the PSNR is 53.55 dB. Furthermore, 

we observe that the other methods achieve lower PSNR values in the same embedding capacities than our 

method. In other words, our proposed method maintains a suitable PSNR. Moving on, we perform a detailed 

analysis of the PSNR  of the proposed method compared to the three other methods. In this comparison, we 

consider the signed digit stream with n=1. For the "Lena" image, our method achieves an PSNR of 64.36 

dB in the EC of 10,000 bits , while the other three methods [6, 29, 31] achieve PSNRs of 45 dB, 55 dB, and 

58 dB, respectively. Compared to these three methods, our method shows improvements of 43%, 17%, and 

10.9%. Also our method achieves an PSNR of 58.32 dB in the EC of 40,000 bits , while the other three 

methods [6, 29, 31] achieve PSNRs of 38 dB, 48 dB, and 52 dB, respectively. Compared to these three 

methods, our method shows improvements of 53.47%, 21.5%, and 12%. our method achieves an PSNR of 

55.33 dB in the EC of 80,000 bits , while the other three methods [6, 29, 31] achieve PSNRs of 34 dB, 44 

dB, and 49 dB, respectively. Compared to these three methods, our method shows improvements of 62. 7%, 

25.7%, and 12.9%. Finally, our method achieves an PSNR of 53.55 dB in the EC of 120,000 bits , while the 

other three methods [6, 29, 31] achieve PSNRs of 32 dB, 42 dB, and 47.5 dB, respectively. Compared to 

these three methods, our method shows improvements of 67. 3%, 27.5%, and 12.7%. Also for other standard 

test images, "Boat" and "Barbara" and "Pepper" the trend of increase of PSNR is almost the same. 

Fig. 11  Comparison curve  between embedding capacity and PSNR values for four standard 

images with different n 

 

 

 

 

 

 

 

Fig. 12  Comparison of embedding capacity of standard images with different n 

 

 

 

 

 

 

 

Fig. 13  Comparison of embedding capacity of  Kodak images with different n 

 

 

 

 

 

 

 



14 

 

Based on the obtained results from comparing our proposed scheme with three other schemes, it is evident 

that our method exhibits a significantly increased PSNR or visual quality. We can attribute this improvement 

to utilizing the proposed signed digits presented in this paper. 

 

3.4. solution for pixel underflow or overflow problems  
 

Since the length of the pixels values in grayscale images is 8 bits and in the range [0  255], when embedding 

binary data, data with the value of 1 bit is lost after embedding in pixels of 255. Also, data with a value of 

-1 bit is lost after embedding in pixels 0. Ultimately, the data is not extracted correctly after being embedded 

in the image. To prevent overflow and underflow problems when embedding data, some researchers reduced 

the pixels values of 255 by 1 unit and increased the pixels values of zero  by 1 unit [18,20,22,24,28,30,31]. 

But their method reduced the visual quality of the stego image. Some also used extra data (flag bits) to 

marked the pixels that would experience overflow and underflow problems after data embedding [21]. Their 

method also resulted in the space consumption of embedding extra data in the cover image and reduced 

image quality. In our proposed scheme, considering the use of a matrix of decimal digits to create the final 

stego image in the transmitter and the receiver and recovering the prediction function and the original image 

in the receiver, With access to auxiliary data (the decimal part of the matrix), despite encountering a alot of 

number of pixels of 255 and 0  in the cover image and creation numerous overflow and underflow problems 

when embedding data in the cover image, After receiving the decimal matrix image at the receiver side and 

removing the decimal part of the matrix and adding the equivalent signed digits to the whole number part 

of the matrix, the final stego image is obtained. In addition, with the help of the decimal matrix, the original 

image and the prediction function are recovered. Finally, using Eq. 14 and Eq. 16 and Eq. 18, the data is 

extracted based on the signed digits, and after replacing it with the equivalent binary data in the form of 2-

bit, 3-bit, or 4-bit digits, the main data (binary data stream) is extracted correctly, see Table 2 and Table 4 

and Table 6. Therefore, based on the proposed algorithm, the effects of the overflow and underflow 

problems do not have any disruption in the performance of extracting embedded data and recovering the 

original image from the stego image. Performance of the proposed scheme  in data embedding and original 

image recovery against overflow and underflow problems on 12 images of Kodak image dataset is shown 

in Table 9.  
 

