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Abstract: Federated Machine Learning (FML) offers an exciting pathway for collaborative model 

training, enabling numerous users to contribute without disclosing their data. Yet, maintaining the 

security and privacy of both data and model within distributed settings continues to pose significant 

challenges. Identifying outliers plays a vital role in pinpointing abnormal behaviors that have the 

potential to compromise the integrity of the model. The paper introduces a system that harnesses 

autoencoders in conjunction with anomaly scoring techniques and thresholding mechanisms to detect 

anomalies within the dataset prior to model training. In the context of FML, where the model is trained 

across network, vulnerabilities arise as model parameters are exposed to evasion attempts. These 

attempts aim to undermine model integrity by manipulating the aggregation process. A protocol termed 

incentivized Probabilistic Byzantine Fault Tolerance (iPBFT) is developed to ensure the integrity of the 

model in a distributed environment. The framework offers a holistic solution to enhance security and 

integrity in distributed machine learning environment without compromising the system performance. 

Therefore, it serves as a crucial advancement in enhancing the overall performance and effectiveness 

of analytical endeavors, facilitating reliable decision-making in edge computing systems. 

Keywords – Federated Machine Learning, Outlier detection, Autoencoder, Incentivized Practical 

Byzantine Fault tolerant Blockchain network, Data and Model security. 

1. INTRODUCTION 

In the field of collaborative model training and distributed data analysis, federated machine learning 

has become a potent paradigm. The goal is to train machine learning models via a decentralized network 

of edge devices, leaving private and sensitive data on such devices while advancing the construction of 

a global model[1][2]. Applications for this strategy may be found in a number of industries, such as 

healthcare, banking, and the Internet of Things (IoT), where security, privacy, and regulatory 



2 
 

compliance are critical issues. Federated machine learning uses a number of edge devices, or nodes, to 

train a global machine learning model jointly without exchanging raw data. 

This privacy-preserving strategy is especially important in situations where security, regulatory 

compliance, and data privacy are top priorities. Traditional federated algorithms, which have been 

employed in distributed systems to compile data or carry out computations over a network of linked 

nodes, are the roots of federated machine learning. However, a new set of opportunities for research 

and development has emerged due to the integration of machine learning algorithms and the unique 

problems related to training models in a federated system. The accuracy and convergence of the global 

model in federated machine learning might be at risk if abnormalities in the local updates of 

participating nodes are not identified and mitigated. 

Dealing with outliers or aberrant behavior among the participating nodes is a major difficulty in 

federated machine learning. This is known as outlier detection. Data points or local model updates that 

substantially vary from the anticipated trends are called outliers. Because these outliers have the 

potential to negatively impact the global model’s convergence and jeopardize its correctness, it is 

imperative to identify and deal with them. Because outliers may cause problems for traditional machine 

learning models, it’s critical to identify and deal with them in the federated learning process. To 

discover and lessen these abnormalities, a variety of outlier detection strategies have been created and 

modified for use in federated machine learning, including statistical methods, clustering-based 

approaches, and machine learning models. 

The auto encoder is a powerful outlier detection mechanism that gets trained on normal, non-

outlier data. Its ability to reconstruct the input data helps identify the outlier. The trained auto encoder 

takes the new input data and reconstructs it. The reconstruction error which is the difference between 

input data and reconstructed data is computed. The data points having reconstruction error higher than 

the threshold is considered as an outlier. The autoencoder mechanism is utilized to detect and remove 

outliers from the training data originating from various client nodes within the distributed 

network[3][4][5]. 

 In Hyperledger based blockchain network, Practical Byzantine Fault Tolerance (PBFT) is an 

eminent consensus mechanism that verifies agreement among nodes in distributed FML network. It 

plays a critical role in maintaining the integrity of the transactions in the network. A client in the 
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network initiates the transaction by broadcasting the transaction request to all other peers in the 

network. All the peer nodes, upon receiving the transaction request, broadcasts prepare message to 

ensure their readiness for committing the transaction. PBFT requires prepare message from at least 

[2/3 N] is the total number of nodes in the network. In the context of PBFT, as long as an adequate 

number of honest nodes exist to reach consensus, the network can securely progress despite the 

incidence of malicious or faulty nodes. This mechanism is impersonated in the federated machine 

learning environment inorder to identify the model tampering. The iPBFT in proposed system offers a 

tamper-proof and secure ledger to document the specifics of the training procedure, transaction history, 

and consensus amongst involved nodes. This mechanism involves detecting nodes with incentives 

below a threshold, labeling them as faulty nodes, and excluding them from ongoing communication 

rounds and training processes, preserving the authenticity of the global model. Incentives are allotted 

to nodes that provide correct commit message. In federated machine learning environments, trust and 

accountability issues are addressed by this additional security and transparency layer [6]. The primary 

goals of the proposed work are outlined as follows: 

● Stabilized distributed model training: Outlier data introduces instability and bias, leading to 

convergence issues and flawed model. Excluding them from training process, helps smoothen the 

overall process. 

● Fault tolerance: Without adequate fault tolerance mechanisms, model drift becomes a risk 

within distributed networks, potentially causing the global model to deviate from the true underlying 

data distribution.  iPBFT, an incentive based Probabilistic Byzantine Fault Tolerance helps achieve 

the proper fault tolerance to the system. It in turn improves the model performance [7]. 

