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interaction of titanium dioxide  2TiO  and molybdenum disulfide  2MoS  nanoparticles. Water 

and blood are used to characterize the properties of base liquid. The flow pattern is based on natural 

convective flow due to inclined surface. Two fractional algorithms namely Caputo-Fabrizio (CF) 

and Atangana-Baleanu (AB) are used to perform the analytical simulations. A comparative 

analysis between both AB and CF operators is presented to justify the accuracy of these fractional 

techniques. The flow model contains comparative impact of water based hybrid nanofluid 

 2 2 2/TiO MoS H O  and blood based hybrid nanofluid  2 2 /TiO MoS blood . The numerical 

values of skin friction and Nusselt number are also calculated. Thermal observations are presented 

for both nanoparticles and base fluids. The computations reveal that heat transfer declined for 

hybrid nanofluid when fractional parameters have been considered. The velocity profile declined 

due to inclination angle and fractional parameters. Furthermore, Nusselt number enhances over 

time due to fractional effects. The claimed findings conveying applications in the thermal 

management systems, energy efficient systems, MHD technologies, industrial heat transfer, solar 

thermal collectors, heat transfer devices etc. 

Keywords: Hybrid nanofluid, Fractional model, Heat transfer, Atangana-Baleanu simulations, 

Caputo-Fabrizio approach.  

1. Introduction 

With high thermal performances and effective physical properties, the nanomaterials are assumed 

to be enhanced class of regular fluids attaining improved heat transfer capacity. The nanofluids are 

combination of nanoparticles with some base liquids. Due to ultra-peak thermal performances, the 

nanofluids ensure various applications in the medical science, vehicle engine, nuclear systems, 

heating and cooling devices, chemical processes etc. Based on available literature source, it is 

observed that various studies are contributed on nanofluids in recent year. In fact, scientists are 

continuously incorporating different thermal sources to inspect the conducting performances of 

nanofluids. Sheikholeslami and Ellahi [1] studied the heat transfer analysis for natural convective 

flow of nanofluid with implementation of magnetic field. Khan et al. [2] discussed the Burgers 

nanofluid in improving heat transfer due to bidirectional flow. The significance of nanofluids in 

inspection of heat transfer subject to CVFEM was analyzed by Sheikholeslami [3]. Hejazi et al. 

[4] predicted the convection aspects for addressing the heat transfer enhancement due to 
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nanoparticles. Gangadhar et al. [5] examined the squeezing aspects of nanofluid by incorporating 

the gold nanoparticles. Sheikholeslami [6] focused to improvement of heat transfer by using the 

aluminum oxide nanoparticles. The Maxwell nanofluid flow due to rotating disk has been 

conveyed by Li et al. [7]. Basha [8] discussed the heat absorption contribution in stretching flow 

associated to the nanofluid. Murugan et al. [9] reported the thin film of nanofluid via inclined 

surface. Sheikholeslami [10] focused to applications of multi-walled carbon nanotubes (MWCNT) 

in concentrated photovoltaic solar system. Adnan et al. [11] addressed the unsteady transport 

driven by nanofluid by developing a KK model. The applications of ternary nanoparticles for the 

radiative surface was analyzed by Aich et al. [12]. Sheikholeslami et al. [13] explained the 

nanofluid thermal performances in spectral splitter configuration.  

The latest type of nanofluid with more progressive thermal effects and characteristics is called a 

hybrid nanofluid. Its ultra-peak thermal properties have made HNFs well-known. Multiple 

nanoparticles interacting with base fluids is a term used to describe the many characteristics of the 

HNF model. HNFs should be taken into consideration for their improved thermal efficiency and 

thermal reliability. HNF is used in many thermal extrusion operations, power plants, metallic 

chips, electronic devices, nuclear plant engine cooling and other domains. Ikran et al. [14] claimed 

the thermal improved observations due to hybrid nanofluid in parallel plate flow. Shatnawi et al. 

[15] addressed the Casson hybrid nanofluid thermal measurements accounted by vertical surface. 

Ali et al. [16] examined the thermo-fluidic behavior of hybrid nanofluid in couette surface flow. 

Kumar et al. [17] visualized the thermal prediction of magnesium oxide and titanium hybrid 

particles for radiator flow. Sharma et al. [18] investigated the fundamental of heat transfer due to 

hybrid nanofluid in presence of entropy generation phenomenon. Yasir et al. [19] pronounced the 

hybrid nanofluid contribution for radiative flow under the additional impact of heat source with 

irregular pattern. The nanofluid flow of hybrid nanofluid via numerical computations was 

elaborated by Ahmad et al. [20]. Gangadhar et al. [21] reported the squeezing flow of hybrid 

nanofluid with melting heat transfer. Ige et al. [22] explained the transient flow of hybrid nanofluid 

with blood as a base fluid via computational approach. Ali et al. [23] deduced the performances of 

three different nanoparticles (MoS2, TiO2, Ag) due to porous stretched cylinder.  

