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Abstract. Automatic License Plate Recognition (ALPR) is crucial in Intelligent Transportation System but faces challenges 

like weather and light conditions, camera angles, and license plate distortion. With advances in deep learning, as well as computing 

platforms, particularly GPUs, these algorithms have found major applications. The task becomes even more complex with Iranian 

license plates due to the strong similarity of some Persian characters, and the need for real-time processing is often overlooked. 

Consequently, this work proposes a two-stage deep learning-based algorithm for ALPR, with impressive precision and real-time 

applications. The methodology involves License Plate Detection (LPD) and Character Recognition (CR) using separate fine-tuned 

YOLOv5 networks, extracting characters in two sequential steps. The model shows robustness under challenging scenarios such 

as uneven lighting, low-quality images, and noise. Experimental results show an end-to-end mean Average Precision (mAP) of 

95.5% and an inference speed of 23 Frames Per Second (FPS), meeting real-time requirements. Specifically, a mAP of 98.2% is 

achieved in the CR stage, effectively addressing character similarity issues. The developed model is implemented on the Jetson 

Nano, an embedded device, using DeepStream and demonstrates strong performance. For real-time detection, the TensorRT-based 

model deployed on the Jetson Nano achieved 6 FPS inference speed. 
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1. Introduction 

The Automatic License Plate Recognition (ALPR) system is a crucial component of the Intelligent Transportation 

System (ITS), which forms the basis of a Smart City. It is evident that ALPR systems are used everywhere, and this 

extent of application illustrates the usefulness of this technology. This system can be used for a variety of purposes, 

including: automatic toll payment, parking enforcement [1], traffic management [2], stolen vehicle recognition, 

automatic fines for offenders, security surveillance and etc. To meet the requirements of the mentioned wide range of 

applications, ALPR systems have been developed with appropriate properties according to each of them. Initially, 

ALPR systems used image processing algorithms like Edge Detection, Fourier Transform, Wavelet Transform, which 

were not as effective as modern technologies, according to published papers. Today, ALPR systems use deep learning 

methods and neural networks, as well as image processing algorithms. Since deep learning and neural networks are 

constantly evolving, it is essential to use high-performance and up-to-date networks for ALPR. A majority of the 

methodologies presented in the published articles have an accuracy over 85%, but because their datasets and hardware 

are not similar, it is not possible to evaluate and compare which has a better performance. There is no doubt that many 

of the proposed algorithms for ALPR will perform well under controlled conditions. While extensive research has 

been conducted on ALPR, there are still unresolved challenges that need to be addressed. Uncontrollable conditions 

can present many challenges such as improper lighting, inappropriate weather and environmental conditions, number 

of License Plates (LPs), image blurring and LP obstructions. Consequently, to overcome these challenges, nowadays, 

ALPR systems employ advanced image processing and computer vision techniques. These high computation 

techniques have become feasible as a result of improvements in the Graphics Processing Unit (GPU) and the revolution 

in deep learning approaches [3]. Currently, edge devices are a popular platform for implementing deep learning-based 

algorithms [4]. To accomplish this, a light weight model with high inference speed must be designed. General ALPR 

systems consist of four stages that run back-to-back: Vehicle Detection (VD), License Plate Detection (LPD), 

Character Segmentation (CS), and Character Recognition (CR). These stages can be adjusted according to the 

performance expectations and application requirements. However, ALPR models are usually presented with only two 

steps, LPD and CR, in order to boost model execution speed while maintaining high accuracy. This pipeline starts by 

detecting the LPs in the video frames. LPD phase requires a powerful Object Detection (OD) algorithm that detects 

LP with high accuracy. Due to the conflict between this step and the video frames extracted from the camera, the OD 
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algorithm must be very fast to ensure that no frame is lost. Once the detected LP has been separated from the original 

image, the characters on the LP will be recognized in the next step without any segmentation methods. In this system, 

all stages play a complementary role in determining its final performance. However, LPD has a special effect because 

it determines the quality of the input data in the process and must search for LPs in complex and variable scenes at a 

very high speed. This means that if the LPD phase is performed well, it is likely to prevent misclassification of other 

objects as LP and misidentification of LP characters in the next phase. This is the reason why some researches present 

a model that includes the VD stage before the LPD, because the vehicle has larger dimensions and is more immediately 

recognizable than the LP. This work increases the model processing time, which is not suitable for deployment of the 

model on edge devices. Aside from that, because some Persian characters are similar to one another and have been 

identified less often than English characters, research on ALPR algorithms is more focused on Iranian license plates. 