2. RELATED WORKS 

Y. Mirsky et al. introduce an innovative approach to online network intrusion detection through 

the use of an ensemble of autoencoders. Their study tackles key challenges faced by network intrusion 

detection systems (NIDS), such as real-time processing, detecting previously unseen attacks, and 

minimizing false positives. The paper offers valuable insights into improving both the efficacy and 

efficiency of NIDS in dynamic network environments [8]. 

X. Yuan et al. explore the landscape of adversarial attacks and defenses in deep learning. They 

advocate for the use of outlier detection techniques to obtain cleaner datasets, thereby improving the 



4 
 

reliability and robustness of deep learning models against adversarial attacks. The paper highlights the 

critical role of data preprocessing in mitigating vulnerabilities within deep learning systems [9]. 

P. Garcia Teodoro et al. delve into detecting network intrusions by identifying deviations from 

normal behavior. They explore the use of genetic algorithms to optimize intrusion detection systems, 

particularly for feature selection and model tuning, and employ neural networks for pattern recognition 

in anomaly detection. The paper also highlights challenges such as false positives, adaptive system 

learning curves, and network traffic variability. Additionally, it addresses the limitations of anomaly-

based detection, emphasizing its dependence on known data and the difficulty of establishing reliable 

baselines [10]. 

Jin et al. propose a distributed anomaly detection scheme for the Industrial Internet of Things 

(IIoT) that integrates blockchain and federated learning. This research addresses the challenges of 

detecting anomalies in IIoT environments while ensuring security and efficiency. By combining 

blockchain’s decentralization with the collaborative nature of federated learning, the authors enhance 

the reliability of anomaly detection. Their findings contribute to improving security in smart 

manufacturing and IIoT applications [11]. 

Yang et al. provide an overview of federated machine learning, discussing its concepts and 

applications. The authors highlight the benefits of federated learning, such as enhanced data privacy 

and reduced communication costs. They also explore various real-world applications across fields like 

healthcare, finance, and smart devices. This work significantly contributes to the understanding of the 

potential impact of federated machine learning on future technologies [12]. 

Adnan et al. explore the intersection of federated learning and differential privacy in medical 

image analysis. The authors investigate how federated learning can enhance data privacy while enabling 

collaborative analysis of medical images across institutions. They present methodologies that ensure 

sensitive patient data remains protected during the learning process. This research contributes 

significantly to advancing privacy-preserving techniques in healthcare, demonstrating the potential for 

federated learning to improve medical image analysis while safeguarding patient confidentiality [13]. 

Li et al. explore abnormal client behavior detection within the framework of federated learning. 

This research addresses the challenges associated with identifying malicious or faulty clients that can 
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disrupt the learning process in federated settings. By developing innovative techniques for detecting 

such behaviors, the authors significantly contribute to enhancing the robustness and security of 

federated learning systems. Their findings provide valuable insights into maintaining model integrity 

and ensuring reliable collaborative learning among distributed clients [14]. 

Cui  et al. investigate security and privacy enhancements in federated learning for anomaly detection 

within Internet of Things (IoT). The authors propose a framework that integrates federated learning 

with robust security measures to effectively detect anomalies while preserving data privacy. Their 

research addresses critical challenges associated with IoT environments, including the risks of data 

breaches and unauthorized access. This study significantly contributes to improving security and 

privacy in IoT applications, highlighting the effectiveness of federated learning in maintaining data 

confidentiality during anomaly detection [15]. 

CFE, CITP presents "Blockchain Basics: A Non-Technical Introduction in 25 Steps". This article 

serves as a comprehensive guide aimed at demystifying blockchain technology for readers without a 

technical background. By breaking down complex concepts into easily digestible steps, the author 

effectively highlights the fundamental principles and applications of blockchain. This non-technical 

introduction is particularly valuable for professionals seeking to understand the implications of 

blockchain technology in various sectors, making it an accessible resource for anyone interested in 

exploring the transformative potential of blockchain [16]. 

Sadeghi et al. conduct a cryptanalysis of the full-round SFN block cipher, a lightweight block 

cipher designed for Internet of Things (IoT) systems, in their 2023 article titled "Cryptanalysis of Full-

Round SFN Block Cipher: A Lightweight Block Cipher Targeting IoT Systems," published in Scientia 

Iranica. The authors explore vulnerabilities within the cipher, providing insights into its security 

strengths and weaknesses [17]. 

Behniafar et al. introduce the Anomaly Detection Fog (ADF), a federated approach tailored for IoT. 

The authors present a framework that leverages federated learning to enhance anomaly detection 

capabilities within IoT environments. By enabling decentralized learning from multiple devices, ADF 

aims to improve the accuracy and efficiency of anomaly detection while preserving data privacy. This 

research significantly contributes to advancing security measures in IoT systems, addressing the 

challenges of detecting anomalies in distributed and resource-constrained environments [18]. 
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Rezaeian et al. present a density-based unsupervised learning approach for evaluating generator 

coherency in complex domains. The authors develop a novel method that utilizes density-based learning 

techniques to assess the coherency of generators, enhancing the understanding of dynamic interactions 

in power systems. Their research addresses the challenges of evaluating generator performance in 

complex environments, offering a robust solution for improving reliability and efficiency in energy 

systems. This study significantly contributes to the field of power system analysis and provides valuable 

insights for optimizing generator operations [19]. 

