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Abstract 

Harmful algal blooms (HABs) pose significant threats to public health, tourism, fisheries, and 

ecosystems. This study investigates the use of rice husk ash silica/chitosan composite films 

reinforced with (3-glycidyloxypropyl)triethoxysilane (CHT/SiO2/GPTEOS) and glycerol 



(CHT/SiO2/Gly)  for the controlled removal of toxic HABs cells, Alexandrium minutum. IR 

spectral results confirm that crosslinking within the films occurs through condensation 

reactions and hydrogen bonding between silanol (Si-OH), hydroxyl (-OH), and amine (-NH2) 

groups. The algal removal efficiency (RE;%) of CHT/SiO2/Gly was 26.5±10.81%, while 

CHT/SiO2/GPTEOS achieved a markedly higher RE of 50.06 ± 11.90%. The lower RE of 

CHT/SiO2/Gly was attributed to the film’s swelling, which allowed trapped algae cells to 

escape, and reduced electrostatic interactions between the negatively charged algae cells and 

the film surface. Digital microscopy analysis revealed that the algae cells attached to the 

CHT/SiO2/Gly ruptured due to the stress exerted by the amine groups. Meanwhile, the structure 

of the algae cells remained intact on CHT/SiO2/GPTEOS. The films were easily separated from 

the algae culture and exhibited excellent biodegradability, degrading completely within 30 days 

of burial in soil. These findings demonstrate the potential of CHT/SiO2/GPTEOS as an 

environmentally sustainable material for recovery and mitigating effects of HABs. 
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1. Introduction 

Proliferations of toxic and nontoxic microalgal groups (e.g. diatoms, dinoflagellates, 

raphidophytes, haptophytes, pelagophytes, cryptophytes) and a few macroalgal species of 

green or brown algae can give rise to an aquatic phenomenon known as harmful algal blooms 

(HABs) [1–4]. A single occasion of HABs can seriously affect public health, tourism, fisheries 

and ecosystems [5–7]. Humans and animals are exposed to the biotoxins of the toxin-producing 

algae by consuming contaminated seafood and water activities such as swimming and inhaling 

droplets containing the aerosolized biotoxin [8]. The non-toxic algae species can cause water 

discolouration and harm marine species through de-oxygenation of seawater, production of 

allelochemicals and mucus, or physical damage by spines or barbed setae [9–11]. The 

frequency of the HABs occurrence is attributed to an increase in eutrophication, climate 

change, transport and exchange of ballast water, and the development of the mariculture 

industry [12,13]. However, Hallegraeff et al. [14] presented a different opinion based on their 

study. They noted that the rise is likely due to improved monitoring rather than other factors. 

However, given the risks posed by HABs, it is critical to implement mitigation measures to 

reduce their occurrence and effects.  

The use of natural clays as HABs mitigating agent was first introduced in the 1970’s in 

the coastal water of Kagoshima, Japan [15]. However, the flocculation ability of the natural 

clays was very low and required a large quantity. Various organic and inorganic modifiers have 

been used to enhance the electrostatic attraction between the mitigating agent and the algae 

cells [16]. The suitability of materials for use as HABs mitigating agents depends on the 

materials’ structure, particle size, effective interaction radius and surface charge [17].  The 

mitigation agents must have a higher positive charge to attract and capture the negatively 



charged algae cells. The occurrence of repulsive forces between the materials and algae cells 

will reduce the flocculation efficiencies [18].  

Polyaluminium chloride (PAC) is an effective flocculant to flocculate and remove 

suspended particles from water bodies. Reports have shown that modifying clays with PAC 

increased the surface charge from negative to positive and enhanced the clays’ flocculation 

efficiency [19]. Chi et al.  [20] reported that kaolin modified with PAC (PAC-MC) could 

effectively control Karenia brevis blooms and adsorb brevetoxins (BTXs) to less toxic 

derivatives due to the enhanced surface potential and binding sites. The adsorption was 

endothermic and conformed to pseudo-second-order adsorption kinetics ( , 

PAC-MC = 0.20 g L−1) and the Freundlich isotherm (Kf = 55.30, 20 °C). Zhang et al.  [21] 

tested two types of clays modified with PAC through the immersion method for the removal 

of Aphanizomenon flos-aquae blooms. The removal efficiency reached more than 90%. The 

effectiveness of the clay in controlling the bloom depends on its mineral composition, particle 

size, mineral-to-PAC ratio, and hydraulic shear.   