The main objective of this paper is to present an accurate, robust, and real-time ALPR model for edge devices. The 

strengths of our proposed model can be summarized in four key points: high processing speed and real-time capability, 

remarkable accuracy in recognizing similar characters, robustness under challenging and complex conditions, and 

compatibility with embedded systems featuring limited computational resources (suitability for deployment on edge 

devices). Therefore, we investigated and verified the existing methods for establishing the model on the Jetson Nano 

Developer Kit in order to select the one with the best performance index. In this study, the main contributions of the 

work are listed as below: 

 We propose a two-stage deep learning model based on You Only Look Once (YOLO) for ALPR, which achieves 

a precision of 98.2% in recognizing Persian characters. This model effectively addresses the challenge of 

distinguishing similarly-shaped characters and demonstrates outstanding performance in both precision and speed 

compared to existing approaches. Therefore, the high processing speed and the remarkable accuracy in 

recognizing highly similar characters make our proposed model well-suited for real-time applications. 

 We validate our proposed model on a small dataset containing challenging scenarios, such as low-quality images, 

unexpected lighting conditions, nighttime and noisy images, and other complex situations. The model’s accuracy 

dropped by only about 1.5%, demonstrating its robustness under complex conditions. 

 We implement our model on the Jetson Nano using the DeepStream SDK and conduct a performance comparison 

between the Jetson Nano and a GPU-enabled PC. The results highlight the Jetson Nano’s suitability for mobile 

ALPR applications, demonstrating the feasibility of deploying our proposed model on mobile devices. As a result, 

one of the strengths of our presented model is its compatibility with edge devices, including those with limited 

computational resources. 

The manuscript is organized as follows: Section 2 reviews related works on LPD and CR in summary. Section 3 

describes the methodology in detail. Section 4 introduces the experimental setup, datasets and model deployment. 

Section 5 presents results and discusses about them. Finaly Section 6 concludes the paper and proposes future work. 

2. Related Works 

There have been several papers published so far on ALPR, and various technological solutions have been proposed. 

The proposed ALPR algorithm in this study involves the two main stages of LPD and CR; therefore, in literature, only 

works relevant to these two steps will be discussed. A number of recent articles [5] have also demonstrated that the 

segmentation stage can yield significant results. Taking a general perspective, the presented solutions can be divided 

into two categories. One perspective incorporates image processing approaches like edge-based [6], [7], [8], color-

based [9] and texture-based [10] for LPD, which mainly based on the features of the LP. In CR, most of the methods 

in this category are used for preprocessing. The second perspective considers deep learning algorithms along with 

neural networks. Several recent studies have utilized Convolutional Neural Networks (CNNs) for both the LPD and 

CR steps [11], [12] because they have shown significant potential for solving such problems and other similar real-

world issues like Face Mask Detection [13]. 
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2.1 License Plate Detection 

Sultan et al. [14] developed a systematic ALPR application. This study uses morphological image processing methods 

for LPD. Khan et al. [15] proposed an efficient model to detect the LPs using YOLOv5 algorithm for unconstrained 

real-world environment. Vaiyapuri et al. [16] introduced a model relies on traditional image processing for LPD, 

which includes a Madian filter to develope the image and remove noise, a Sobel edge detector filter to find the edges 

of the LP, and a morphological method to isolate the LP from the background. The LPD process is completed using 

two methods, dilation and erosion. Laroca et al. [17] presented a modified Fast-YOLOv2 model for LPD issue. This 

network structure has been modified in the following ways: layer 13 filter size has been changed, layer 14 has been 

added with 1024 filters and output layer filters have been reduced to 50. Tourani et al. [18] developed a flexible 

method based on YOLOv3 for Iranian LPD, which achieved 97.8% in term of accuracy. The LPD stage proposed by 

Pustokhina et al. [19] uses image processing methods to detect LP. The designed model is based on the Improved 

Bernsen algorithm (IBA) and Connected Component Analysis (CCA). To implement ALPR, Izidio et al. [20] 

considered an embedded platform, and based on that point of view, they have used the Tiny-YOLOv3 model, which 

is capable of high processing speeds, for LPD. Luo and Liu [21] improved the accuracy and execution speed of the 

YOLOv5m network by modifying its structure, and used this improved network to solve the LPD problem. The 

changes include the use of K-Means++ algorithm, the use of DIOU loss function, and the removal of the 20×20 feature 

map. With the aim of establishing the network on edge-based devices and increasing the speed of inference, Ashrafi 

et al. [22] employed a two-part real-time model including MobileNet SSDv2 and Hierarchical Haar classifier. The 

proposed network achieves 82.7% precision and 27.2 Frames Per Second (FPS) inference speed. Al-batat et al. [23] 

implemented all ALPR steps using YOLO. In this respect, Tiny-YOLOv4 was trained on five renowned datasets in 

this field and achieved an average accuracy of 99.16%. Silva and Jung [24] introduced an Improved Warped Planar 

Object Detection Network (IWPOD-NET) for LPD to detect four corners coordinates of LP. WPOD-NET originally 

used YOLO, SSD, and Spatial Transformer Networks (STN), but this study proposes affine transformations alongside 

them for OD. This feature rectifies the LP view to Fronto-Parallel. In a similar manner to [24], [25] additionally 

addressed the issue of LP rectification using the perspective transformation method. Guatam et al. [25] applied 

regression as well as a loss function which is based on average sum of Euclidean distance to train CNNs for LP 

correction. 