Dalila Ressi et al. explore the integration of Machine Learning algorithms and AI into blockchain 

technology, emphasizing recent advancements and potential applications. Notable opportunities include 

the development of decentralized AI models and enhanced decision-making processes. The study 

concludes by addressing the challenges and outlining future directions for AI-enhanced blockchain 

systems [20]. 

Raed Abdel-Sater et al. provide a thorough literature review of recent advancements in federated 

learning and its applications across diverse domains. The system identifies key challenges, including 

data privacy, communication efficiency, and model accuracy, while introducing the novel Federated 

LLM algorithm. Additionally, it tackles the challenges of communication overhead by optimizing the 

transmission of model updates to enhance communication efficiency [21]. 

Sater et al. explores the use of IoT sensors in smart buildings to enhance energy efficiency and 

anomaly detection in multivariate temporal data. It introduces a federated learning model based on a 

stacked long short-term memory (LSTM) architecture, demonstrating more than twice the training 

convergence speed of centralized LSTM. Overall, the approach effectively reduces training costs while 

maintaining prediction accuracy [22]. 

3. MATERIALS AND METHODS 

In this system, autoencoder model is designed to identify anomalies within the datasets of 

individual client nodes. The autoencoder computes anomaly scores for images, enabling the system to 

detect anomalies by establishing a threshold. Data points with anomaly scores surpassing the threshold 

are deemed anomalous, while those below it is considered benign. Subsequently, the benign dataset is 

utilized as input for training local models at the end nodes. To identify outliers during model 
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transmission in FML, iPBFT Blockchain network is employed. Various system testing with threat 

model are conducted to assess the performance of the model. The entire working of the proposed 

system is depicted in Figure 1. 

3.1 Autoencoder with Statistical Thresholding: 

  Autoencoders are widely used neural network architecture for unsupervised anomaly detection. A 

basic autoencoder consists of three main components: an encoder block (comprising one or more layers 

of neurons), a bottleneck layer (typically containing fewer neurons than the encoder), and a decoder 

block (sharing similar characteristics with the encoder). The primary goal of an autoencoder is to 

minimize the reconstruction loss or binary cross entropy loss when input data is passed through the 

network. This objective enables the bottleneck layer of the autoencoder to capture the most essential 

and representative features in a lower-dimensional space. Anomaly scores are computed in two ways: 

One is using the reconstruction loss that generates anomaly scores, another is based on Mahalanobis 

Distance calculated using binary cross entropy loss and Ledoit-Wolf covariance estimation on the 

encoded features and anomalies are identified using weighted average of statistical threshold 

calculations based on the Median Absolute Deviation (MAD), Z score and standard deviation. Data 

with an anomaly score greater than the threshold is considered as anomalous data, while data with an 

anomaly score below the threshold is categorized as benign data [23][24]. Mahalanobis Distance is a 

measure of the distance between a point and a distribution, taking into account the correlation between 

variables as shown in Equation 1. 

   
T

  x μ .  .  x μdistanceM          (1) 

where,  

𝑀_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is the Mahalanobis Distance 

x is the vector of encoded features of a data point 

𝜇 is the mean vector  

Σ is the inverse covariance matrix 

When an autoencoder is trained on normal instances (e.g., normal images of digits), the encoded features 

capture the typical patterns and variations present in the normal data. Anomaly detection using 

Mahalanobis Distance in the context of autoencoders involves assessing how well a new instance fits 

the learned distribution of normal instances in the feature space. Mahalanobis Distance can be calculated 
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using the learned covariance matrix from the normal instances in the feature space. Once Mahalanobis 

Distance is computed for a given instance, it serves as an anomaly score. A high Mahalanobis Distance 

suggests that the instance is far from the distribution of normal instances and may be considered an 

anomaly. Binary Cross Entropy is a loss function used in machine learning and deep learning to measure 

the difference between predicted binary outcomes and actual binary labels as shown in Equation 2. It 

quantifies the dissimilarity between probability distributions, aiding model training by penalizing 

inaccurate predictions. It is designed to measure the dissimilarity between the predicted probability 

distribution and the true binary labels of a dataset. 

 
N,M

i, j 1

1
 log

N
loss ji ijB y P



             (2) 

where, 

Bloss  is Binary Cross Entropy Loss 

N is number of rows 

M is number of classes 

Pij is probability of a particular class 

yji is binary value of input image 

The discrepancy between the initial input and the reproduced output within the autoencoder is termed 

the reconstruction loss as shown in Equation 3. In an autoencoder-driven anomaly detection framework 

trained solely on regular data, the objective is to replicate any input as faithfully as feasible to the 

familiar patterns learned from normal instances.  

1

1
  '

N

i i

i

Reconstructionloss y y
N 

       (3) 

where, 

N is the number of samples in the dataset  

yi is the target value of sample 

y’i is the predicted value of sample 

After training the auto encoder, the anomaly score is calculated upon the data points. The threshold 

value is calculated using statistical approaches like Z-score, Standard Deviation, and Median Absolute 

Deviation (MAD), which quantify the deviation of data points from central tendencies. Data points 

exceeding the threshold is classified as outliers. Those data points are removed from the dataset and 

then the modified dataset is allowed for entering into the distributed network for further training process.  
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The Z-score, also known as the standard score, quantifies how many standard deviations a data point is 

from the mean. It is calculated as shown in Equation 4. 

x
Z






       (4) 

where,  

x is the datapoint value 

µ is the mean 

 σ is the standard deviation 

Standard Deviation measures the extent of dispersion in a dataset as shown in Equation 5. 