Silica-based materials are often less studied than clays but hold potential as HAB 

mitigation agents. Pan et al.  [22] demonstrated that beach sand modified with chitosan and 

PAC could remove 80% of Amphidinium carterae Hulburt and Chlorella sp. in just 3 minutes, 

where chitosan enhances floc formation and sand serves as ballast for sedimentation. In 

addition, the chitosan also functions as an electrostatic trap to prevent the cells from escaping 

from the flocs. The sand acted as ballast for sedimentation. Chen & Pan [23] showed that 

xanthan could trap the algae cells similar to chitosan, where the efficiency was enhanced in the 

presence of calcium hydroxide. The removal efficiency of Amphidinium carterae Hulburt 

culture increased to 83–89% within 30 min using 300 mg L−1 clays, soils, or sands modified 

with 20 mg L−1 xanthan and 100 mg L−1 calcium hydroxide (Ca(OH)
2
). By comparison, only 

55% of removal was achieved when xanthan was used without Ca(OH)
2 

. The addition of 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/karenia-brevis
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/brevetoxin
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/binding-site


Ca(OH)
2 

decreased the repulsive interaction between anionic xanthan and negatively charged 

algal cells, attributed to salt-bridging effects due to Ca2+. Jin et al. [24]  investigated the 

potential of bicomponent modified soil using amphoteric starch (AS) and PAC for the 

mitigation of Microcystis aeruginosa and marine Chlorella sp. The removal efficiency 

contributed to 99.9% in fresh and saline waters, and Chlorella sp. in marine water. Diaz et al. 

[25]  developed a novel silica-based antimicrobial nanofilm using a composite of silica-

modified quaternary ammonium compounds, didecyldimethylammonium chloride solution 

(Fixed-Quat) applied to a fibreglass mesh for the mitigation of Microcystis aeruginosa. More 

than 99% of Microcystis aeruginosa was removed after 10 hr of exposure. The inhibition is 

attributed to the electrostatic attraction between the negatively charged algae and the alkyl 

chain of the Fixed-Quat, which can disrupt the cytoplasmatic membrane and result in killing 

of the algae.   

Despite their effectiveness, modified clays and sands, raise concerns about their long-

term ecological impact due to sedimentation and the introduction of non-native materials [26]. 

An alternative approach involves integrating these agents into chitosan-based films, which can 

trap algal cells and be recovered for disposal after the HAB season. However, traditional 

chitosan films tend to be brittle, necessitating the use of reinforcing agents to improve their 

mechanical and physical properties [27,28]. This study addresses existing research gaps by 

developing an innovative, eco-friendly silica/chitosan composite film reinforced with (3-

glycidyloxypropyl) triethoxysilane (GPTEOS) and glycerol for the mitigation of Alexandrium 

minutum (A. minutum). By utilizing silica derived from rice husk, a sustainable and abundant 

agricultural byproduct rich in amorphous silica (~90%), the study not only contributes to 

harmful algal bloom (HAB) mitigation but also promotes agricultural waste valorisation. The 

incorporation of GPTEOS and glycerol enhances the film’s flexibility and processability, 

overcoming the brittleness typically associated with chitosan-based materials. Additionally, the 



recoverable nature of the films prevents sedimentation issues commonly observed with 

conventional clay- and silica-based treatments, offering a more sustainable and efficient 

approach to HAB control. 

2 Materials and Methods 

2.1 Materials  

Rice husk was sourced from a rice mill in Penang, Malaysia. The following chemicals were 

used without further purification: hydrochloric acid (37%, Sigma-Aldrich, United States), 

chitosan powder (medium molecular weight, product ID: 448877, Sigma-Aldrich, United 

States), nitric acid (65%, Qrec, Malaysia), sodium hydroxide pellets (99%, Qrec, Malaysia), 

glacial acetic acid (100%, Qrec, Malaysia), glycerol (99.5%, Qrec, Malaysia), glycerol and (3-

glycidyloxypropyl)triethoxysilane (GPTEOS, >98%, Sigma-Aldrich, United States). Filtered 

seawater for the mitigation studies was provided by the Fisheries Research Institute (FRI) in 

Batu Maung, Penang, Malaysia. 

