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Abstract. In this paper, a node adaptive rearrangement is presented based on the
estimated error in various domains for some problems in the fracture mechanics by Discrete
Least-Squares Meshless method (DLSM). This method is one of the approximate methods
recently introduced and used in the various �elds. The method is based on minimization
of the least-squares functional with respect to the nodal parameters, and it uses moving
least-squares method for calculating the shape functions. Due to the natural process of
problem solving, after calculating the shape functions, the residuals are calculated and
their values are considered as an objective function for rearrangement of the nodes. There
are three popular methods for constructing shape functions in discontinuous domains, and
here, the transparency method is utilized. Similar to other numerical methods, there
are di�erent procedures for re�nement and improvement of the results; however, adaptive
rearrangement can be employed without increasing the computational cost. In this paper,
the Charged System Search (CSS) algorithm is used as a tool for adaptive rearrangement or
repositioning process. E�ciency and e�ectiveness of the proposed adaptive rearrangement
technique is tested by some benchmark two-dimensional crack examples with available
analytical solution around crack tips.

© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Finite Element Method (FEM) has been successfully
used as a solution to a broad range of problems over
the last decades. The method, however, encounters
some di�culties when dealing with problems involving
moving boundaries, crack propagation, or extremely
large deformation due to their need for remeshing
of the corresponding domains. These problems are
still not fully resolved even with using re�nement or
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rearrangement procedures. Therefore, researchers have
proposed a new method that uses some nodal points
instead of meshing the problem domain [1-2]. Meshless
methods are generally divided into two categories: the
methods using weak form of di�erential equation and
those utilizing strong form. One of the newest meshless
methods that is based on strong form is discrete least-
squares meshless method [3]. Among many advantages
of this method, no-need-for integration, symmetry of
the coe�cients matrix, and simplicity of application
can be mentioned. This method and its variants
have already been used to solve many problems in
di�erent �elds [4-6]. It should be noted that for
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determining the nodes in the main node subdomain
around discontinuous areas, it is necessary to consider
some processes. There are three popular methods
to do this [7-8], and each of them, considering some
equations, introduces a way for including the nodes on
other side of discontinuities. Due to the simplicity and
e�ective transparency method, this procedure is used
here.

There are many e�cient and advanced mesh-free
techniques which have been applied to complex dis-
continuous problems [9-12]. To improve the results of
the numerical methods, including those of the DLSM,
some re�nement techniques are used. These methods
are also divided into three categories: methods that
increase the number of nodal points or make meshing
�ner (h-adaptivity); methods that increase degree of
polynomial used for the shape functions (p-adaptivity);
and those which use both prior methods simultaneously
(hp-adaptivity). Adaptive methods can be found in the
work of Afshar et al. [13] and Ebrahimnejad et al. [14].

In this paper, charged system search algorithm
is used as a tool for node adaptive rearrangement in
some problems related to fracture mechanics. This
algorithm was developed by Kaveh and Talatahari [15]
based on electrostatic and Newtonian mechanics laws.
In CSS algorithm, some charged particles based on the
objective function can attract or repeal each other.
CSS has been used to optimize many problems in
various �elds such as optimum truss design [16], grillage
system design [17], frame design [18], and problems in
other �elds of civil engineering [19-21], among others.

The aim of this paper is to present a simple
and e�cient way for node adaptive rearrangement
in Discrete Least-Squares Meshless (DLSM) method
for the problems that have high gradient answers in
some domains. In Sections 2 and 4, the fundamental
concepts of DLSM method and CSS algorithm are
presented, respectively. In Section 3, transparency
method is presented. In Section 5, error estimator and
how to apply the CSS algorithm are discussed. In Sec-
tion 6, to demonstrate the e�ectiveness of the proposed
techniques, some two-dimensional crack examples with
analytical solution around crack tip are investigated,
and also reduction of the residual in various domains
is evaluated. Finally, some concluding remarks are
presented in Section 7.