 
2

x

n





          (5) 

where, 

x is the datapoint value 

µ is the mean 

 n is the size of dataset  

Mean Absolute Deviation is a robust measure of dispersion, less sensitive to outliers than standard 

deviation and is measured as shown in the Equation 6. 

   MAD median x median x ∣ ∣                   (6) 

where, 

xi is the individual datapoint value 

n is the total number of data points in the dataset 

µ is the mean of the dataset 

In the context of the proposed methodology, the weighted average for the threshold mechanism is a 

method used to combine the three thresholding techniques, which are Standard Deviation (SD), Median 

Absolute Deviation (MAD), and Z-score. Each of these techniques calculates a threshold 

independently based on different statistical properties of the data distribution. The weighted average 

mechanism involves assigning weights to each of these individual thresholds based on their respective 

importance or reliability in capturing outliers. Once the weights are assigned, the individual thresholds 
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are combined using a weighted average formula, where each threshold is multiplied by its 

corresponding weight and then summed together. The resulting weighted average threshold provides 

a comprehensive measure that takes into account the strengths of each individual thresholding 

technique, aiming to provide a more robust and reliable criterion for identifying outliers in the data as 

shown in Equation 7.  

 1. 2.i iw Z w x
T

MAD

 
                                  (7) 

where, 

T is Threshold   

𝑤1 and 𝑤2 are Coefficients or weights applied to different terms in the equation  

|𝑍i| is value associated with Z score  

|𝑥i – 𝜇| is Standard deviation  

𝑀𝐴𝐷 is Median Absolute Deviation 

Following training, a threshold is determined using a threshold mechanism. Each image in the input 

array is then evaluated based on its reconstruction error loss compared to the threshold. If the error 

exceeds the threshold, indicating an outlier, the image is removed from the dataset. Finally, the 

remaining images, classified as ‘good dataset’ are sent to the nodes for further processing. This method 

efficiently identifies anomalies by combining reconstruction error and Mahalanobis distance, 

facilitating robust anomaly detection in various applications while ensuring the integrity of the dataset. 

3.2 Incentivized Practical Byzantine Fault Tolerant (iPBFT) Blockchain network: 

   Practical Byzantine Fault Tolerance (PBFT) is a consensus algorithm vital for ensuring the 

reliability and fault tolerance of distributed systems, especially in the face of malicious or Byzantine 

nodes. To establish a tamper-resistant block in a blockchain utilizing weighted transactions, a 

proposer, and the requirement for approval from at least ‘2f+1’ nodes, where ‘f’ represents the 

maximum tolerated Byzantine or potentially malicious nodes. Consensus mechanisms like PBFT 

ensure the acceptance of the block proposal by the required number of nodes. Throughout the approval 

process, nodes validate the transactions and verify signatures to ensure accuracy. If the proposal gains 

approval, it is added to the blockchain, ensuring tamper resistance due to the unlikely collusion of ‘2f’ 

or more nodes to approve a malicious block. The blockchain continues with the selection of a new 
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proposer for the next block, maintaining the cycle. This robust process guarantees the integrity and 

continuity of the blockchain in the presence of potential adversities [23][24] [25]. 

   The system incentivizes correct behavior among participating nodes by rewarding them with 

incentives for each correct commit message. It also employs iPBFT to detect and handle Byzantine 

faults by identifying faulty nodes during the consensus process. If the number of faulty nodes exceeds 

a predefined threshold in a communication round, system applies fault tolerance measures to maintain 

system integrity [26]. This includes removing the remaining faulty nodes and adjusting the protocol 

to continue with the consensus process. In scenarios where a significant portion of nodes is identified 

as faulty, the system proposes a mechanism to skip the communication round and revert to the output 

of the previous round to ensure system stability and continuity as shown in Figure 2.  

 

The proposed fault tolerance mechanism is shown in the following Algorithm. 

Algorithm: Incentivized Practical Byzantine Fault Tolerance (iPBFT)  

Input: Nodes in PBFT with x faulty nodes       

Output: Faulty nodes removed from network 

Initialize totalNodes0 

CRCommunication Round 

Nodesremoved Faulty nodes removed from current CR 

update totalNodes with participating peers in network; 

for i in 1 to n CR do: 

       if exists (Nodesremoved ) from i-2th CR: 

             add Nodesremoved in ith CR; 

            totalNodes = add(Nodesremoved); 

       for j in 1 to totalNodes do: 

               incentiveCalculation(j); 

               x = findFaultyNodes(j);  

       //based on the number of commits 

             f=dynamicThresholdCalculation(); 

            if x gt f 

                 if x-f % gte 60%  

                     x-f nodes not removed 

                     Cancel the CR updates of ith CR 

                     Consider model weights of (i-1)th CR 

                 else 

                     Remove: (x-f) nodes in ith CR 

      end  
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end 

In the context of Federated Machine Learning, where local models collaborate with a central global 

model, a fault-tolerant weight transaction mechanism is proposed utilizing Practical Byzantine Fault 

Tolerance to safeguard against tampering of weights during transactions [27]. In proposed approach, 

participating nodes are incentivized with a reward of 1 for each correct commit message, fostering 

adherence to the protocol. To address Byzantine faults, it identifies faulty nodes in each communication 

round, ensuring system integrity. If the count of faulty nodes surpasses 2f+1, where f represents the 

maximum number of allowable faults, the system removes the remaining x nodes from the total of 

2f+1+x faulty nodes. However, if x exceeds 40% of the total node count, system skips the round and 

revert to the output of the previous round for stability, discarding the output of the current round. Nodes 

removed in the current round are reintroduced in the subsequent round (i+2) to sustain fault tolerance. 