An essential role of factional calculus has been observed in various engineering and applied 

sciences. Different problems proposed in the physical, economics, engineering and many other era 
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of physical discipline are of highly nonlinear as well as of fractional kind. The closed form solution 

of such problem is effectively suggested by using various kind of fractional operators. Various 

fractional models have been proposed for different physical systems including therapy of 

cancerous tumor [24], fall objects with frictional forces [25] and heat transfer problems [26]. 

Basically, the fractional calculus offers two major kinds of operators namely singular and 

nonsingular for which the Caputo derivative and Riemann–Liouville are characterizes to singular 

kind. The Caputo–Fabrizio (CF) derivative and the Atangana–Baleanu (AB) fractional operators 

are the most famous techniques associated to the non-singular operators. Several fractional 

simulations are based on implementation of both CF and AB operators with high accuracy solution. 

The computations performed via such techniques are realistic and more precise. Both AB and CF 

fractional operators offer memory effects. Various studies are available for which both techniques 

are used effectively [27-36].  

Based on claimed literature record, it is observed that various studies have been performed for 

judging the thermal effectiveness of both nanofluids and hybrid nanomaterials. Current research 

presents a fractional model for hybrid nanofluid with definitions of two famous fractional 

techniques namely Caputo-Fabrizio (CF) and Atangana-Baleanu (AB) definitions. The thermal 

efficiency of hybrid nanofluid has been endorsed by incorporating the titanium dioxide  2TiO  

and molybdenum disulfide  2MoS  with blood and water base fluid. The flow is driven by natural 

convective phenomenon with implementation of magnetic force. The comparative thermal 

visualization of blood based hybrid nanofluid  2 2 /TiO MoS blood  and water based hybrid 

nanomaterial  2 2 2/TiO MoS H O  is performed. The results are deduced by employing both AB 

and CF models. The physical aspects of model are presented.  

1.1 Novelty of work 

 This analysis presents comparative thermal impact of hybrid nanofluid by using the two 

advanced fractional schemes, Caputo-Fabrizio (CF) and Atangana-Baleanu (AB). The 

choice of CF and AB provides more accurate and generalized representation of thermal 

problem as compared to integer order models. 
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 This investigation uniquely decomposes the suspension of titanium dioxide  2TiO  and 

molybdenum disulfide  2MoS  nanoparticles into blood and water base fluids. The choice 

of these nanoparticles is subject to peak thermal characteristics and stable features.  

 This study provides thermal performances of blood-based water-based hybrid 

nanomaterials under certain constraints, filling critical gap in literature and providing 

practical amplifications for thermal management systems, heat transfer devices, chemical 

processes, drug delivery, cooling phenomenon, energy production etc.  

 By implementing the fractional derivatives to current model, the research provides novel 

insight into memory features and anomalous diffusion impact of hybrid nanomaterials, 

which are important for precision in thermal system design.  

2. Mathematical and Physical structure of the proposed modeling 

An unsteady, incompressible natural convective flow of hybrid nanofluid (HNF) over inclined 

surface is assumed. Using water and blood as a base fluid, titanium dioxide  2TiO  and 

molybdenum disulfide  2MoS  nanoparticles are used to characterize the hybrid nanofluid 

properties. It is further assumed that an angled magnetic field with a strength of 0B  is subject to 

the flow. Initially, the temperature T  of the fluid and plate are both at rest. After some time has 

passed at  0t  , natural convection, oscillations, and inclination of porous plate cause static 

hybrid suspension of various kinds of nanoparticles to begin to move on oscillating plate. The 

porous plate vibrates with a constant velocity  sin t  where   vibration rate of inclined plate. 

The governing equations for current problem are [23, 29]: 

   
          
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where 
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with corresponding initial and boundary conditions [23, 29]: 
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   , 0, , 0 , 0.w t T t as t       

with nf  (fluid density), w  (velocity component), nf  (electric conductivity), 0B  (magnetic field 

strength), g  (gravity), T  (temperature), T  (ambient temperature),  p nf
C  (specific heat), nfk  

(thermal conductivity), Stefan Boltzmann constant *  and   (angular frequency). 

To analyze the impact of different limitations, introducing the following non-dimensional 

constraints [28, 29]:  
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After working on non-dimensional form, simplified equations will be. 