2.2 Character Recognition 

In [26], morphological methods were used to identify vehicle LP characters, similar to [14]. Kaur et al. [26] suggested 

an approach based on a combination of pre-processing, morphological operations and CNN techniques for CR. In the 

initial stages of building the model, gray scaling, median filtering, thresholding, and masking are applied as pre-

processing techniques. In order to extract features from the image, morphological operations are used after the image 

quality has been improved. A specific structure of CNN is then used to classify and identify the characters on the LP. 

Khan et al. [15] proposed a robust neural network architecture to recognize characters of LP based on CNN, which is 

made up of sixteen convolutional layers with a kernel size of 64, 128, 256 and 512 to extract advanced features, five 

maxpooling layers at the end of convolutional layers and two fully connected layers. Vaiyapuri et al. [16] proposed a 

deep learning-based model for CR, which uses indistinct CNN with Squirrel Search Algorithm (SSA) for parameter 

optimization. He and Hao [27] presented a hybrid structure that combines feature extraction, sequential modeling, and 

predictive modeling for CR. This structure was tested using several techniques for each term, and the best results were 

announced. For feature extraction, ResNet is used, followed by Bi-directional Long Short Term Memory (LSTM), 

and attention-based modeling is used for prediction. Izidio et al. [20] developed a deep learning based architecture for 

recognizing characters in real time. In the shallow CNN, three convolutional layers have filter sizes of 48, 64, and 128 

and two fully connected layers are used to produce the outputs. The articles [28] and [29], however, consider CR in 

the category of Natural Language Processing (NLP), in which characters are viewed as sequential data with a special 

order. Shi and Zhao [29] proposed a CR method that combines Gated Recurrent Units (GRU) and Connectionist 

Temporal Classification (CTC), which improves convergence speed and reduces training time. The model presented 

by Li et al. [28] is similar to that presented in the previous work. However, they used LSTM instead of GRU to achieve 
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their goal. Chen and Hendry [3] developed a method for recognizing Taiwanese LPs, which trains separate networks 

for each character. This study designed and trained 36 single-class networks with similar structures to YOLO, which 

has a lighter architecture than YOLO, using the Sliding Window detection process.  

3. Methodology 

ALPR pipeline, which illustrates in Figure 1, comprises two main stages: LPD and CR. To begin with, the fine-tuned 

and trained YOLOv5s model, is used to detect LPs in each video frame. Based on the predicted coordinates of the 

bounding boxes, the detected LPs are separated from the original image. Next, the characters on the cropped LP are 

detected using the trained YOLOv5m model. In order to recognize the LP, the detected characters are sorted in 

accordance with their x coordinates. According to Figure 1, the model will output a string of numbers and letters. For 

both LPD and CR stages, the YOLOv5 model are used, but before proceeding, we would like to explain why this 

algorithm was selected. Our criteria for selecting an algorithm are fast execution speed, lightweight model, and 

superior precision respectively. Due to the purpose of this paper being to deploy the designed model on one types of 

edge devices, namely NVIDIA Jetson Nano, it is imperative that the algorithm selected can successfully run in real-

time scenarios and at a high speed. Additionally, the algorithm should be small in size and capable of being 

implemented on the Jetson Nano board based on the technical specifications of the board (GPU compute capability, 

RAM uasge limitation). Similarly, to any other algorithm, high precision is also critical for us, and the designed 

algorithm must be implemented on the mobile devices with acceptable performance. OD refers to the process of 

locating and recognizing objects in a digital image. LPD is classified under the OD concept due to its similarity, and 

the algorithms used for it may also be used for LPD. Additionally, the proposed model treats CR as an OD task, where 

each character is treated as an object. In a review of other articles for CR, it has been observed that the use of algorithms 

such as Recurrent Neural Networks (RNNs), GRUs and LSTMs significantly increases the model execution time, 

which suggests that the designed model will not be suitable for real-time execution. Furthermore, since our proposed 

algorithm does not include the CS stage, it will be excluded as a classification task. As a result, our developed 

sequential algorithm is entirely based on the concept of OD. 

Figure 1.  