This comprehensive approach mitigates the impact of Byzantine faults on weight transactions between 

local and global models in FML systems, ensuring robustness and reliability. 

To ensure the integrity of transactions, a threshold calculation mechanism is implemented. 

Specifically, the incentive threshold is determined as the sum of a base threshold, a node count factor, 

and a transaction count factor. The node count factor is computed by multiplying the node count by a 

predetermined coefficient, while the transaction count factor is derived from the transaction count 

multiplied by a similar coefficient. With a maximum threshold set at Number of transactions in each 

round and a base threshold is established, alongside coefficients of 0.1 for both node and transaction 

factors, this approach dynamically adjusts the incentive threshold to incentivize correct behavior among 

participating nodes while maintaining system stability and reliability.  The formula for calculating 

dynamic incentive threshold as shown is Equation 8. 

Threshold BaseThreshold NodeCountFactor TransactionCountFactor           (8) 

Where, node count factor is calculated by multiplying node count with node factor co-efficient. The 

transaction count factor is calculated by multiplying transaction count with transaction count factor. 

In the proposed work, outlier detection and iPBFT components are introduced into a federated machine 

learning framework. Each participating node can use the auto-encoder to detect outliers in their local 

data before sharing updates with other nodes. Outliers can be handled differently or reported to a central 
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coordinator for further analysis. iPBFT consensus mechanism ensures that nodes in the federation agree 

on the updates to the shared model. This can enhance the security, transparency and trustworthiness of 

the federated learning process. 

4. RESULTS AND DISCUSSION 

4.1 Dataset: 

The system is tested using MNIST and Fashion MNIST dataset. MNIST contains handwritten digits, 

Fashion MNIST features clothing items. These datasets are valuable for training and evaluating image 

classification algorithms due to their diverse contents and standardized formats [28] [29]. 

4.2 Autoencoder with statistical Thresholding mechanism:  

A histogram illustrating the distribution of anomaly scores calculated using weighted average 

of Standard Deviation (SD), Median Absolute Deviation (MAD), and Z-score values are shown in 

Figure 3. The data points above the threshold are removed from dataset and not allowed for the training 

process. Each bar in the graph corresponds to a range of anomaly score values, and the height of each 

bar indicates the frequency of occurrence of these values [30].       

4.3 Blocks added to Blockchain:  

Figure 4 depicts the percentage of blocks added within a blockchain network operating with a fixed 

count of 10 nodes offers valuable insights into the network’s performance and reliability of nodes. The 

x-axis of the chart represents the number of nodes, which is consistent at 10, while the y-axis illustrates 

the percentage of successfully added blocks. At this specific node count, one would anticipate an 

initially high percentage of block additions due to the network’s manageable size, simplifying the 

consensus process and expediting quorum achievement. Consistency in the chart at 10 nodes 

underscores the network’s reliability and predictability. It signifies the network’s scalability and ability 

to efficiently process transactions, which is vital for potential expansion. However, the chart also 

highlights that as the number of nodes increases beyond a certain point, the network may experience 

diminishing returns, introducing complexities and potentially reducing efficiency. Additionally, the 

chart serves as a foundation for informed decisions when planning potential network expansion or 

upgrades. 

4.4 Total commits per node over communication rounds: 
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Figure 5 offers crucial insights into the efficiency and reliability of the network's consensus process. In 

the initial rounds, a notable quantity of commits is expected, serving as an indicator of the iPBFT 

consensus algorithm’s effective operation. The chart’s paramount characteristic is the constancy of 

commit figures across all 100 rounds, signifying a network that is dependable and resilient, unfazed by 

fluctuations in transaction volume or network conditions. It is essential to keep a vigilant eye on the 

chart for any indications of diminishing returns, as a sudden decline in commit numbers during later 

rounds might imply that the network has reached its operational capacity or that increased complexity 

is affecting its performance. This data not only aids in evaluating the network’s suitability for the given 

workload but also serves as a valuable reference for future decisions related to scalability and 

optimization, including infrastructure enhancements. 

4.5 Incentive calculation and identification of Faulty node: 

Nodes that provide correct commit messages on the transactions gets the incentives. Node that provides 

wrong commit messages might not receive any incentives. Since there are 100 communication rounds 

and there are 20 transactions in each communication round the maximum incentive received by a node 

at the end of 100th communication round is 2000 as shown in Figure 6. 

Nodes with incentives less than threshold value are considered as faulty nodes. PBFT can tolerate up 

to ‘f’ faulty nodes in a network of P nodes, where P ≤ 
1

3

n
.  If the number of faulty nodes exceeds 

the number of faulty nodes allowed in iPBFT, the node will be removed in the next communication 

round.  Figure 7 shows the number of nodes removed in each communication round. 