2.2 Preparation of rice husk ash  

Rice husk ash (RHA) was prepared following the method described by Adam et al. [29]. First, 

the rice husk (RH) was thoroughly washed with distilled water to remove dirt and then air-

dried for 48 h at room temperature. To eliminate metallic impurities, 30 g of cleaned RH was 

soaked in 750 mL of 1.0 M HNO3 and agitated at room temperature for 24 h. Afterwards, the 

acid-treated RH was rinsed with distilled water until the filtrate was clear and then dried at 

100°C for 24 h. Finally, the dried RH was calcined in a furnace at 600°C for 6 h, resulting in 

white RHA. 

2.3 Preparation of sodium silicate solution 

A sodium silicate solution was prepared following the method described by Sumarni et al. [30] 

with some modifications. Rice husk ash (RHA, 3 g) was dissolved in 350 mL of 1.0 M NaOH 



and stirred at 70°C for 6 h. The resulting semi-dried material was calcined at 600°C for 30 min 

to produce sodium silicate powder. Subsequently, 1.71 g of the powder was dissolved in 200 

mL of distilled water to obtain a clear sodium silicate solution. 

2.4 Synthesis of chitosan/silica films 

Composite films were synthesized following the method by Liu et al. [31] with some 

modifications. A 2% w/v chitosan solution was prepared by dissolving 2 g of chitosan powder 

in 100 mL of 1% v/v acetic acid solution. The mixture was stirred at 50°C for 4 h, then 

centrifuged at 4000 rpm for 15 min, and filtered to remove any undissolved chitosan. To the 

filtered chitosan solution, 3 mL of sodium silicate solution and 3 mL of either glycerol or (3-

(glycidyloxypropyl)triethoxysilane) (1% v/v) were added. The solution was stirred for 2 h to 

achieve homogeneity and minimise bubble formation. This film-forming solution was poured 

into a square Teflon mould and dried in an oven at 50°C for 21 h. A 2% w/v sodium hydroxide 

(NaOH) solution was prepared by dissolving 10 g of NaOH pellets in 500 mL of distilled water. 

The dried film was soaked in this NaOH solution for 1 min and then rinsed with distilled water 

to neutralize it. Finally, the film was air-dried at room temperature for 24 h and stored in a 

desiccator for later use. The films incorporating glycerol and (3-

(glycidyloxypropyl)triethoxysilane) were labelled as CHT/SiO2/Gly and CHT/SiO2/GPTEOS, 

respectively. Digital images of the films are shown in Fig. S1 in the Supplementary Material. 

2.5 Characterizations  

The surface topology of the films was analysed using a scanning electron microscope (SEM 

Leica Cambridge S360). Bruker-D8 Advance Powder X-ray diffraction (XRD) was used to 

determine the films’ crystalline phases and degree of crystallinity at 2θ angle of 5o to 50o. The 

films’ swelling index (SI) was conducted by submerging the pre-weighed dry films into 100 

mL of seawater for 24 h at room temperature. Thereafter, the swollen films were removed, 



wiped with filter paper to remove excess water and weighed. The SI was estimated with 

Equation (1) as reported by Liu et al.[31] and Sabzevari et al.[32] by employing three film 

samples to obtain the triplicate average. The algal medium pH before and after film immersion 

was recorded using a pH meter (Model Hanna edgepH).      

                                            (1) 

where Wf is the weight of the swollen film after 24 h and Wi is the weight of the dry film before 

immersion. 

The film’s wettability or water contact angle (CA) was tested via the static CA using a 

goniometer (Rame’-Hart Instrument Co., United States) based on the sessile drop method. 

Deionised water (4 µL) was dropped using a micro syringe onto the smooth surface of the film 

at room temperature. Then, a microscope was used to capture the micrograph images. This step 

was repeated for five different spots of the films to calculate the average CA. 

2.6 Mitigation studies 

The mitigation studies were carried out at the Fisheries Research Institute (FRI) in Batu Maung, 

Penang, Malaysia, using A.minutum culture in the mid to late exponential growth phase as the 

source of HABs. The experiments were conducted in 250 mL beakers, each containing 150 mL 

of cell cultures at a concentration of 20,000 cells/mL.  

In a typical mitigation experiment, the films were tied to a rod and hung vertically with 

three-quarters of the film immersed into the cell cultures for the moving cells to be adsorbed. 