At present, YOLO [30] and Region-based Convolutional Neural Networks (R-CNN) [31] are widely used and popular 

OD algorithms. There are significant differences between these two algorithms in terms of their structure and 

performance. For structure, the YOLO family, which includes YOLOv2 [32], YOLOv3 [33], YOLOv4 [34] and 

YOLOv5 [35], are single-stage detectors, while the R-CNN family, which includes R-CNN [31], Fast R-CNN [36] 

and Faster R-CNN [37], are two-stage detectors. First, the R-CNN algorithm generates areas in which objects may be 

found, and then uses a neural network to assign these areas to the desired objects. In this regard, this type of detector 

is more accurate than single-step detectors. Despite this, the network inference speed is slower than YOLO due to the 

multi-steps in the detection process. The YOLO family, is well known for their fast execution speed and real-time 

applications. YOLO identifies and locates objects in one pipeline. Compared to R-CNN, this algorithm achieves an 

acceptable precision, but it is lower than R-CNN precision. Therefore, by creating a trade-off between precision and 

speed and considering that the model will be deployed on the edge devices, Jetson Nano Developer Kit, the YOLO 

algorithm is a more effective choice for this study. YOLOv5 is the latest version at the time of this study. This version 

has two advantages over its predecessor, YOLOv4: 1. The YOLOv5 weight file is 90% smaller in size. 2. The speed 

of its inference is faster. From another perspective, YOLOv4 performs slightly better in precision. However, the above 

advantages prove that YOLOv5 is a suitable algorithm for deploying on embedded devices for real-time 

implementations. In comparison with its previous versions, this version of YOLO provides higher accuracy and faster 

inference speed. The YOLOv5 network architecture shown in Figure 2, which was modeled based on [38], consists 

of three components. To extract significant features from the incoming image, CSPDarknet is employed as the 

backbone component. Shortly, CSPDarknet is superior due to its ability to address heavy processing calculations in 

its network architecture. A Path Aggregation Network (PAN) is used in the neck layer to gather feature mapping 

(aggregation of parameters from different levels of the backbone). YOLO is also used as the head, which gives outputs 
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such as class, precision score, location and size information. A major difference between YOLOv5 and other versions 

is the ability to automatically train bounding box anchors (auto-anchors) based on genetic algorithms and K-means 

techniques. 

Figure 2. 

The YOLOv5 network architecture consists of four models: YOLOv5s, YOLOv5m, YOLOv5l, YOLOv5x. 

Differences between them can be attributed to the number of feature extraction modules and the number of 

convolutional filters in the network. This is also apparent in the number of parameters in the model. When selecting 

among the four models described above, the complexity of the problem and the algorithm design requirements should 

be considered, for example, making a trade-off between precision and speed or deploying on edge devices. 

3.1 License Plate Detection 

The least complicated YOLOv5 model, YOLOv5s, is used for the LPD network. The LPD issue has one object class 

(License Plate) whose object is not particularly complicated due to its shape and its features are relatively 

straightforward to extract. Moreover, since LPD is the first step of the ALPR model, its inference speed should be as 

fast as possible in order to process video frames at a high rate. The present study proposes a YOLOv5s architecture 

that uses 640 × 640 pixels as the input image dimensions during training. As a default, YOLOv5s utilizes Stochastic 

Gradient Descent (SGD), which has been replaced by the Adam optimizer in our proposed algorithm. The following 

claims can be made based on the experiments performed using both Adam and SGD optimizers: 

1. Adam optimizer's adaptive learning rate is an advantage over SGD, so it does not require as much attention to 

determine the optimal learning rate. 

2. Training duration can be reduced and convergence can be accelerated by adjusting the optimizer to Adam. 

3. The Adam optimizer's precision is approximately 3% higher than SGD when other hyperparameters are held 

constant. 

A batch size of 16 is selected based on the GPU's memory limit. Also, weight decay and momentum should be 

unchanged at 0.0005 and 0.937. This will stabilize the gradient and avoid updating weights based on common features, 

thus reducing the impact of the imbalance dataset. Changes in data augmentation techniques are also considered. We 

used three techniques for data augmentation: Mosaic, Fliplr, and Scale. As Mixup and Flipud change significant 

features that can be extracted from input, they have not been utilized in this problem as they would result in incorrect 

training of the network. Table 1 contains details of the parameters set for network training.  

Table 1.  

When training a network, the default anchor values are checked at the beginning of the process, and if they do not fit, 

new anchor values are suggested so that it can be trained again using those values in the future. Despite the fact that 

the anchor values are completely appropriate for this problem and the data, the fit rate was reported to be 0.998. 

Transfer learning has been used to train the network. By using these weights, network learning is more efficient and 

faster, and learning is transferred more effectively. 