 

 

4. Conclusions 
 

 

This paper introduces a reversible data hiding method based on prediction error histogram shifting, utilizing 

signed digits and cascading block-wise prediction. The achievements of the proposed scheme can be 

summarized as follows: 

1- Using signed digits stream increases the embedding capacity up to four times compared to binary bit 

stream. 

2- The two-step transformation process, involving the conversion of binary bit stream to signed digit stream 

and then to floating number stream, followed by embedding them in the prediction error of the image, 

dramatically limits data access and effectively enhances algorithm security. 

3- Using the matrix of decimal values eliminates overflow and underflow problems after data embedding. 

Considering the vulnerability of spatial domain data hiding methods to deliberate attacks, our future research 

aims to leverage the high embedding capacity of the proposed method and employ data strategies to enhance 

the resistance of data embedding algorithms against intentional attacks. We aim to further improve the 

performance of the proposed method in terms of robustness against intentional attacks.  

In the future work, we intend to increase the resistance of the stego image against all kinds of the intentional 

attacks by using the method of this paper and using the proposed schemes in [36] and [37]. 

 

Fig. 14  Comparison between the proposed method (n=1) and the three related methods [6, 29, 31] in 

terms of embedding rates and PSNR values 

 

 

 

 

 

 

 



15 

 

References 

1. Cox, I., Miller, M., Fridrich, J. and Kalker, T. “Digital Watermarking and Steganography”, Morgan Kaufmann 

Publishers Inc., San Francisco. (2007). 

2. Tian, J. “Reversible data embedding using a difference expansion”, IEEE Trans. Circuits Syst, 13(8), pp. 890-896 

(2003). https://doi.org/10.1109/TCSVT.2003.815962. 

3. Alattar, AM. “Reversible watermark using the difference expansion of a generalized integer transform”, IEEE 

Transactions on Image Processing, 13(8), pp. 1147–1156 (2004).  https://doi.org/10.1109/TIP.2004.828418. 

4. Qu, X., Kim, S., Kim, HJ. “Reversible watermarking based on compensation”, J Electr Eng Technol, 10(1), pp. 422–

428(2015). https://doi.org/10.5370/JEET.2015.10.1.422. 

5. Chang, C., Huang, Y. & Lu, T. “A difference expansion based reversible information hiding scheme with high stego 

image visual quality”, Multimed Tools Appl, 76(10), pp. 12659–12681 (2017). https://doi.org/10.1007/s11042-016-

3689-3. 

6. Coltuc, D. “Improved embedding for prediction-based reversible watermarking”. IEEE Trans Inf Forensics Secur 

6(3), pp. 873–882 (2011). https://doi.org/10.1109/TIFS.2011.2145372.  

7. Ni, Z., Shi, Y.Q., Ansari, N., Su, W. “Reversible Data Hiding”, IEEE Transactions on Circuits and Systems for Video 

Technology, 16(3), pp. 354–362 (2006). https://doi.org/10.1109/TCSVT.2006.869964.  

8. Fallahpour M, Sedaaghi MH. “High capacity lossless data hiding based on histogram modification”, IEICE Electron 

Express, 4(7), pp. 205–210 (2007). https://doi.org/10.1587/elex.4.205.  

9. Hong ,W., Chen, TS., Shiu, CW. “Reversible data hiding based on histogram shifting of prediction errors”, 

Proceedings of the International Symposium on Intelligent Information Technology Application Workshop, pp. 292–

295 (2008). https://doi.org/10.1109/ETTandGRS.2008.263. 