2. Least-squares meshless

2.1. Moving least-squares shape functions
Among the available meshless approximation schemes,
the Moving Least-Squares (MLS) method [22] is gen-
erally considered to be one of the best methods to in-
terpolate random data with a reasonable accuracy due
to its completeness, robustness, and continuity [23,24].
With the MLS interpolation, unknown function, �(x),

is approximated by:

�(x) =
mX
i=1

Pi(x):�(x); (1)

where P (x) is a polynomial basis in the space coor-
dinates, and m is the total number of the terms in
the basis. For a 2D problem, we can specify P (X) =
[1 x y x2 xy y2] for m = 6. Here, �(x) is the vector
of coe�cients and can be obtained by minimizing a
weighted discrete L2 norm as follows:

J =
nX
i=1

W (x� xj): �PT :�(x)� ~uj
�2 ; (2)

where n is the number of nodes in the domain and ~uj
is the nodal value of the function to be approximated
at point xj . Weight function W (x � xj) is usually
built in such a way that it has the following proper-
ties:

W (x�xj) > 0 within the support domain;
W (x�xj) = 0 outside the support domain;
W (x�xj) monotonically decreases from the point

of interest at x;
W (x�xj) is su�ciently smooth, especially on the

boundary of 
j .

Here, the cubic spline weight function is employed
for a better performance in meshless method as follows:

W (x� xj) = w( �d)

=

8><>:
2
3�4 �d2+4 �d3 for �d � 1

2
4
3�4 �d+ �d2� 4

3
�d3 for 1

2 < �d � 1
0 fot �d > 1 (3)

where �d = (x� xj)=dw, and dw is the size of inuence
domain of point xj . Minimization of Eq. (2) with
respect to coe�cient �(x) leads to:

�(x) = PT (x)A�1(x)B(x)�h; (4)

where:

A(x) =
nX
i=1

w(x� xj):P (xj)PT (xj); (5)

and:
B(x) =

�
w(x� x1)P (x1); w(x� x2)P (x2); :::;

w(x� xn)P (xn)
�
: (6)

Eq. (4) can be written in the following compact form:

�(x) =
nX
i=1

NT
i (x)�i(x) = NT (x)�h; (7)

leading to the de�nition of MLS shape function de�ned
as:
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NT (x) = PT (x)A�1B(x); (8)

where NT (x) contains the shape functions of nodes at
point x which are called Moving Least-Squares (MLS)
shape functions.

2.2. Discrete Least-Squares Meshless (DLSM)
method

Consider the following partial di�erential equation:8><>:L(�) + f = 0 in 

B(�)� �t = 0 in �t
�� �� = 0 in �u

(9)

where L and B are partial di�erential operators; ��
and �t are vectors of prescribed displacements and
tractions on the Dirichlet and Neumann boundaries,
respectively; 
 is the considered domain; �u and �t are
the displacement and traction boundaries, respectively;
f is the vector of external force or source term on the
problem domain.

Suppose that the value of the estimating function
� at a point, such as xk, is denoted as follows:

�(xk) =
mX
i=1

Ni(xk)�i: (10)

According to the discretization of the problem domain
and its boundaries using Eq. (4), the residual of
partial di�erential equation at point xk is de�ned as
follows:

R
(xk) = L (�(xk)) + f(xk); k = 1; :::;Md: (11)

The residual of Neumann boundary condition at point
xk on the Neumann boundary can also be presented
as:

Rt(xk) = B (�(xk))� �t(xk); k = 1; :::;Mt: (12)

Finally, the residual of Dirichlet boundary condition
at point xk on the Dirichlet boundary can be written
as:

Ru(xk) = �� ��(xk); k = 1; :::;Mu; (13)

where Md is the number of internal points, Mt
is the number of points on the Neumann bound-
ary, Mu is the number of points on the Dirichlet
boundary, and M is the total number of points.
A penalty approach can now be used to form
the least-squares functional of the residuals de�ned
as:

J=
1
2

"MdX
k=1

R2

(xk)+�:

MtX
k=1

R2
t (xk)+�:

MuX
k=1

R2
u(xk)