Incentives are integer value calculated based on number of commit messages in every communication 

round. The generated incentives during the training process are shown in Figure 8.  

4.6 Network metrics of transactions: 

Network metrics of transactions were calculated using Prometheus and express-prom-bundle and the 

results is shown in Figure 9. Prometheus scrapes metrics from specified endpoints at defined intervals, 

making it well-suited for dynamic environments where services may frequently scale up or down. 

express-prom-bundle automatically tracks HTTP request metrics, including bandwidth, throughput, 

latency and scalability, providing insights into network performance and application behavior. 

Together, these tools provide a robust framework for monitoring network health and performance, 

enabling proactive management of network-related issues in applications. 
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In PBFT, bandwidth of nodes denotes the ability of each node to transmit and receive messages across 

the network. This capacity is pivotal in shaping the scalability and robustness of PBFT-based distributed 

systems. It is calculated as shown in Equation 9. 

Bandwidth R S N                            (9) 

where, 

R is the number of messages sent per unit time, S is the message size, N is the number of participating 

nodes. 

Throughput of nodes refers to the rate at which transactions or messages can be processed and finalized 

by each individual node within the Practical Byzantine Fault Tolerance (PBFT) consensus algorithm. 

Factors influencing the throughput of nodes in PBFT include the processing power of each node, 

network latency, message size, and the number of transactions being processed concurrently. Increasing 

the throughput of nodes can enhance the overall transaction processing capacity and scalability of the 

PBFT-based distributed system. It is calculated as shown in the Equation 10. 

   /Throughput R N                                  (10) 

where, 

R is transactions per unit time, N is number of participating nodes. 

Scaling transactions in the Practical Byzantine Fault Tolerance (PBFT) consensus algorithm refers to 

its capacity to manage an increasing number of transactions while maintaining efficient performance 

and responsiveness. In the realm of distributed systems and blockchain networks, scalability is a crucial 

factor, as it determines how effectively the system can accommodate a growing number of users and 

transactions without a decrease in performance or an increase in transaction confirmation times. 

Scalability is calculated as shown in the Equation 11. 

        /Scalability Throughput N Throughput M                  (11) 

where, 

Throughput(N) is Transaction throughput with N nodes, Throughput(M) is Transaction throughput with 

M nodes. 

The transaction latency in PBFT represents the duration it takes for a transaction to be proposed, 

validated by the consensus protocol, and ultimately added to the distributed ledger. This latency is 

affected by several factors, including network latency (the time required for messages to transmit 

between nodes), processing time at each node, and the number of replicas necessary to reach a 
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consensus. A lower latency implies quicker transaction processing, which is beneficial for applications 

that require real-time or high-throughput performance. Latency is calculated as shown in Equation 12. 

Latency PT NT CT ET               (12) 

where, 

PT is proposal time, NT is network propagation time, CT is consensus time, ET is execution time. 

 

4.7 Federated Machine Learning – Local Model Loss and Accuracy: 

In Federated Machine Learning, local model loss quantifies the error incurred by individual nodes 

during training on their respective datasets. This metric assesses the model's fit to local data, crucial for 

evaluating each participant's model effectiveness. Typically minimized using optimization algorithms 

like stochastic gradient descent, the loss function measures discrepancies between model predictions 

and actual target values. Calculated periodically, it provides ongoing insights into model performance, 

guiding adjustments and optimizations throughout the training process in the federated learning 

framework that is depicted in Figure 10. 

Local model accuracy in Federated Machine Learning as shown in Figure 11, evaluates the alignment 

between a participant’s machine learning model predictions and their local dataset’s actual data. Each 

participant trains their model independently on their confidential dataset, assessing accuracy by 

comparing predictions to ground truth values. Expressed as a percentage, this metric is crucial for 

understanding model performance within specific data environments. It provides insights into how 

effectively each participant’s model is leveraging local data, contributing to the overall effectiveness of 

the federated learning process. 

4.8 Federated Machine Learning – Global Model Loss and Accuracy: 

The Figure 12 shows the relationship between global accuracy and communication rounds in Federated 

Machine Learning that can provide valuable insights into the performance of the federated model as it 

progresses through rounds of collaborative training. This is because the federated model starts with a 

less accurate initialization and limited information from each node. As communication rounds progress, 

the global accuracy tends to improve. This is because the model benefits from aggregating insights and 

updates from multiple nodes, leading to better generalization.  
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In Federated Machine Learning, global loss as shown in Figure 13, represents the total error spanned 

across all participant nodes during the training phase of the global model on their distinct local datasets. 

On the other hand, local model loss is a measure of how effectively individual participant models 

perform on their specific datasets. Global loss, in particular, offers a holistic perspective of the model’s 

performance, evaluating how accurately the global model corresponds with the collective data from all 

nodes in the federated network. This metric plays a critical role in guiding efforts aimed at improving 

the global model’s accuracy and adaptability across diverse data sources, thereby enhancing the overall 

performance of the FML system [31][32]. 

The overall system is evaluated using various metrics as shown in Equations 13,14, 15 and 16. It makes 

it possible to assess the model’s overall performance metrics on the whole as federated system, as shown 

in Figure 14. 

      /Accuracy TP TN TP TN FP FN                                       (13) 

    /Precision TP TP FP                                                                   (14) 

    /Recall TP TP FN                                                                       (15) 

      1     2 /F Score precision recall precision recall                (16) 

where, 

TP is the true positives, FP is the false positives, TN is the true negatives, FN is the false negatives. 