The experimental set-up is shown in Fig. S2 in the Supplementary Material. The beakers were 

placed on the table under static condition. Approximately 1 mL samples from 2 cm below the 

liquid surface were collected and preserved with one drop of Lugol’s solution at each specific 

time interval. The removal efficiency was determined for 72 h. The preserved cells were 



counted using the Sedgwick-rafter counter under a light microscope (Leica CME) at 10x 

magnification. The effects and changes of the cells on the surface of the films were also 

observed under the Digital microscope (Keyence VHX E-100). Removal efficiency rate (RE) 

was calculated using Equation (2) [33]. All the RE data were expressed as the mean ± standard 

deviation (S.D). 

                (2)      

2.7 Biodegradation of films in the soil 

The biodegradability of the films was assessed through a soil burial test. Natural soil was placed 

in a plastic container at a depth of 20 cm, and the films were buried at a depth of 15 cm for a 

duration of 30 days. The containers were positioned in an open environment to allow exposure 

to natural climatic conditions. At 7-day intervals, the films were retrieved, gently cleaned with 

filter paper to remove adhering soil, and dried at 60°C for 6 h. The weight loss of the films (Is) 

was measured at each time point to evaluate the extent of degradation. Additionally, physical 

changes in the films were documented. The percentage of degradation was determined using 

Equation (3). 

                                 (3) 

where Wi and Wf  are the initial weight and final weight of the film at different burial times, 

respectively. 

3 Results and Discussion 

3.1 Characterization of The Films  

Figure 1(a) presents the XRD diffractograms of  CHT/SiO2/Gly and CHT/SiO2/GPTEOS. 

Three distinct diffraction peaks are observed at 2θ = 10.1°, 20.1°, and 21.8°, corresponding to 



the (002), (101), and (220) crystallographic planes of chitosan, respectively. The peak at 2θ = 

10.1° is attributed to the hydrated crystallite structure of chitosan, caused by the incorporation 

of water molecules into the crystal lattice. Meanwhile, the peak at 2θ = 20.1° is associated with 

the regular crystalline lattice of chitosan, and the peak at 2θ = 21.8° represents its amorphous 

structure [34]. The appearance of this peak suggests that the crosslinking interactions between 

chitosan and glycerol or GPTEOS are sufficiently strong to alter its crystalline structure [35-

37]. Additionally, the broadness of the peaks in the range of 2θ = 22° ⁓ 30° are indicative of 

the amorphous silica (SiO2) present in the films [38,39]. 

The ATR-FTIR spectra of the films are presented in Fig. 1(b). The peak at 1016 

cm−1corresponds to the symmetric stretching of the C-O-C bond, while the peak at 1075 cm−1 

is attributed to the skeletal vibration of C-O, commonly recognised as the fingerprint peak of 

the chitosan structure. The IR peak at 1554 cm−1 is associated with the -NH bending and -CN 

stretching vibrations, characteristic of the amide II region [40,31], whereas the peak at 1645 

cm−1 corresponds to the -C=O stretching of amide I [40]. Peaks at 1384 cm−1and a shoulder at 

1317 cm−1 indicate asymmetric -C-O-C and -C-O stretching vibrations of the CH-OH group, 

respectively. The broad IR band observed between 3000 and 3500 cm−1 reflects the 

asymmetric and symmetric stretching vibrations of the -NH bond, as well as the Si-OH bond 

stretching and adsorbed water (H-O-H) on the silica surface [41]. The peak at 2876 cm−1 is 

attributed to the asymmetric stretching of -CH2 . Peaks in the 1000-1100 cm−1  range are 

associated with Si-O-Si bonds [42]. In the spectrum of CHT/SiO2/Gly, the bending vibration 

of C-OH appears around 1416 cm−1, while the peak at 1362 cm−1 corresponds to the C-H 

vibration of glycerol [43]. 

The reaction mechanisms between silica, chitosan, glycerol, and GPTEOS were 

proposed based on the FTIR findings. Crosslinking between chitosan and silica occurs via 



condensation reactions between Si-OH groups on silica and hydroxyl (-OH) groups on 

chitosan, forming Si-O-C bonds. These bonds are typically observed near 1252 cm−1 [44] and 

are challenging to distinguish due to spectral overlap. Additionally, hydrogen bonding between 

Si-OH groups and chitosan amine groups is favourable [45], as illustrated in Fig. S3 in the 

Supplementary Material. 