   
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with: 
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with radiation parameter Nr , Prandtl number Pr  and Hartmann number M . The hybrid 

nanofluid coefficients are denoted with 1 , 2 , 3 ,, 4 , and 5 . Table 1 presents mathematical 

expressions for nanofluid and hybrid nanofluid. The numerical values of thermo-physical 

properties of nanomaterials have been presented in table 2. 

3. Basic definitions of fractional derivatives 

ABC-definition: The mathematical definition of AB-fractional derivative in the sense of Caputo 

sense can be summarized as for a continuous function  f t  [30] 
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Where 0

ABC

tD   is the well known as the fractional operator of ABC-definition. Where  t  is 

the Mittag-Laffler with, 
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The respective Laplace is [31]: 

  
     

 
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,

1
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t
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 


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
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  (8) 

CFD-definition: Like ABC-definition, the mathematical notation of CFD can be written as for the 

continuous function  Q T  [30]: 

 
   
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Where 𝛿 is the non-integer order of CFD operator 0

CF D 

 , and the Laplace of 0

CF

TD   is [31]: 
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 (10) 

4. Implementation of Atangana-Baleanu (AB) scheme 

This section focuses on analyzing the solution of the governed model by employing the 

fractional definition of AB and utilizing the LT to solve the transformed equation. Here, the AB 

fractional definition provides a mathematical framework to describe the behavior of the system, 

particularly in terms of fractional calculus operations. By applying the LT to the transformed 

equation, we aim to obtain a solution that represents the system's response over time. 

4.1. Computations for temperature profile 

Implementing the definitions of Atangana-Baleanu fractional operator on Eq. (6) as: 

 
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With 

   
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Temperature profile can be solved using AB technique as follows: 
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Where its respective series form 
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Taking its Laplace inverse 
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4.2. Computations for velocity profile 

For the momentum field solution by employing the LT on governed Eq. (4) and using the above 

solution of thermal field attained by AB-definition 

 
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The solution using AB technique is: 
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(12) 

5. Computations by Caputo-Fabrizio (CF) fractional approach 

Now the fractional simulations are further performed by utilizing Caputo-Fabrizio (CF) 

definitions.  

5.1. Computations for temperature profile by CF technique 

Now, the fractional outcomes are presented by employing the CF algorithm. Operating the CF 

definitions on heat equation (6) leads to: 
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Solution via CFD-definition approach for temperature profile is: 
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Writing the series form of exponential function 

 
       

   

1 1 2 1

2 1
2

1 2

/ 2 / 2

3 5 4

11 0 21 3 5

Pr1 1
,

!

m m m m

m n
nm m

ya
T q

q b q m
q


 

  


  


 

   
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  

Taking its Laplace inverse 
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

 


  

 
      

 

  

5.2.Computations for velocity profile by CF technique 

Again employing the LT retaining to Eq. (4), governing the system, while utilizing the 

CFD definition for solving the thermal field as previously described. By integrating the solution 

of the thermal field obtained through CFD with the LT technique applied to Equation (14), we 

attain the transformed ODE of momentum field as follows 

 
      

 Pr 12

1 1 22

, 1
,

q
w q a

MSin q w q Cos e
q b q
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


     


 
  

    
  

  

Now by using the transformed conditions and solving the above non-homogeneous ODE, we get  

 
 
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 

  
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1 1 2
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 

 
 
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 Pr 1

1 2

1 1

1

Pr 1

q
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e
q b qq q MSin

 
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
  

    

 
 

 
     

 (15) 

 

The momentum field solutions attained by AB and CFD definitions in Eqs. (12 & 15) are 

so complex to find L-inverse. As many other researchers [32-35] have utilized many different 

numerical algorithms like Stehfest and Tzou’s methods, we have also used the numerical 

algorithms as mathematically below. 
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
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  

And 
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1 4.7 1 4.7
, , Re 1 ,

2 2

N
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j

e k i
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
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     
       

      
  

6. Validation of fractional model 

The validation of current fractional model is verified by comparing the numerical algorithms used 

and comparing the results with those obtained by Awan et al. [29], as depicted in Fig. 1(a-b) for 

both velocity and temperature field. Both figures claim satisfactory agreement with current model.  