3.2 Character Recognition 

The model used for CR is YOLOv5m, which includes more parameters than the model used for LPD. In the CR issue, 

there are 28 object classes (Letters and Numbers), some of which have intricate and similar shapes, thus making it 

more challenging to extract their features. Table 2 illustrates the remarkable similarity between some Persian 

characters. In this study, one of the objectives was to develop a model that is capable of recognizing similar Persian 

characters accurately. Additionally, the blurring of the entrance LP image from the previous step requires a more 

sophisticated network. As CR is the second stage of the model designed for ALPR, its inference speed can be slower 

than that of LPD. The present study proposes a YOLOv5m architecture that uses 416 × 416 pixels as the input image 

dimensions during training. On the basis of the reasons mentioned in the previous section, the network optimizer is 
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changed to Adam for training this network. Batch size, weight decay, and momentum are set like the LPD network. 

As opposed to the LPD stage, the Fliplr data augmentation technique was not used to train this network, since it alters 

the characters and the network extracts false features as a result. Table 3 summarizes the data augmentation methods 

used to train the CR network and the tuned learning rate for it. According to an analysis of the CR dataset, there are 

few images with rotation, although rotation is likely to occur in reality. Therefore, the rotation data augmentation 

technique was also used to train the network. Training began with a check of the default anchors, which reported a fit 

rate of 1. This indicates that the default anchors were appropriate, and the network did not need to be retrained with 

suggested anchors. Similarly, to the previous section, transfer learning has also been used to train the network. 

Table 2. 

Table 3. 

4. Experimental Setup 

This section presents the architecture of the systems and datasets employed in this study. Also, this section describes 

the structure and how the designed model can be deployed on Jetson Nano with DeepStream. The training procedure 

and experiments were executed on computer with an Ubuntu 20.04 OS, Intel Core i7 3.50 GHz CPU, 32 GB RAM 

for CPU (DDR4), NVIDIA GeForce GTX 1050i GPU and 4 GB RAM for GPU. To train, fine-tune, test and deploy 

the YOLOv5 model, we must first clone YOLOv5 repository and install its requirements according to the 

documentation provided for it. Using the above PC, both networks were trained. Jetson Nano was only used for testing 

and deployment of the end-to-end prototype. The Jetson Developer Kit from NVIDIA is one of the most widely used 

edge devices for artificial intelligence applications. It is equipped with accelerators that can infer and deploy 

algorithms in real-time. The minicomputer runs deep learning algorithms and neural networks in parallel for 

applications such as image classification, OD, and segmentation using Compute Unified Device Architecture 

(CUDA), which enables the simultaneous execution of complex calculations. Jetson minicomputers are categorized 

according to their configuration, such as GPU capability, CPUs, RAM size, pinout, and other peripheral components. 

This research is also conducted on Jetson Nano, one of the simplest board in this family.  According to the technical 

specifications of this board, its RAM is insufficient to deploy heavy and complex models. 

4.1 Datasets 

To train each sub-network of the proposed two-stage model, two separate datasets were used. The dataset used for 

LPD consists of 6306 samples. The dataset was compiled from three datasets. Table 4 lists the titles and percentages 

of each of them. Both the purchased dataset and the public dataset are available separately on the Internet. On request, 

researchers can access the dataset collected by the authors of this study.  

Table 4.  

In the purchased dataset, samples are often taken close to the vehicle, and only one LP is labeled per image. The same 

condition applies to the second tier (public dataset) which is publicly available online. To achieve diversity in the 

dataset, the manually labeled dataset has been added to it, whereas the more samples, the better the network can be 

trained. A variety of factors have been considered in photography, including: different lighting and environmental 

conditions (There are also images taken at night), a variety in the number of LPs, different distances from the vehicle. 

As a result of the mentioned cases, we have created a dataset with a large variety, allowing the model to see all possible 

states for the LP. This study used a public dataset containing 1643 images and 28 classes to recognize Persian 

characters. It has 18 letters and numbers 0-9 in its classes. This dataset does not include letters that have a very limited 

and special use, and for that reason, they are not considered. Since Persian letters cannot be used as labels in the same 

way as English letters, an English equivalent has been used. Based on the dataset, Figure 3 shows how many instances 

are present in each class. There are almost no differences in frequency between the numbers except for the number 0. 

Figure 3.  
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An Iranian LP structure explains the frequency comparison between numbers and letters. Only three letters (alef, pe, 

te and malol) are less frequent than other letters due to their special use in reality. Sample distribution in this dataset 

is consistent with the appearance characteristics of Iranian LPs and has a reasonable degree of diversity. 