In the case of CHT/SiO2/Gly, physical crosslinking occurs via hydrogen bonding 

between the -OH groups of glycerol with the -OH and amine groups of the chitosan/silica 

composite, as shown in Fig. S4 in the Supplementary Material [46]. For CHT/SiO2/GPTEOS, 

the proposed mechanism in Fig. S5 in the Supplementary Material involves hydrolysis of 

GPTEOS to form an organosilicon intermediate (A), which reacts with silanol groups via 

condensation to produce an intermediate (B). Subsequently, the epoxy ring of intermediate (B) 

cleaves and reacts with the amine groups of chitosan. Additional hydrogen bonding between 

the -OH groups of intermediate (B) and chitosan further stabilises the structure. 

Figure 2 displays the SEM images of CHT/SiO2/Gly and CHT/SiO2/GPTEOS, 

illustrating surface morphology and cross-sectional structures. The surfaces of CHT/SiO2/Gly 

(Fig. 2(a)) and CHT/SiO2/GPTEOS (Fig. 2(c)) appear heterogeneous. Cross-sectional images 

(Fig. 2(b) and (d)) reveal the presence of microcracks and voids, which are more prominent in 

CHT/SiO2/Gly compared to CHT/SiO2/GPTEOS. The greater intensity and broadness of the 

IR peak at 3000–3500 cm⁻¹ for CHT/SiO2/Gly indicate a higher concentration of -OH bonds. 

These bonds promote hydrogen bonding within the biopolymer network, which can induce an 

anti-plasticizing effect, rigidifying the biopolymer structure. This tighter network is likely 

responsible for the microcracking observed in the cross-sectional image of CHT/SiO2/Gly. The 

voids and microcracking are a direct result of the stress induced by the less stable network due 

to hydrogen bonding [47]. In contrast, the cross-section of CHT/SiO2/GPTEOS (Fig. 2(d)) 



shows fewer microcracks and voids, suggesting a denser structure with greater stability. This 

difference can be attributed to the reduced presence of -OH bonds in CHT/SiO2/GPTEOS, 

which minimizes the anti-plasticizing effect and results in a more stable biopolymer network 

without significant structural disruptions. 

The wettability test evaluates the extent of wetting when solid and liquid phases 

interact, as determined by the contact angle between a water droplet and the film surface. A 

contact angle ≤ 90° indicates greater wettability, while a contact angle ≥ 90° signifies reduced 

wettability [48]. As illustrated in Fig. 3, the contact angle of CHT/SiO2/Gly (58.28 ± 0.03°) is 

lower than that of CHT/SiO2/GPTEOS (84.92 ± 0.05°), suggesting higher wettability for 

CHT/SiO2/Gly. 

  As observed in the FTIR analysis, CHT/SiO2/Gly may contain a higher concentration 

of -OH groups, facilitating the formation of hydrogen bonds between water molecules and the 

film’s surface, thereby enhancing wettability. In contrast, the higher contact angle of 

CHT/SiO2/GPTEOS is due to the reduced presence of -OH groups, which limits hydrogen 

bonding with water molecules and decreases its wettability. 

Blending chitosan with other components typically increases the film’s thickness. 

However, in this study, the thickness of the films remained relatively unchanged, as shown in 

Table 1. This is attributed to the incorporation of silicate species within the chitosan 

framework, which results in tighter binding and a more compact film structure [49]. In 

CHT/SiO2/Gly, the hydrodynamic radius of glycerol (0.28 nm-0.71 nm depending on the 

method of determination and the specific conditions of the measurement) resulted in an 

increase of the spacing between chitosan macromolecules within each layer without 

significantly separating them [50-52]. The plasticizer molecules form hydrogen bonds with 

specific sites on the polymer (-OH, -NH2), which stabilizes the structure and prevent a 



significant increase in thickness. In CHT/SiO2/GPTEOS, higher crosslinking causes the 

chitosan macromolecular layers to pack more closely together. 

The swelling index of the films is also presented in Table 1 which indicates that 

CHT/SiO2/Gly has a higher swelling index than CHT/SiO2/GPTEOS. This is due to the 

abundance of functional groups, such as -OH and -NH2, in CHT/SiO2/Gly, which readily form 

hydrogen bonds with water molecules [53]. These functional groups promote water uptake, 

increasing the swelling capacity [54,55]. In contrast, CHT/SiO2/GPTEOS exhibits a lower 

swelling index due to the hydrophobic nature of GPTEOS. During the crosslinking reaction, 

many of GPTEOS’s functional groups are utilised, further enhancing its hydrophobicity and 

reducing its ability to interact with water. 