10. Hong, W., Chen, TS., Shiu, CW. “Reversible data hiding for high quality images using modification of prediction 

errors”, J Syst Softw, 82(11), pp.1833–1842 (2009). https://doi.org/10.1016/j.jss.2009.05.051.  

11. Tsai, PY., Hu, YC., Yeh, HL. “Reversible image hiding scheme using predictive coding and histogram shifting”, 

Signal Process, 89(6), pp.1129–1143 (2009). https://doi.org/10.1016/j.sigpro.2008.12.017. 

12. Fallahpour, M., Megias, D., Ghanbari M. “Subjectively adapted high capacity lossless image data hiding based on 

prediction errors”, Multimed Tools Appl, 52(2-3), pp.513–527 (2011). https://doi.org/10.1007/s11042-010-0486-2. 

13. Pan, Z., Hu, S., Ma, X., Wang, L. “Reversible data hiding based on local histogram shifting with multilayer 

embedding”, J. Vis. Commun. Image Represent, 31, pp.64–74 (2015). https://doi.org/10.1016/j.jvcir.2015.05.005. 

14. Hu, YC., Tsai, PY., Yeh, JS., Chen, WL. “Residual histogram shifting technique based on cascading prediction for 

reversible data hiding”, Advanced multimedia and ubiquitous engineering, Berlin, Heidelberg, pp. 105–110 (2015). 

https://doi.org/10.1007/978-3-662-47487-7_16. 

15. Tseng, CC., Chiu, YH., Chou, YC. “A histogram shifting-based reversible data hiding scheme using multi pattern 

strategy”, Proceedings - 2015 international conference on intelligent information hiding and multimedia signal 

processing, pp. 125–128 (2016). https://doi.org/10.1109/IIH-MSP.2015.11.  

16. He, W., Xiong, G., Zhou, K., et al. “Reversible data hiding based on multilevel histogram modification and pixel 

value grouping”, J.Vis. Commun. Image Represent, 40, pp.459–469 (2016). https://doi.org/10.1016/j.jvcir.2016.07.014. 

17. Yu, C., Zhang, X., Tang, Z., Xie, X. “Separable and error-free reversible data hiding in encrypted image based on 

two-layer pixel errors”, IEEE Access, 6, pp.76956–76969 (2018). https://doi.org/10.1109/ACCESS.2018.2882563. 

18. Tang, Z., Xu, S., Ye, D., Wang, J., Zhang, X., Yu, C. “Real-time reversible data hiding with shifting block histogram 

of pixel differences in encrypted image”, J Real-Time Image Proc, 16(3), pp.709–724 (2019). 

https://doi.org/10.1007/s11554-018-0838-0. 

19. Xie, X.Z., Chang, C.C., Hu, Y.C. “An adaptive reversible data hiding scheme based on prediction error histogram 

shifting by exploiting signed-digit representation”, Multimed. Tools Appl, 79, pp. 24329–24346 (2020). 
https://doi.org/10.1007/s11042-019-08402-6. 

20. Jia, YJ., Yin, ZX., Zhang, XP., Luo, YL. “Reversible data hiding based on reducing invalid shifting of pixels in 

histogram shifting”, Signal Process, 163, pp. 238–246 (2019). https://doi.org/10.1016/j.sigpro.2019.05.020. 

21. Faragallah, O.S., Elaskily, M.A., Alenezi, A.F., El-Sayed, H.S., Kelash, H.M. “Quadruple histogram shifting based 

reversible information hiding approach for digital images”, Multimed. Tools Appl, 80, pp. 26297–26317 (2021). 

https://doi.org/10.1007/s11042-021-10956-3. 

22. He, W., Xiong, G., Wang, Y. “Reversible Data hiding based on adaptive multiple histograms modification”, IEEE 

Trans. Inf. Forensics Secur, 16, pp. 3000–3012 (2021). https://doi.org/10.1109/TIFS.2021.3069173. 