7. Results and discussion 

The physical insight of problem is now addressed with variation of various parameters [37, 38]. A 

comparative visualization of thermal problem is performed for suspension of titanium dioxide 

 2TiO  and molybdenum disulfide  2MoS  with water and blood base liquids. The results are 

computed with definitions of Caputo-Fabrizio (CF) and Atangana-Baleanu (AB) fractional 

operators. The current mathematical model relies on some theoretical flow constraints, with 

numerical values have been assigned to modeled parameters for performing the computational 

analysis. The fixed values are taken as 

0.8, 2.5, 1.4, 2.5,Pr 3.5, 2.4, 0.5, 1.5.a b M t            The analysis relies on 

comparative simulations for based hybrid nanofluid  2 2 2/TiO MoS H O  and blood-based hybrid 

nanomaterial  2 2 /TiO MoS blood . Fig. 2(a-b) representing the influence of fractional 

parameters  ,   on temperature profile for water based  2 2 2/TiO MoS H O  and

 2 2 2/TiO MoS H O . A decrement in temperature profile is claimed for both hybrid nanofluid 

suspensions for both fractional parameters. The heat transfer rate is relatively slower for 

 2 2 /TiO MoS blood  as compared to  2 2 2/TiO MoS H O . Furthermore, more prominent 

simulations are obtained for AB fractional operators. Fig. 3(a-b) examines the contribution of 

Prandtl number Pr  on fluctuation of temperature field. Decreasing effects of Prandtl number has 

been incorporated against both decompositions. The reduction in temperature is comparatively 

larger for blood based hybrid nanofluid  2 2 /TiO MoS blood . Physically, higher change in Pr  

conveying low mass diffusivity which leads to decrement to thermal profile. The range of Prandtl 

number is important in various cooling and heating processes.   
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Fig. 4(a-b) analyzing the role of fractional parameters ,   on velocity profile. The velocity 

profile reduces due to both fractional parameters for both hybrid nanofluid models. The outcomes 

for Hartmann number M on velocity profile have been predicted in Fig. 5(a-b). The velocity 

profile reduces due to larger values of M . Physical aspects of such trend is associated to 

applications of Lorentz force which has tendency to slow down the fluid velocity. The resistance 

in velocity is more convenient for  2 2 /TiO MoS blood . Fig. 6(a-b) proposed the significance of 

inclination angle   on velocity profile. The exhibited observations reveal that the velocity profile 

gets decedent due to different values of   

Fig. 7(a) predicts the analysis for Nusselt number against Prandtl number for fractional parameters 

  and  . The Nusselt number reduces due to both fractional parameters. Fig. 7(b) investigated 

the inspection for wall shear force for  and  . The increasing change in skin friction is exhibited 

due to both parameters.   

Table 3 presents numerical insight of Nusselt number for fractional parameters   and  . The 

numerical computations are performed with help of both AB and CF schemes. The numerical 

computations are performed at two different time instants 1.0t   and 1.5t  . The Nusselt number 

increases at 1.0t   while reducing observations are inspected at 1.0t   A fine accuracy of AB 

and CF operators have been examined. Furthermore, Nusselt number declined for larger . 

Table 4 addressing the numerical variation of skin friction with help of AB and CF operators. The 

analysis is performed at two different time instants 1.0t    and 1.5t   The skin friction increases 

for both fractional parameters   and  . 

8. Closing remarks 

Thermal dynamical of hybrid nanofluid due to inclined surface has been inspected by using the 

fractional computations, leveraging the Atangana-Baleanu (AB) and Caputo-Fabrizio (CF) 

models. A comparative assessment of thermal profile due to water based hybrid 

 2 2 2/TiO MoS H O  and blood based hybrid nanomaterial  2 2 /TiO MoS blood  has been 

performed. Both fractional techniques are validated for ensuring the accuracy, and confining the 

reliability of claimed results. The analysis unveils a critical insight into the fractional operators, 
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inclined angle, Prandtl and Hartmann number for heat transfer, velocity profile, skin friction and 

Nusselt number. The major results have been summarized as:  

 The temperature profile declined due to fractional parameters for both blood and water 

based hybrid nanofluids. However, the decrement in thermal profile is slower for water 

based hybrid nanofluid. 

 Higher values of Prandtl number leads to decrement of temperature profile. The control of 

heat transfer is more impressive for blood based hybrid nanofluid. 

 The variation of inclined angle leads to decrement of fluid velocity. 

 The Nusselt number reduces for fractional parameters. 

 Increasing profile of skin friction have been observed when fractional parameters enhance 

gradually.  

 The future investigations could explore the potential of hybrid nanomaterials with 

applications of entropy generation, slip effects, joule heating and external heating effects. 

The results may further have enhanced for tri-hybrid nanomaterials by utilizing various 

nanoparticles.  

 Current findings conveying applications in the heat transfer devices, optimizing the thermal 

managements systems, energy storage applications, drug delivery, cooling processes etc.  
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Figure and table captions 

Fig. 1. Comparison of fractional model with results of Awan et al. [29]. 