4.2 Model Deployment Using DeepStream SDK 

The DeepStream SDK from NVIDIA is a comprehensive streaming analytics toolkit based on GStreamer for AI-based 

multi-sensor processing, video, audio, and image understanding. Several plugins can be added to this software 

development environment. Developers can create a path for data processing that includes deep learning methods, 

neural networks and other complex processing functions. As this advanced environment provides real-time processing 

of video and image data, it has been used for this study. The DeepStream SDK offers the advantage of allowing models 

to be run with the TensorRT optimizer. NVIDIA TensorRT is a powerful inference optimizer and runtime that offers 

low latency and high performance for deep learning inference applications. For this study, DeepStream pipeline and 

plugins have been customized. In Figure 4, we show a step-by-step breakdown of the DeepStream pipeline for 

deployment of LPD and CR models. Video frames are captured in real-time by the IP camera, and then the video is 

decoded. Video frames are captured in real-time by the IP camera, and then the video is decoded. Multiple video 

streams are aggregated and batched using the Gst-streammux plugin. After that, batched videos are inferred with 

cascaded models in order to detect the LP and the characters associated with it. 

Figure 4.  

Gst-nvinfer plugin, which utilizes TensorRT-based inference for detection and classification, is customized to 

accomplish this. According to Figure 4, the plugin is defined once in PGIE format for LPD, and once in SGIE format 

for CR, both of which are based on YOLOv5 trained networks. Furthermore, the Gst-Dsexample plugin is customized 

to save PGIE outputs (cropped detected LPs) in a specified directory. Using the Gst-nvosd plugin, the ALPR process 

output, which includes the specified objects and their associated text, is displayed on a video frame. By configuring 

the KITTI format, Kitti-output and Kitti-output-track functions, the output of each frame (labels, bounding box 

coordinates and precision scores) is saved in a text file according to the desired format (characters detected for each 

LP are listed next to each other in order). 

5. Results 

In this section, we analyze the effectiveness of the proposed model using various metrics. Also shows how the model 

performs under varied test conditions. LPD and CR models were evaluated using widely used OD metrics, such as 

Precision, Recall, F1 Score and mean Average Precision (mAP). A mathematical explanation of these validation 

criteria can be found in Equations 1-4. In these equations, a True Positive indicates that the LP (or characters) is 

actually visible and correctly predicted as LP during the detection process. False Positives occur when the LP is not 

in the input image, but the model predicts other objects as LPs. False Negatives occur when the LP is present in the 

input image but incorrectly predicted. 

(2) 
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Precision indicates the percentage of correctly detected license plates out of all the plates identified by the model, 

highlighting its ability to avoid false positives. Recall, on the other hand, shows how many of the actual license plates 

were successfully detected, focusing on reducing false negatives. The F1 score combines Precision and Recall into a 

single metric by calculating their harmonic mean, offering a balanced perspective when both metrics are equally 

important. Lastly, mAP provides a comprehensive evaluation of the model’s performance by averaging precision 
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values across different recall thresholds, making it a widely used standard for object detection tasks. For both 

networks, these metrics have been calculated. 

5.1 License Plate Detection 

In total, 5045 images were used to train the YOLOv5s model, and 1261 images were used for validating. In Table 5, 

the results of the LPD algorithm are presented. The complexity and size of the model were determined using two 

metrics, GFLOPs and Parameters, in addition to performance efficiency measures like mAP, recall, precision and 

inference speed. This table illustrates the performance of the YOLOv5s trained model for LPD. A significant aspect 

of the algorithm's performance is its inference speed, which is approximately 66 FPS for images and approximately 

90 FPS for videos. There is a high enough speed at this stage of the model, which deals with the input, such as video 

frames, to avoid losing frames and LPs. Also, the model has high precision for LPD with a mAP of 97.6%, which is 

obtained by using problem-appropriate data augmentation techniques, a comprehensive and wide-ranging dataset, a 

robust Adam optimizer, and a tuned learning rate. YOLOv5s can accurately detect LPs, as shown in Figure 5. 

Table 5.  

Figure 5.  

5.2 Character Recognition 

In total, 1314 images were used to train the YOLOv5m model, and 329 images were used for validating. In Table 6, 

the detailed results of the CR algorithm are presented. This table illustrates the optimized performance of the 

YOLOv5m trained model for CR. A significant aspect of the algorithm's performance is its inference speed, which is 

approximately 56 FPS for images. Also, the model has high precision for CR with a mAP of 98.2%, which is obtained 

by using problem-appropriate data augmentation techniques, a balanced and diverse dataset, a reliable Adam 

optimizer, and a tuned learning rate. YOLOv5m can accurately detect characters, as shown in Figure 6. 

Table 6.  

Figure 6.  

According to the results (Figure 6), the trained algorithm for CR has performed well in recognizing similar characters. 