The point of zero charge (PZC) is the pH at which the surface charge of a material is 

neutral, meaning the positive and negative surface charges are equal under specific conditions 

of temperature, pressure, and solution composition [56]. It does not imply the absence of 

surface charges but rather a balance between opposing charges [57]. The pH
PZC

 values for 

CHT/SiO2/Gly and CHT/SiO2/GPTEOS were determined to be 4.39 and 4.27, respectively, as 

shown in Fig. 4. 

3.2 Algae Control and Mechanism  

The mitigation of A. minutum using the films was evaluated, and the removal efficiency (RE) 

is shown in Fig. 5. During the first 3 h, the RE fluctuated between 18.1 ± 9.81% and 25.9 ± 

10.16%. The trend suggests that the physical properties of the films, particularly their swelling 

behaviour play a key role in the early interactions with the algae. The swelling of the films 

alters their porosity, initially allowing algae cells to be captured but also enabling some to 

escape. The lower swelling index of CHT/SiO2/GPTEOS may have contributed to its higher 



RE, as it maintained a more stable structure for cell adhesion. Between 10 h and 20 h, the RE 

values increased significantly, indicating a more effective algae entrapment and interaction, 

but subsequently declined and fluctuated until the end of the experiment. After 72 h, 

CHT/SiO2/Gly achieved an RE of 26.5 ± 10.81%, while CHT/SiO2/GPTEOS exhibited a higher 

RE of 50.06 ± 11.90%. Statistical analysis confirmed that the differences between the films 

were significant (p < 0.05). 

Compared to previously reported silica-based mitigation agents (Table 2), the removal 

efficiency (RE) of CHT/SiO2/Gly and CHT/SiO2/GPTEOS was lower, which can be attributed 

to several factors. The continuous swelling of the films throughout the study may have caused 

initially absorbed algae cells to detach and escape into the seawater, reducing overall retention. 

Additionally, the surface charge properties of the films, influenced by their pH, played a 

significant role in algae adhesion. The pH
PZC

 values of CHT/SiO2/Gly (4.39) and 

CHT/SiO2/GPTEOS (4.27) were considerably lower than the algal culture pH (8.0). Since A. 

minutum cells are also negatively charged, electrostatic repulsion likely limited effective 

interactions between the algae and the films, ultimately lowering the removal efficiency. 

3.3 Characterization of the Films Post Mitigation  

Digital microscopy was performed on the used films to examine the state of the algae cells 

post-mitigation. The images revealed that algae cells attached to the CHT/SiO2/Gly appeared 

ruptured (Fig. 6(a)), while those on the CHT/SiO2/GPTEOS (Fig. 6(b)) remained intact. This 

suggests that chemical interactions within the films influenced the mode of algae inhibition. 

Algae cells possess various functional groups such as hydroxyl (-OH) and carboxyl (-COOH), 

which can react with the films’ framework through hydrogen bonding [58]. As previously 

discussed, the amine groups in CHT/SiO2/GPTEOS were involved in crosslinking, reducing 



their accessibility, whereas those in CHT/SiO2/Gly remained free. This allowed greater 

electrostatic stress upon attachment, leading to cell rupture[21, 52]. 

As shown in Fig. 7(a), the surface of CHT/SiO2/Gly exhibited aggregated cell debris, 

likely originating from ruptured algae cells. In contrast, the surface of CHT/SiO2/GPTEOS 

displayed irregularly shaped particles. These differences in morphology further support that 

stronger physical interactions and possible oxidative stress mechanisms contributed to algae 

removal. However, it is important to note that the observed structural changes in algae cells 

might have been influenced by the drying process used before SEM imaging. 

3.4 Biodegradation of the Used Films in The Soil 

Chitosan is widely recognized for its biocompatibility and biodegradability, which were key 

factors in evaluating the algae-laden films’ degradation in soil over a month-long interval. 

Physical changes in the buried films were documented through photographs, with notable 

degradation highlighted by red circles in Fig. 8. After 7 days of burial, the films became brittle 

and began fragmenting, and by day 30, they had completely degraded. This rapid degradation 

highlights the films’ environmentally friendly nature, enabling safe disposal without 

contributing to aquatic pollution. The ability of the films to absorb water and swell enhances 

the solubility of the chitosan and accelerates biodegradation by promoting faster microbial 

colonization and degradation.  Soil-inhabiting organisms such as Serratia marcescens, 

Pseudomonas aeruginosa, and Beauveria bassiana, can effectively degrade chitosan-

containing films as a carbon and nitrogen source [60,61]. 