#
;
(14)

where � and � are the penalty coe�cients for the
Importance of Neumann and Dirichlet boundary con-
ditions, respectively. Minimization of the func-
tional with respect to nodal parameters (�i; i =
1; 2; :::; n) leads to the following system of equa-
tions:

K� = F; (15)

where:

Kij =
MdX
k=1

[L(N)]Tk [L(N)]k + �
MtX
k=1

[B(N)]Tk [B(N)]k

+ �
MuX
k=1

NT
k NK ;

(16)

Ft =
MdX
k=1

[L(N)]Tk [L(N)]k fk + �
MtX
k=1

[B(N)]Tk �tk

+ �
MuX
k=1

[N ]tk ��k: (17)

Sti�ness matrix K in Eq. (15) is square, symmet-
ric, and positive de�nite. Therefore, the �nal sys-
tem of equations can be solved directly via e�cient
solvers.

3. Treatment of discontinuity in meshless
methods

Many engineering problems involve multi-connected
domains and various kinds of discontinuities. For
example, in elastostatics, for problems involving two
materials, the coe�cients in the partial di�erential
equations are discontinuous across the interface be-
tween the materials. This results in solutions with
discontinuous derivatives at the interface. When the
approximation is a smooth function, such as the moving
least-square approximation, the discontinuity in the
derivative introduces spurious oscillations. Similarly,
when a crack is modeled on a body, the dependent
variable, i.e. the displacement, must be discontinuous
across the crack. The introduction of discontinuity
also requires special treatment in meshless methods [7].
Here, we introduce Transparency method for modeling
discontinuities in DLSM.

3.1. Transparency method
In the transparency method [25], the shape function
is smoothed around the tip of a discontinuity by
endowing the surface, or line, of discontinuity with a
varying degree of transparency. At the tip, the line
of discontinuity is considered completely transparent,
and the transparency diminishes as we move away
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Figure 1. Schematic illustration of the transparency
method for a node near a crack tip.

from the tip of the discontinuity. When a ray from
evaluation point x to node xI intersects with a line of
discontinuity, parameter s is modi�ed (lengthened) by:

S(x) = S0(x) + Smax

�
SC(x)

�SC

��
; � � 2; (18)

where S0(x) is the distance between x and xI , Smax
is the radius of the nodal support, and Sc(x) is the
distance from the crack tip to the intersection point
(Figure 1). The parameter �SC sets the intersection
distance at which the discontinuity line is completely
opaque. Care should be exercised because, for nodes
very close to a boundary, the angle enclosed by the
crack and the ray from the node to the crack tip are
very small, causing a sharp gradient in the weight
functions. Therefore, all the nodes should have a
minimum distance from the crack surface [8].

4. Charged system search

The charged system search has been developed by
Kaveh and Talatahari [15] and applied successfully to
many optimization problems. This method uses the
electrostatics law of physics and Newtonian laws of
mechanics. This method is a multi-agent optimization
with agents being charged spheres. The Coulomb
and Gauss laws provide the magnitude of the electric
�eld at a point inside and outside a charged sphere,
respectively, as follows:

Eij =

(keqi
a3 rij if rij < a
keqi
r2
ij
rij if rij � a (19)

where ke is a constant known as the Coulomb constant;
rij is the separation of the centre of sphere and the
selected point; iq is the magnitude of the charge, and
a is the radius of the charged sphere. Using the
superposition principle, the resulting electric force due
to N charged spheres is equal to [15]:

Fj = keqj
NX
i=1

 
qi
a3 riji1 +

qi
r2
ij
i2

!
ri � rj
jjri � rj jj ;(

i1 = 1; i2 = 0, rij < a
i1 = 0; i2 = 1, rij � a (20)

Also, according to Newtonian mechanics, we have [11]:

�r = rnew � rold; (21)