 

4.9 Computational overhead of proposed framework: 

To evaluate the computational overhead of the proposed framework, it is crucial to analyze the 

functionality of the various integrated components within the system. This includes examining the 

interactions between outlier detection, the fault-tolerant blockchain mechanism, and federated machine 

learning. 

4.9.1 Computational overhead of Outlier Detection: 

In the Federated Machine Learning framework, the process of detecting outliers—such as malicious 

nodes or poor-quality models—is computationally intensive [33], requiring a time complexity denoted 

as ‘TIMEoutlier’ which is computed as follows. 

Let, 

P be the number of participants 
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Q be the data batches submitted by each node  

The usage of statistical methods for detecting anomalies in the input data batch can asymptotically require 

O(P*Q) time. 

   *TIMEoutlier O P Q                (17) 

4.9.2 Computational overhead of Fault tolerant blockchain mechanism: 

The incentive mechanism assigns rewards to participating nodes based on their contributions to the model 

and penalizes nodes detected as faulty nodes to maintain the integrity of the network. This involves 

computing contributions and validating rewards through smart contracts on the blockchain. Let, P be the 

number of participants, then the computational overhead of incentive distribution is calculated as shown 

in Formula 18. 

 TIMEincentive O P       (18) 

Each model update is recorded on the blockchain to ensure the trustworthiness of the updates. Let’s 

denote the time required for processing these transactions as ‘TIMEtransactions’. For the entire 

blockchain network comprising P nodes, the total time complexity for processing model transaction 

updates is calculated as shown in Formula 19. 

 *TIMEmodel O P TIMEtrasactions     (19) 

Hence, the total computational overhead of the incentivized fault tolerant blockchain is computed using 

the Formula 20.  

 TIMEblockchain O TIMEincentive TIMEmodel     (20) 

4.9.3 Computational overhead Federated Learning Model Aggregation: 

Federated learning involves aggregating model updates from participating nodes. Let Q be the size of the 

model, and P be the number of participating nodes. The aggregation operation computes a weighted 

average of individual models. The time complexity of model aggregation is shown in Formula 21. 

   TIMEfederation P,Q *O P Q      (21) 

4.9.4 Total computation overhead: 

Combining the overheads from each component helps analyze the overall computational complexity of 

the system which is shown in Formula 22. 

  TIMEblockchain  TIMEfederation  TIMEoverall O TIMEoutlier     (22) 
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Where, the TIMEoutlier and TIMEfederation scale linearly with P*Q, meaning as the number of 

participants increases or model size grows, the overhead increases linearly. The scalability of 

TIMEblockchain is influenced by the iPBFT consensus mechanism, which exhibits quadratic growth in 

relation to the number of consensus nodes (k).  

 

The system uses novel iPBFT protocol which is a specific implementation of BFT designed for practical 

use cases. The iPBFT is designed to have lower computational complexity comparatively. As the number 

of nodes increases in the network, the overhead becomes more pronounced due to the quadratic message 

complexity of iPBFT. It achieves improved scalability compared to traditional BFT by reducing its 

communication complexity, as traditional BFT often exhibits cubic complexity. Many BFT algorithms 

become impractical in large networks due to their high communication overhead, resulting in increased 

response times and decreased throughput [34]. iPBFT is designed for practical applications and performs 

better in permissioned networks with a limited number of nodes. Proposed novelty of calculating 

incentives in PBFT does not impact much in the scaling as incentivization requires only O(P) time where 

P is number of participants. Hence, the novel iPBFT still works in quadratic time complexity.  However, 

its quadratic scaling can still pose challenges as the network size increases significantly. 

4.10 Threat model for analyzing scalability of proposed framework: 

When designing a scalable system, it is crucial to account for how scaling affects security and the 

emergence of new threats as the system expands. A threat model for scalability helps identify, analyze, 

and mitigate potential risks that arise with increasing system size, complexity, and resource demands. In 

the proposed system, various threat model analyses were conducted, and the resulting findings are 

discussed in detail. 

4.10.1 Threat model for Autoencoder based outlier detection: 

In addition to evaluating model performance metrics and assessing the impact of threats such as 

adversarial attacks. By analyzing system behavior, valuable insights can be gained into the 

effectiveness of outlier detection algorithms in identifying anomalies and mitigating their impact on 

model training. This analysis helps assess how well the algorithms maintain model reliability in the 

presence of anomalous data. Moreover, observing system response to adversarial attacks provides 

valuable information on the robustness of the system and its ability to withstand malicious 

manipulation. Incorporating the Fast Gradient Sign Method (FGSM) for inducing adversarial attacks 

can have a notable impact on the accuracy of the autoencoder model. FGSM operates by perturbing 
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the input data in alignment with the gradient of the loss function concerning the input, with the 

objective of maximizing the loss and inducing misclassification. The introduction of such adversarial 

perturbations often leads to a decrease in accuracy observed within the autoencoder. This decline in 

accuracy underscores the susceptibility of the model to adversarial manipulation and highlights the 

importance of robustness and resilience in defending against such attacks. Evaluating the impact of 

FGSM-induced attacks on the autoencoder's accuracy provides valuable insights into the model's 

vulnerability to adversarial perturbations and underscores the need for enhanced defense mechanisms 

to safeguard against such threats. The classification report on figure 15 provides a comprehensive 

overview of the model's performance by presenting the counts of true positives, false positives, true 

negatives, and false negatives. In the threat model the accuracy seems to have reduced due to the 

adversarial attack. 