23. Yang, C.Y., Wu, J.L. “Two-bit embedding histogram-prediction-error based reversible data hiding for medical 

images with smooth area”, Computers, 10 (11), pp. 152 (2021). https://doi.org/10.3390/computers10110152. 

24. Kouhi, A., Sedaaghi, M.H. “Prediction error distribution with dynamic asymmetry for reversible data hiding”. 

Expert Syst. Appl, 184, pp. 115475.1–115475.13 (2021). https://doi.org/10.1016/j.eswa.2021.115475. 

25. Huang, L. C., Chiou, S. F., & Hwang, M. S. “A Reversible Data Hiding Based on Histogram Shifting of Prediction 

Errors for Two-Tier Medical Images”, Informatica, 32(1), pp. 69-84 (2021), https://doi.org/10.15388/20-INFOR422. 

https://doi.org/10.1109/TIP.2004.828418


16 

 

26.  Padmaja, B., Manikandan, V.M. “A novel prediction error histogram shifting-based reversible data hiding scheme 

for medical image transmission”, 2021 4th International Conference on Security and Privacy (ISEA-ISAP), pp. 1–6 

(2021). https://doi.org/10.1109/ISEA-ISAP54304.2021.9688572. 

27. Myakal, S., Pal, R., Naveen, N. “Reversible data hiding technique using multi-layer perceptron based prediction and 

adaptive histogram bin shifting”, In: Proceedings of the 10th International Conference on Soft Computing for Problem 

Solving, pp. 231–243 (2020). https://doi.org/10.1007/978-981-16-2712-5_20. 

28. Mohammadi, A., Nakhkash, M. “Sorting methods and adaptive thresholding for histogram based reversible data 

hiding”, Multimed Tools Appl, 80, pp. 3307–3325 (2021). https://doi.org/10.1007/s11042-020-09719-3. 

29. Hu, R., Xiang, S. “CNN prediction based reversible data hiding”, IEEE Signal Process Lett, 28, pp. 464–8 (2021). 

https://doi.org/10.1109/LSP.2021.3059202. 

30. Fu, Z., Gong, M., Long, G., Gan, Z., Chai, X., Lu, Y. “Efficient capacity-distortion reversible data hiding based on 

combining multipeak embedding with local complexity”, Appl. Intell, 52, pp. 13006–13026 (2022). 

https://doi.org/10.1007/s10489-022-03323-8.  

31. Luo, Y., Qiu, Y., Lu, B., Qin,  S., Fu, Q., Zhang, S., Huang, Y., Su, Y. “Reversible Data Hiding based on optimized 

CNN predictor and Prediction Error Expansion with Lower Surround Background Complexity”, Computers and 

Electrical Engineering, 119, 109472 (2024). https://doi.org/10.1016/j.compeleceng.2024.109472. 

32. Thodi, DM., Rodriguez, JJ. “Expansion embedding techniques for reversible watermarking”, IEEE Transactions on 

Image Processing, 16(3), pp. 721–30 (2007). https://doi.org/10.1109/TIP.2006.891046. 

33. Chang, C.C., Huang, Y.H., Tsai, H.Y., Qin, C. “Prediction-based reversible data hiding using the difference of 

neighboring pixels”, Int. J. Electron. Commun. (AEÜ), 66, PP.  758 – 766 (2012). 

https://doi.org/10.1016/j.aeue.2012.01.008. 

34. Qin, C., Chang, C,C., Liao, L.T. “An adaptive prediction-error expansion oriented reversible information hiding 

scheme”, Pattern Recogn Lett, 33(16), pp. 2166–2172 (2012). https://doi.org/10.1016/j.patrec.2012.08.004. 

35. Jung, KH. “A high-capacity reversible data hiding scheme based on sorting and prediction in digital images”, 

Multimed Tools Appl, 76(11), pp. 13127–13137 (2017). https://doi.org/10.1007/s11042-016-3739-x. 