V =
rnew � rold

�t
; (22)

a =
Vnew � Vold

�t
; (23)

where rold and rnew are the initial and �nal positions of
a particle, respectively; v is the velocity of the particle;
and a is the acceleration of the particle. Combining
the above equations and using Newton's second law,
the displacement of any object as a function of time is
obtained as:

rnew =
1
2
F
m
:�t2 + Vold:�t+ rold: (24)

Inspired by the above electrostatics and Newtonian
mechanics laws, the pseudo-code of the CSS algorithm
is presented as follows [15]:

Level 1: Initialization

- Step 1. Initialization. Initialize the parameters of
the CSS algorithm. Initialize an array of Charged
Particles (CPs) with random positions. The initial
velocities of the CPs are taken as zero. Each CP
has a charge of magnitude q de�ned considering the
quality of its solution as:

qi =
fit(i)� fitworst
fitbest� fitworst ; i = 1; 2; :::; N; (25)

where fitbest and fitworst are the best and the
worst �tness of all the particles, and fit(i) represents
the �tness of agent i. Separation distance rij between
two charged particles is de�ned as:

rij =
jjXi �Xj jj

jjXi+Xj2 �Xbestjj+ "
; (26)

where Xi and Xj are the positions of ith and jth
CPs, respectively; Xbest is the position of the best
current C; and " is a small positive number used to
avoid singularities;

- Step 2. CP ranking. Evaluate the values of the
�tness function for the CPs, compare them with each
other, and sort them in an increasing order;

- Step 3. CM creation. Store the number of the �rst
CPs equal to Charged Memory Size (CMS) and their
related values of the �tness functions in the Charged
Memory (CM).
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Level 2: Search

- Step 1. Attracting force determination. Determine
the probability of moving each CP toward the others
considering the following probability function:

Pij=

(
1 fit(i)�fitbest

fit(i)�fit(j) > rand
W

fit(j)>fit(i)
0 else (27)

and calculate the attracting force vector for each CP
as follows:

Fj = qj
NX

i;i 6=j

 
qi
a3 rij :i1 +

qi
r2
ij
:i2

!
pij(Xj �Xi)8><>:j = 1; 2; :::; N

i1 = 1; i2 = 0, rij < a
i1 = 0; i2 = 1, rij � a

(28)

where Fj is the resultant force a�ecting jth CP.
- Step 2. Solution construction. Move each CP to

the new position and �nd its velocity using the
following equations:

Xj;new =randj1:ka:
Fj
mj

:�t2 + randj2:kv:Vold:�t

+Xj;old; (29)

Vj;new =
Xj;new �Xj;old

�t
; (30)

where randj1 and randj2 are two random numbers
uniformly distributed in range (0,1). mj is the
mass of the CPs, which is equal to qj in this paper.
The mass concept may be useful for developing a
multi-objective CSS. �t is the time step, and it is
set to 1. ka is the acceleration coe�cient, and kv
is the velocity coe�cient to control the inuence of
the previous velocity.

- Step 3. CP position correction. If each CP exits
from the allowable search space, correct its position
using the HS-based handling approach as described
for the HPSACO algorithm [24,26].

- Step 4. CP ranking. Evaluate and compare the
values of the �tness function for the new CPs and
sort them in an increasing order.

- Step 5. CM updating. If some new CP vectors
are better than the worst ones in the CM in terms
of their objective function values, then include the
better vectors in the CM and exclude the worst
ones from the CM.

Level 3: Controlling the terminating criterion

Repeat the search level steps until a terminating
criterion is satis�ed.

5. Error indicator and adaptive rearrangement
by CSS

In the discrete least-squares meshless method for each
nodal point, there are some nodes in its subdomain.
The subdomains can be circular or rectangular (Fig-
ure 2). According to the value of shape function and
using interpolation, the amount of residual for each
node is calculated in both x and y directions. Then,
by summing residual cube in x and y directions and
getting square of it, the value of the total residual
is calculated for each node and its subdomain nodes.
Hence, for each node, a set of residuals will be attained
for all subdomain nodes. The aim of this process is
to reduce the residual related to main node, which
this helps to reduce the amount of residual in various
domains in the overall process.