Figure 6 illustrates scenarios where the trained YOLOv5m model successfully distinguishes between similar Persian 

characters. For instance, the similar characters “9” and “vav” are correctly recognized in Figure 6(c). Similarly, 

accurate recognition of the similar characters “5” and “he”, “9” and “1”, “6” and “ain” can be observed in Figures 

6(d), 6(e), and 6(f), respectively. Although both data augmentation and the YOLOv5m model structure play significant 

roles in the model’s performance, data augmentation can be considered the key factor in improving the recognition of 

visually similar characters. Data augmentation directly impacts the diversity of the training data, exposing the model 

to a broader range of similar characters and challenging conditions. This technique helps the model learn critical 

features that enable it to distinguish between similar characters in real-world scenarios. A model trained with 

appropriate data augmentation techniques develops enhanced feature extraction and attention mechanisms, resulting 

in more accurate classification of similar characters.  

Figure 7 shows the performance of the model based on the confusion matrix. This matrix provides information about 

the true and predicted values of the classes and indicates how precisely the model predicts the classes. The x-axis is 

the true labels and the y-axis is the predicted labels. For instance, the value of 0.98 highlighted in bold indicates that 

the model correctly predicted the character “ain” with 98% accuracy. The 0.02 value marked at the top indicates that 

the 0.02 value was incorrectly estimated as the number “8”. Class “ain” and class “8” have very similar appearances. 

Confusion matrix is helpful in understanding which classes are being confused by the model as other classes, like 

above example. 

Figure 7.  
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5.3 End-to-End Process 

Until now, the analysis results have been provided individually for each phase. The two trained YOLOv5 networks 

for LPD and CR have now been integrated and deployed hierarchically. Below are the results of an end-to-end 

evaluation of the suggested methodology on two platforms, the PC and the Jetson Nano board (which possess limited 

computational resources). As explained earlier, to carry out this process on the Jetson Nano board, the DeepStream 

SDK is utilized. Figure 8 illustrates the results of running the proposed end-to-end ALPR algorithm on various typical 

real-world scenarios on a PC. 

Figure 8.  

To evaluate the robustness of the proposed end-to-end ALPR model, we tested it on a challenging dataset (hard dataset) 

containing images with snow, noise, low-quality, nighttime, uneven lighting and other complexities. The model 

achieved an accuracy of 94%, demonstrating a minimal 1.5% decrease compared to its performance on the standard 

dataset. This slight reduction in precision is reasonable and expected due to the difficulty of the dataset, as such 

conditions often lead to a significant drop in model performance. The robust performance of the model can be 

attributed to the use of effective data augmentation techniques and the advanced architecture of YOLOv5, which 

enabled the model to generalize well even under challenging conditions. This result highlights our model’s strength 

and potential for real-world applications where such complexities are common. Figure 9 illustrates the performance 

of the proposed model on several samples from the challenging and complex dataset. The results in this section 

highlight one of the key strengths of our proposed approach: its significant accuracy in challenging scenarios and 

complex conditions.  

Figure 9.  

Additionally, Figure 10 illustrates the output of the real-time execution of the proposed model on the Jetson Nano, 

and the resulting text files are saved for each frame processed. A comparison of the precision and inference speed of 

the ALPR algorithm on two devices, the PC and Jetson Nano, is presented in Table 7. Based on the end-to-end 

experiment results presented in the table, the ALPR network showed a precision of 95.5%, while the precision of the 

LPD module was 97.6% and the precision of the CR module was 98.2%. It is due to the quality of the LP images in 

the CR dataset and the cropped LP for the CR phase when tested on real-world samples. Accordingly, the quality of 

the LP image when cropped and given to the CR stage is lower than the quality of the CR dataset used to train the 

network. Because of this, the end-to-end accuracy is slightly lower than the two stages that make it up. As a 

comparison, the precision of the same model on the Jetson Nano board is 93%, which is about 2.5% less than the 

precision of the model on the PC. There are three reasons for this issue: 1. For the two devices, the experimental 

samples are different. 2. Testing conditions differ between the two devices (the Jetson Nano board was tested in real-

time with the camera, whereas the PC test was conducted using a recorded video) 3. The DeepStream SDK has been 

used to deploy the model on the Jetson Nano board, and the results presented in the studies about this toolbox indicate 

that converting the model format to engine (using the TensorRT optimizer) results in a slight loss of accuracy. 

However, the developed ALPR algorithm has high and significant overall precision. 

Table 7.  

Figure 10.  

As for execution time, the proposed algorithm achieved an overall inference speed of approximately 23 FPS on PC, 

which proves its real-time functionality. The algorithm's inference speed is estimated to be around 6 FPS on the Jetson 

Nano device. According to NVIDIA's website, the Compute Capability of the Jetson Nano device is 5.3, whereas for 

the PC used in this study, it is 6.1. Based on the published articles regarding the deployment of deep learning-based 

models on various Jetson Developer Kits [39], we can estimate that the proposed ALPR algorithm will operate at 

approximately 24 FPS or higher on a more advanced Jetson devices, for example Jetson Xavier NX. 
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5.4 Comparison of the Proposed Method with Previous Methods 

We compared our proposed method with other state-of-the-art methods published recently, as shown in Table 8, in 

terms of accuracy and inference time. Our proposed method outperforms the methods presented in [40], [18], [41] and 

[42] in terms of the accuracy of both the LPD and CR stages, end-to-end accuracy, and inference time. The end-to-

end precision of [18], at 95.05%, is very close to our model’s precision of 95.5%. However, our model is 

approximately three times faster, which is a significant advantage. 