36. Milani, M. “A Novel Image Encryption using Improved Chaotic Maps and Multiple Encryption Tables”, Scientia 

Iranica, 31(21), pp. 2041-2055 (2022). https://doi.org/10.24200/sci.2022.59249.6138. 

37. Rasouli, F., Taheri, M and Sarvestani, R.R. “A Fragile Watermarking by Hamming Code on Distributed Pixels with 

Perfect Recovery for Small Tampers ” , ISeCure ,15.2 (2023). https://doi.org/10.22042/isecure.2023.321411.740. 

38. Standard dataset images available at https://ccia.ugr.es/cvg/CG/base.htm. 

39. The USC-SIPI Image Database https://sipi.usc.edu/database/. 

40. The Kodak Color Image Dataset, Image Available [Online]. Available: <http://r0k.us/graphics/kodak/>. 

 

 

Fig. 1  Proposed encoder flowchart 

Fig. 2  Proposed decoder flowchart 

Fig. 3  Strategy of to convert binary stream to signed digit stream 

Fig. 4  illustration of  non-embeddable pixel shifting and data embedding in embeddable pixels  for (n=3) 

Fig. 5  Prediction method to calculate prediction error  

Fig. 6  illustration  of data extraction from embedded pixels and reverse shifting of non-embedded pixels 

for (n=3) 

Fig. 7  Example of  data embedding 

Fig. 8  Example of  data extraction and original image recovery 

Fig. 9  Test images: (a) Lena, (b) Boat, (c) Barbara, (d) Pepper in [38, 39]  

Fig. 10  Kodak image dataset in [40]  

Fig. 11  Comparison curve  between embedding capacity and PSNR values for four standard images with 

different n 

Fig. 12  Comparison of embedding capacity of standard images with different n 

Fig. 13  Comparison of embedding capacity of  Kodak images with different n 

Fig. 14  Comparison between the proposed method (n=1) and the three related methods [6, 29, 31] in terms 

of embedding rates and PSNR values 

 



17 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1  Proposed encoder flowchart 
 

 

Fig. 2  Proposed decoder flowchart 

 



18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3-bit binary 

digits 
states of signed-digit  

 

case 1 case 2 case 3 case 4 case 5 

0 0 0 0          0 0 0         2 

0 0 1 1         -1 1 1         1 

0 1 0 2         -2 2 2        -4 

0 1 1 3         -3 3 3        -1 

1 0 0 4         -4         -1    4        -3 

1 0 1 5         -5         -2 -1         3 

1 1 0 6         -6         -3 -2         0 

1 1 1 7         -7         -4 -3        -2 

 

 

3-bit binary 

digits 

The number of repetitions in the 

binary stream 
signed-digit 

0 0 0 22625             2 

0 0 1 26840             1 

0 1 0 19782  (Min)            -4 

0 1 1 29496            -1 

1 0 0 26900            -3 

1 0 1 22373             3 

1 1 0 29568  (Max)             0 

1 1 1 28686            -2 

 

 

 

Table 1  conversion and assignment of signed digit code for (n=3) 

 

Table 2  For example the number of repetitions of  3-bit binary digits in binary stream and assigning a 

signed digit   

 

Fig. 3  Strategy of to convert binary stream to signed digit stream 

 



19 

 

 

 

 

2-bit binary 

digits 
states of signed-digit  

 

case 1 case 2 case 3 case 4 case 5 

0 0  0         0 0 0  1 

0 1 1        -1  1 1 -1 

1 0 2        -2         -1 2 -2 

1 1 3        -3         -2        -1   0 

 

 

 

2-bit binary 

digits 

The number of repetitions in the 

binary stream 
signed-digit 

0 0 49488 1 OR-1 

0 1 49327         1 OR-1 

1 0 49254 (Min) -2 

1 1 58201 (Max)  0 

 

 

 