General plane stress equations and the residuals
are as follow:

@�x
@x + @�xy

@y +Fx=0
) @N

@x �x+ @N
@y �xy+Fx=ex

@�xy
@y + @�y

@y +Fy=0
) @N

@y �y+ @N
@x �xy+Fy=ey

9>>>>>=>>>>>;! e=
q
e2
x+e2

y;
(31)

which they can be written in the matrix form as follows:"
@N
@x 0 @N

@y
0 @N

@y
@N
@x

#
�
24�x�xy
�y

35+
�
Fx
FY

�
=
�
ex
eY

�
: (32)

To apply CSS algorithm, the main node and its
subdomains node and the normalized value of residual
are considered as CPs and their charges, respectively,
as follows:

qi =
ej � emin

emax � emin
; (33)

where ej is the value of residual for jth CP or jth node,
and emin and emax are the minimum and maximum
values of residuals in the subdomain. Thus, the
objective function for each node and its subdomain can
be written as follows:

Minimize objective function =
NX
i=1

Residual (i): (34)

It should be noted that all of the programming pro-
cesses are as identical to those mentioned in the CSS

Figure 2. Nodes in the circular and rectangular
subdomains.
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section; the only di�erence is considering mass factor
for CPs which can be di�erent due to the example
type and value of the random parameters. In the
examples discussed in this article, appropriate results
are achieved with less than ten iterations. In addition,
even by choosing a proper mass factor, this number can
be reduced to 2 or 3 iterations.

6. Numerical example

In this section, three examples of di�erent crack status
are presented for which the analytical solutions are
available around the crack tip [27-31]. These examples
are in the plane stress state. A comparison between
the results before and after the rearrangement and also
investigations of the residual reduction in various do-
mains show the e�ectiveness of the presented method.
The �rst example is an edge crack, and the second and
third ones are central and inclined crack, respectively,
where uniaxial tension stress is applied to all of them.

6.1. A plate with an edge crack
This example is a plate with an edge crack under a
uniaxial tension in the plane stress condition. The plate
dimensions are 52 � 20 mm, and the crack length is
4 mm (Figure 3). The analytical solutions to this exam-
ple and the next and [27-28] are obtained by the same
Eqs. (35)-(38), but the only di�erence is stress factor
that speci�es which one is edge crack or central crack:

�x =
KIp
2�r

cos
�
2

�
1� sin

�
2

sin
3�
2

�
;

�y =
KIp
2�r

cos
�
2

�
1 + sin

�
2

sin
3�
2

�
; (35)

�xy =
KIp
2�r

cos
�
2

sin
�
2

cos
3�
2
;

u =
KI

G

r
r

2�
cos

�
2

�
1� v
1 + v

+ sin2 �
2

�
;

v =
KI

G

r
r

2�
sin

�
2

�
2

1 + v
� cos2 �

2

�
; (36)

where G is the shear module, v representing the
Poisson's ratio and kI is the stress factor, which can

Figure 3. Edge crack examples boundary condition.

Figure 4. Initial nodes distribution and of contour.

Figure 5. Nodes distribution and �x contour after
adaptive rearrangement by CSS.

be de�ned as:

KI = C�
p
�a; (37)

where a is the crack length, and C can de�ne by as
follows:

C = 1:12� 0:231
� a

2b

�
+ 10:55

� a
2b

�2 � 21:72
� a

2b

�3

+ 30:39
� a

2b

�4
: (38)

Here, 2b is the Plane width. The process of simulation
of this example begins with initial distribution of 314
nodes. The arrangements of nodes before and after the
rearrangement are shown in Figures 4 and 5, respec-
tively. After running CSS algorithm and comparing
the obtained results for �x along crack length, an
improvement can be seen in the results. Average
reduction in the residuals from ten successful runs in
various problem domains is shown in Figures 6 and 7.

6.2. Plate with a central crack
As a second example, a plate with dimensions of
32�14 mm is loaded under uniform axial load, as shown
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Figure 6. Normal stress �x along crack.