Fig. 2(a-b): Effects of ,   on temperature field. 

Fig. 3(a-b). Effects of Pr  on temperature field. 

Fig. 4. Impact of ,   on velocity field. 

Fig. 5: Impact of M  on velocity field. 

Fig. 6. Impact of   on velocity field. 

Fig. 7(a-b): (a)Variation of Nusselt number with Prandtl number for various values of   and   

, (b)Variation of skin friction with Prandtl number for various values of   and  . 

Table 1: Mathematical relations for various properties of nanofluids. 

Table 2: Thermal properties of nanoparticles and base fluids. 

Table 3. Numerical values of Nusselt number .Nu  

Table 4. Numerical variation of skin friction. 
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Fig. 1. Comparison of fractional model with results of Awan et al. [29]. 
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Fig. 2(a-b): Effects of ,   on temperature field. 
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Fig. 3(a-b). Effects of Pr  on temperature field. 

(a)

 

(b)

 

 

Fig. 4. Impact of ,   on velocity field. 
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Fig. 5: Impact of M  on velocity field. 
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Fig. 6. Impact of   on velocity field. 

(a)

 

(b)

 

Fig. 7(a-b): (a)Variation of Nusselt number with Prandtl number for various values of   and  , 

(b)Variation of skin friction with Prandtl number for various values of   and  . 

 

Table 1: Mathematical relations for various properties of nanofluids. 

Thermal quantities Nanofluid 
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Table 2: Thermal properties of nanoparticles and base fluids. 

Corporeal stuff 2H O  Blood 2MoS  2TiO  

𝜌(𝑘𝑔𝑚−3 ) 997.1 1063 5060 4250 

𝐶𝑝 (𝐽𝑘−1𝐾𝑔−1) 4179 3594 397.7 686.4 

𝑘(𝑊𝑚−1𝐾−1) 0.613 0.492 904.5 8.9538 

𝛽𝑇 × 105(1/𝐾) 21 0.18 2.842 0.90 
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Table 3. Numerical values of Nusselt number (𝑁𝑢). 

Parameters AB-Simulations CF-Simulations 

α,β 1.0t   1.5t   
1.0t   1.5t   

0.1 0.5585 0.4932 0.3089 0.2677 

0.15 0.5547 0.4978 0.3327 0.2916 

0.2 0.5509 0.5026 0.3548 0.3150 

0.25 0.5473 0.5078 0.3754 0.3380 

0.3 0.5438 0.5134 0.3948 0.3608 

0.35 0.5404 0.5193 0.4132 0.3833 

0.4 0.5373 0.5256 0.4306 0.4056 

0.45 0.5344 0.5323 0.4471 0.4278 

0.5 0.5317 0.5394 0.4628 0.4498 

0.55 0.529346 0.5469 0.4776 0.4716 

0.6 0.5274 0.5549 0.4916 0.4931 

0.65 0.5258 0.5633 0.5048 0.5144 

0.7 0.5247 0.5721 0.5172 0.5354 

0.75 0.5241 0.5819 0.5287 0.5560 

0.8 0.5241 0.5904 0.5395 0.5763 

0.85 0.5244 0.5995 0.5494 0.5962 

0.9 0.5249 0.6082 0.5585 0.6157 

 

Table 4. Numerical variation of skin friction. 
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Parameters AB-Simulations CF-Simulations 

α,β 1.0t   1.5t   1.0t   1.5t   

0.1 -1.2787 -2.1328 -1.2631 -2.1786 

0.15 -1.2704 -2.1293 -1.2311 -2.1474 

0.2 -1.2587 -2.1236 -1.1997 -2.1163 

0.25 -1.2436 -2.1152 -1.1689 -2.0851 

0.3 -1.2252 -2.1037 -1.1386 -2.0540 

0.35 -1.2036 -2.0889 -1.1089 -2.0231 

0.4 -1.1791 -2.0704 -1.0798 -1.992 

0.45 -1.1518 -2.0481 -1.0512 -1.9619 

0.5 -1.1221 -2.0220 -1.0231 -1.9317 

0.55 -1.0903 -1.9923 -0.9956 -1.9019 

0.6 -1.0567 -1.9590 -0.9685 -1.8725 

0.65 -1.0215 -1.9225 -0.9420 -1.8435 

0.7 -0.9851 -1.8829 -0.9160 -1.8151 

0.75 -0.9478 -1.8409 -0.8906 -1.7872 

0.8 -0.9097 -1.7966 -0.8658 -1.7599 

0.85 -0.8713 -1.7506 -0.8416 -1.7334 

0.9 -0.8326 -1.7033 -0.8180 -1.7074 
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