4-bit binary 

digits 
states of signed-digit  

 

case 1 case 2 case 3 case 4 case 5 

0 0 0 0 0 0 0 0 -2 

0 0 0 1 1         -1 1 1 -4 

0 0 1 0 2         -2 2 2 -6 

0 0 1 1 3         -3 3 3  2 

0 1 0 0 4         -4 4 4 -1 

0 1 0 1 5         -5 5 5 -8 

0 1 1 0 6         -6 6 6  7 

0 1 1 1 7         -7 7 7  0 

1 0 0 0 8         -8 -1 8 -5 

1 0 0 1 9         -9 -2        -1  3 

1 0 1 0 10 -10 -3 -2 -7 

1 0 1 1 11 -11 -4 -3  6 

1 1 0 0 12 -12 -5 -4  4 

1 1 0 1 13 -13 -6 -5  5 

1 1 1 0 14 -14 -7 -6  1 

1 1 1 1 15 -15 -8 -7 -3 

Table 3  conversion and assignment of signed digit code for (n=2) 

 

Table 4  For example the number of repetitions of  2-bit binary digits in binary stream and assigning a 

signed digit   

 

Table 5  conversion and assignment of signed digit code for (n=4) 

 



20 

 

 

4-bit binary 

digits 

The number of repetitions in the 

binary stream 
signed-digit 

0 0 0 0 11816 -2 

0 0 0 1 11009 -4 

0 0 1 0 9819 -6 

0 0 1 1 16730  2 

0 1 0 0 12179 -1 

0 1 0 1 7933 (Min) -8 

0 1 1 0 12399  7 

0 1 1 1 17430 (Max)  0 

1 0 0 0 10625 -5 

1 0 0 1 16177  3 

1 0 1 0 9625 -7 

1 0 1 1 12450  6 

1 1 0 0 14783  4 

1 1 0 1 14766  5 

1 1 1 0 17039  1 

1 1 1 1 11486 -3 

 

 

 

 

 

 

 

 

 

 

Table 6  For example the number of repetitions of  4-bit binary digits in binary stream and assigning a 

signed digit   

 

Fig. 4  illustration of  non-embeddable pixel shifting and data embedding in embeddable 

pixels  for (n=3) 

 



21 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5  Prediction method to calculate prediction error  

 

Fig. 6  illustration  of data extraction from embedded pixels and reverse shifting of non-embedded 

pixels for (n=3) 

 



22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7  Example of  data embedding 

 



23 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(a) Lena 

 
(b) Boat 

 
(c) Barbara 

 
(d) Pepper 

 
(a) Lena 

 
(b) Boat 

 
(c) Barbara 

 
(d) Pepper 

Fig. 8  Example of  data extraction and original image recovery 

 

Fig. 9  Test images: (a) Lena, (b) Boat, (c) Barbara, (d) Pepper in [38, 39]  

 

 

 

 

 

 

 



24 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
9 

 
10 

 
11 

 
12 

Fig. 10  Kodak image dataset in [40]  

 

 

 

 

 

 

 

Fig. 11  Comparison curve  between embedding capacity and PSNR values for four standard 

images with different n 

 

 

 

 



25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12  Comparison of embedding capacity of standard images with different n 

 

 

 

 

 

 

 

Fig. 13  Comparison of embedding capacity of  Kodak images with different n 

 

 

 

 



26 

 
 

 

 

 

 

 
 

Test  images 

             binary digit stream (n=1)          signed-digit stream (n=2)            signed-digit stream (n=3)          signed-digit stream (n=4) 

                EC (bit)      PSNR(dB)             EC (bit)      PSNR(dB)               EC (bit)       PSNR(dB)             EC (bit)        PSNR(dB)                                                                               

 

Lena            202,990          51.28                       405,980          45.89                       608,970          39.90                         811,960           33.79 

Baboon        198,911          51.32                       397.822          45.81                       596,733          39.79                        795,644            33.69  

Airplane      206,270          51.28                       412,540          45.93                       618,810          39.96                         825,080           33.87 