4.10.2 Threat model for incentivized fault tolerant Blockchain network: 

Figure 16 illustrates a scenario where nodes are intentionally shut down during different 

communication rounds in iPBFT network. It shows the communication rounds and the corresponding 

number of available nodes in each round within the network. 

Figure 17 illustrates shutting down nodes during various communication rounds in an iPBFT network 

leads to noticeable drops in overall accuracy. This deliberate disruption of nodes at different stages of 

communication leads to inconsistencies and fluctuations in the accuracy levels observed across the 

network. 

Figure 18 illustrates that Shutting down a specific node during entire communication rounds makes its 

accuracy zero. This analysis highlights the dynamic nature of accuracy in response to node disruptions, 

emphasizing the need for robust fault tolerance mechanisms and resilient consensus protocols in iPBFT 

networks. 

Figure 19 illustrates when tampered data is transmitted from one port to another using Postman API, 

it introduces a significant challenge to the integrity and accuracy of the sender port within the iPBFT 

network. This leads to fluctuations in the accuracy of the tampered node in the accuracy graph. 

As the system scales, the attack surface expands, increasing the risk of malicious node behavior and 

communication vulnerabilities. Ensuring secure data transmission and maintaining consensus 
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efficiency under growth are critical challenges. Resource exhaustion and potential synchronization 

issues could also arise, particularly in distributed environments. The proposed work demonstrates 

strong performance across various scenarios, effectively addressing the challenges associated with 

outlier detection in incentivized fault-tolerant blockchain-based federated machine learning [35]. 

4.11 Potential Trade-offs in System Performance: 

The integration of outlier detection mechanisms may increase the overall training time for the federated 

learning model. This is due to the additional computations required to identify and handle outliers, which 

can lead to longer convergence times, especially in large datasets. Implementing proposed algorithms 

may necessitate additional computational resources, such as memory and processing power. This can 

strain the infrastructure, particularly in environments with limited resources or when scaling to a larger 

number of nodes. Increased resource consumption can lead to higher operational costs, which is 

particularly relevant in blockchain environments where resource allocation may impact transaction fees 

and overall system performance. Despite the inherent trade-offs, the system offers numerous advantages 

that justify its implementation. By carefully managing the trade-offs associated with resource 

consumption, training time, and operational costs, the advantages of the proposed framework can 

significantly outweigh the drawbacks, making it a valuable solution in the context of incentivized fault-

tolerant blockchain-based federated machine learning. 

 

5. CONCLUSION 

The system uses autoencoder as an outlier detection mechanism which helps to filter malicious 

data before the data is allowed to get trained in the distributed network. The global model drift due to 

the malicious data injection is completely avoided because of this mechanism. Hence the data security 

is enhanced inside Federated Machine Learning environment. Practical Byzantine Fault Tolerance 

algorithms are essential for ensuring the reliability and integrity of distributed systems, particularly in 

scenarios involving malicious or faulty nodes. Incentive based PBFT mechanism (iPBFT) enables 

systems to maintain functionality and consensus on transactions, even in the presence of Byzantine 

faults, thereby enhancing system resilience and reducing susceptibility to disruptions or attacks. With 

strong guarantees of safety and liveness, iPBFT ensures that transactions are processed correctly and 

the system continues to progress despite potential faults. This fault tolerance mechanism enhances 

system liveness, stability, and reliability, thus mitigating the impact of node failures or network 

partitions and increasing system availability. 
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Future research will focus on improving the computational efficiency of both the autoencoder 

and the iPBFT protocol. Suggested avenues for exploration include investigating various architectures, 

such as transfer learning and Generative Adversarial Networks (GANs), for outlier detection instead of 

solely relying on autoencoders. To improve the computational efficiency of the iPBFT protocol, one 

potential approach is to analyze communication patterns and explore strategies that minimize message 

complexity and reduce the number of communication rounds required. However, it is important to note 

that there will be trade-offs associated with these optimizations. 
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Figure 3: Anomaly scores and estimated threshold value 
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Figure 5: Total commits per node 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



30 
 

 

 

 

 

Figure 6: Incentives of nodes over communication rounds 
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Figure 7: Faulty nodes over communication rounds 
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Figure 8: Incentives of nodes during training process 
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Figure 9: Network metrics of transactions
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Figure 10: Local model loss across communication rounds for MNIST and Fashion MNIST Datasets 
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Figure 11: Local model Accuracy across communication rounds for MNIST and Fashion MNIST 

Datasets 
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Figure 12: Global Accuracy across communication rounds for MNIST and Fashion MNIST Datasets 
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Figure 13: Global loss across communication rounds for MNIST and Fashion MNIST Datasets 
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Figure 14: FML Global Model Evaluation with various Metrics 
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Figure 15: Classification report for threat model analysis of autoencoder 
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Figure 16: Threat model of node availability for each communication round 

 
 

 

 

 

 

 

 



41 
 

 

 

Figure 17: Threat model of Local model accuracy with different node shut downs 
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Figure 18: Threat model of local model accuracy for the individual node shutdown 
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Figure 19: Threat model of local model accuracy for sending tampered data as input
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