4 Conclusion 

This study presents a promising approach for the mitigation of A. minutum using an eco-

friendly silica/chitosan composite film reinforced with GPTEOS and glycerol. By utilizing 



silica from rice husk, this method not only addresses HAB control but also contributes to 

agricultural waste management. The incorporation of GPTEOS and glycerol enhances the 

flexibility and processability of the films, mitigating the brittleness commonly associated with 

chitosan-based materials. Furthermore, the recoverable nature of the films prevents 

sedimentation issues associated with traditional clay- and silica-based mitigation agents. 

The films demonstrated different removal efficiency, with CHT/SiO2/Gly achieving 26.57 ± 

10.81% and CHT/SiO2/GPTEOS reaching 50.06 ± 11.90%. The differences in performance 

were attributed to the structural and chemical properties of the films, including the swelling 

properties. CHT/SiO2/GPTEOS exhibited superior mitigation efficiency due to its lower ability 

to swell.  Both films were highly biodegradable, completely decomposing within 30 days of 

burial in the soil profile. While the removal efficiency observed in this study is lower than that 

of some previously reported methods, further optimization of the film composition and surface 

charge properties could enhance performance. Future studies will focus on optimizing the 

glycerol-to-GPTEOS ratio to improve swelling behaviour, reducing algae cell escape and 

increasing capture efficiency. Additionally, incorporating advanced characterization 

techniques and biodegradation studies under simulated aquatic conditions will provide deeper 

insights into the film’s long-term environmental impact. With further refinements, this 

approach holds significant potential as a sustainable and effective strategy for HAB mitigation. 
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Figures and Tables Caption 

Fig. 1. The (a) XRD diffractogram and (b) FTIR spectra of CHT/SiO2/Gly and 

CHT/SiO2/GPTEOS. 

Fig. 2. SEM images of surface and cross section of CHT/SiO2/Gly (a); magnification 9000 and 

(b) magnification 50000); and CHT/SiO2/GPTEOS (c) magnification 9000 and (d) 

magnification 50000). 

Fig. 3. Contact angle images of (a) CHT/SiO2/Gly and (b) CHT/SiO2/GPTEOS. 

Fig. 4. The pH
PZC

 of CHT/SiO2/Gly  and CHT/SiO2/GPTEOS . 

Fig. 5. The RE value of control, CHT/SiO2/Gly and CHT/SiO2/GPTEOS for 72 h. The pH of 

the medium is 8.  

Fig. 6. The digital microscopic images of the (a) CHT/SiO2/Gly and (b) CHT/SiO2/GPTEOS 

post mitigation. The algae cells are indicated using arrows.  



Fig. 7. The SEM images of (a) CHT/SiO2/Gly and (b) CHT/SiO2/GPTEOS post-mitigation. 

(Magnification: 9000). 

Fig. 8. Physical changes of the used (a) CHT/SiO2/Gly and (b) CHT/SiO2/GPTEOS   within 

30 days of burial. The films are indicated by the red circles. 

Table 1. The obtained film thickness, density and swelling index of the film. 

Table 2. Removal efficiency of different types of algae using silica-based mitigating agents. 
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Table 1 

Film type 
Thickness  

(mm) 

Swelling index  

(%) 

CHT/SiO2/Gly 0.366 ± 0.04 60.03 ± 1.09 

CHT/SiO2/GPTEOS 0.367 ± 0.02 45.53 ± 1.17 

*The values were expressed in mean± standard deviation with significant difference (p < 0.05). 

 

Table 2. 

Mitigating agent HAB species RE  
Medium  

pH 

Time of 

exposure 
Referenc

e 

Silica-modified 

QAC (Fixed-Quat) 

& applied to a 

fiberglass mesh 

Microcystis 

aeruginosa 

 

99% - 10 h [25] 

Local beach sand or 

silica sand modified 

with chitosan & 

Amphidinium cartera

e Hulburt 

80% 8.2 3 min [22] 



PAC. &Chlorella sp. 

Xanthane & 

calcium hydroxide 

modified clays, 

soils, and sands) 

Amphidinium 

carterae 

83–89% - 30 min [23] 

Modified soil using 

amphoteric starch 

(AS) & PAC  

Microcystis aerugino

sa& 

marine Chlorella sp. 

 

99.9% 3-11 5-250 

min 

[24] 

 

 