Boat             202,692          51.28                       405,384          45.88                       608,076          39.89                         810,768           33.79 

Elaine          200,260          51.28                       400,520          45.86                       600,780          39.84                         801,040           33.73 

Man             201,933          51.28                       403,866          45.88                       605,799          39.88                         807,732           33.77 

Barbara       200,541          51.28                       401,082          45.86                       601,623          39.85                         802,164           33.74                         

Pepper         202,472          51.28                       404,944          45.88                       607,416          39.89                         809,888           33.79 

Average       202,008          51.28                       404,017          45.87                       606,025          39.87                         808,034           33.77 

 

 

Table 7  Measured PSNR  and  EC values for eight standard images of 512×512 sizes along whit different n 

 



27 

 
 

Test  images 

           binary digit stream (n=1)          signed-digit stream (n=2)            signed-digit stream (n=3)          signed-digit stream (n=4) 

           EC (bit)      PSNR(dB)              EC (bit)      PSNR(dB)                EC (bit)       PSNR(dB)               EC (bit)        PSNR(dB)                                                                               

1               300,329          51.26                       600,658          42.53                           900,987          38.72                       1,201,316           33.60 

2               307,191          51.26                       614.382          42.54                           921,573          38.77                       1,228,764           33.69  

3               314,186          51.26                       628,372          42.56                           942,558          38.83                       1,256,744           33.80 

4               311,966          51.26                       623,932          42.56                           935,898          38.82                       1,247,864           33.81 

5               301,189          50.32                       602,378          43.63                           903,567          40.66                       1,204,756           36.39 

6               306,972          50.38                       613,944          43.57                           920,916          40.59                       1,227,885           36.31 

7               310,481          51.26                       620,962          42.55                           931,443          38.80                       1,241,924           33.74                         

8               299,867          50.31                       599,734          43.64                           899,601          40.68                       1,199,468           36.43                         

9               307,448          50.38                       614,896          43.57                           922,344          40.58                       1,229,792           36.29                         

10             306,669          51.26                       613,338          42.55                           920,007          38.78                       1,226,676           33.70                         

11             305,610          51.26                       611,220          42.54                           916,830          38.76                       1,222,440           33.67                         

12             311,567          51.26                       623,134          42.56                           934,701          38.82                       1,246,268           33.77                         

Average   306,956          50.95                       613,912          42.90                           920,868          39.40                       1,227,825           34.60 

Table 8  Measured PSNR  and  EC values for twelve Kodak image of 512*768 sizes along whit different n 

 



28 

 

 

Fig. 13  Comparison of embedding capacity of  Kodak images with different n 

 

 

 

 

 
 

 
Fig. 14  Comparison between the proposed method (n=1) and the three related methods [6, 29, 31] in terms of 

embedding rates and PSNR values 

 

 

 

 

 



29 

 

 

Kodak images 

dataset 

 

Overflow (n) 
 
Underflow (n) 

Original image 

recovery 

(Complete) 

Data extraction 

)Complete and 

correct( 

1 548 768     

2 1 768     

3 3 768     

4 4803 768     

5 176 825     

6 173 768     

7 3 768     

8 7542 768     

9 48 768     

10 1273 768     

11 12 768     

12 1191 768     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Biographies 

 
Reza Ghorbandost Soveiri  received his B.S. degree in Electrical Engineering from Yazd, Islamic Azad 

University in 2004, and received his M.Sc. degree in Telecommunications Engineering from Science and 

Research Branch in 2021, Islamic Azad University. His research interests include multimedia security, data 

hiding, steganography and image processing.  

 
Maryam Rajabzadeh Asaar received her M.Sc. and Ph.D. degrees in Electrical Engineering from Sharif 

University of Technology. She is an assistant professor at Department of Electrical and Computer 

Engineering, Science and Research Branch, Islamic Azad University. Her research interests include 

cryptographic protocols, steganography and network security.  

 

Table 9  Performance of the proposed scheme against overflow and underflow problems 

 