Figure 7. Average residual reduction from ten successful
runs.

Figure 8. Central crack examples boundary conditions.

in Figure 8. Analytical solution to this can be de�ned
by Eqs. (35)-(38) with a di�erence that the stress factor
is obtained as [30]:

KI =
�

2b
�a

tan
�a
2b

� 1
2

; (39)

where 2b and 2a are the plate width and crack length,
respectively.

This problem is solved with the initial con�g-
uration of 1418 nodal points (Figure 9). Then, by
using CSS algorithm based on the value of residual in
various problem domains, the nodes move toward the
directions that the amount of error is more, and next,
the problem is solved again by DLSM. This process is
continued until the desired answer is achieved. Results
show a good reduction in the residuals and also a good
convergence with analytical solution around crack tip,
as shown in Figures 10 and 11. The average residual re-
duction from ten successful runs is shown in Figure 12.

Figure 9. Initial nodes distribution and �x contour.

Figure 10. Nodes distribution and �x contour after
adaptive rearrangement by CSS.

Figure 11. Normal stress �x along crack.

Figure 12. Average residual reduction from ten
successful runs.
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6.3. Plate with an inclined crack
Previous examples are related to the �rst fracture
mode means opening, but in the present example,
combined fractured mode is investigated which
involves opening and shear modes. Plate dimensions
are similar to the second example and boundary
conditions, as shown in Figure 13. Analytical solution
for around crack tip is obtained as [30-31]:

�x =
KIp
2�r

cos
�
2

�
1� sin

�
2

sin
3�
2

�
� KIIp

2�r

�
2 + cos

�
2

cos
3�
2

�
;

�y =
KIp
2�r

cos
�
2

�
1 + sin

�
2

sin
3�
2

�
+

KIIp
2�r

sin
�
2

cos
�
2

cos
3�
2
; (40)

�xy =
KIp
2�r

cos
�
2

sin
�
2

cos
3�
2

+
KIIp
2�r

cos
�
2�

1� sin
�
2
� sin

3�
2

�
;

u =
KI

G

r
r

2�
cos

�
2

�
1
2

(�� 1) + sin2 �
2

�
+
KII

G

r
r

2�
sin

�
2

�
1
2

(�+ 1) + cos2 �
2

�
;

v =
KI

G

r
r

2�
sin

�
2

�
1
2

(�+ 1)� cos2 �
2

�
+
KII

G

r
r

2�
sin

�
2

�
1
2

(��+ 1) + sin2 �
2

�
: (41)

Here, G is the shear modulus and k = (3� v)=(1 + v)
with v representing the Poisson's ratio. � is the angle
of crack line with y axis; and KI and KII are the
stress factors for opening and shear modes based on
crack angled, which can be de�ned as:

KI = �
p
�a sin2 �; (42)

KII = �
p
�a sin2 � cos �: (43)

Figure 13. Inclined crack examples boundary conditions.

Figure 14. Initial nodes distribution.

Figure 15. Nodes distribution after adaptive
rearrangement by CSS.

Figure 16. Normal stress �x along crack.

The con�guration begins with 752 nodal points
(Figure 14), and then by using CSS algorithm, the
nodes move adaptively (Figure 15). By comparing
the �x stress along crack before and after the
rearrangement and also by investigating the residual
reduction in problem domains, one can say adaptive
rearrangement by these techniques has good inuence
on residual reduction and convergence with analytical
solution (Figures 16 and 17).

7. Conclusion

In this paper, in order to obtain more accurate answers
in discrete least-squares meshless method for solving
problems in the �eld of fracture mechanics (two-
dimensional cracks), the CSS algorithm is used. Also,
for determining the nodes with higher error, an error
estimator is used. The amount of residual in each node
and its subdomain nodes is considered as the charge
of the CP, and then based on the CSS algorithm, the
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Figure 17. Average residuals reduction from ten
successful runs.

nodes are moved in the direction where the amount of
residual is higher. The results show the ability of the
proposed method for solving problems in the �eld of
fracture mechanics.
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