[43] achieved an accuracy of 98% in the LPD stage and 98.8% in the CR stage, which are 0.4% and 0.6% higher than 

the respective accuracies of our method’s stages. However, as emphasized throughout this paper, the strength of our 

method lies in its real-time capability and low execution time while maintaining high accuracy. In [43], only the 

execution time for the LPD stage is reported as 23 msec, whereas our model completes this stage in approximately 

15.15 msec, which is about 1.5 times faster. Additionally, according to the original Faster R-CNN paper, the 

processing time for a single image is approximately 140 msec. Based on this estimation, the end-to-end execution 

time of the method proposed in [43] can be inferred to exceed 160 msec, which is roughly four times the total execution 

time of our proposed model and this is one of the strengths of our approach. 

Table 8.  

5.5 Analysis of Misclassification 

Although our proposed model demonstrates high accuracy, it encounters errors in certain specific scenarios. Therefore, 

in this section, we analyze instances where the model misclassifies characters. This analysis aims to identify the 

model’s weaknesses and the challenges it faces, allowing us to propose potential solutions for improvement.  

Based on our research and the confusion matrix data, when the angle of the vehicle’s license plate exceeds a certain 

threshold and the image quality is not standard, the character “he” is often misclassified, particularly as “ye”, and 

“mim” is misclassified as the digit “9”. These misclassifications are illustrated in Figure 11(a) and Figure 11(b), 

respectively. The first issue arises due to the limited number of “he” samples in the dataset, which prevents the model 

from being exposed to diverse instances of this character, leading to misclassification. The second issue is caused by 

the visual similarity between “mim” and “9”, as both share a circular shape at the top, which confuses the model. 

Figure 11.  

To address the issue with the character “he”, increasing the amount of training data and applying particular data 

augmentation techniques can be beneficial. For the problem involving “mim” and the digit “9”, utilizing finer-grained 

features, optimizing the model architecture, and incorporating post-processing techniques could help improve 

performance. Implementing these strategies is likely to enhance the model’s accuracy and reduce the occurrence of 

such errors. 

6. Conclusions 

This paper proposes a deep learning-based detection algorithm for automatic license plate recognition, which consists 

of two stages: License Plate Detection (LPD) and Character Recognition (CR). Our method offers several advantages, 

including high accuracy, the capability to address the challenges posed by visually similar Persian characters, real-

time execution, and compatibility with edge devices. Additionally, it demonstrates significant robustness under 

challenging conditions and achieves superior processing speed, making it suitable for real-time applications. Our 

approach relies on two sequential YOLOv5 deep convolutional neural networks for this objective. Both networks were 

trained using a combination of transfer learning strategies and appropriate data augmentation techniques. Our 

algorithm has been implemented on two different devices: A Personal Computer (PC) and a Jetson Nano device. On 

PC, the inference speed of the trained model is 23 FPS and the precision of the trained model is 95.5%. The inference 

speed of the model is measured at 6 FPS by implementing the model on Jetson Nano using DeepStream and performing 

real-time testing. We discussed the results recorded on both devices and compared them. This study demonstrates that 
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the proposed ALPR model performs satisfactorily and efficiently on GPU platforms. For future work, we intend to 

explore advanced neural network models to address the misclassified characters and compare their results with the 

existing model. Furthermore, apply the developed models on other embedded platforms, including more advanced 

Jetson developer kit products. 
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Figures’ captions: 

Figure 12. The pipeline for proposed method 

Figure 13. The YOLOv5 network architecture 

Figure 14. Instances of each label in the character recognition dataset: A) Numbers B) Letters (Words) 

Figure 15. Block diagram of the developed automatic licence plate recognition procedure deployment on Jetson Nano via 

DeepStream 

Figure 16. Results of license plate detection model tests on real-world samples 

Figure 17. Results of character recognition model tests on real-world samples 

Figure 18. Confusion matrix for character recognition network 

Figure 19. Results of end-to-end pipline tests on real-world samples on personal computer 

Figure 20. Examples of the end-to-end proposed method on challenging scenarios 

Figure 21. Results of end-to-end pipline tests on real-world scenarios on Jetson Nano 

Figure 22. Examples of model’s misclassifications 

Tables’s captions: 

Table 9. Data augmentation and hyperparameters details for license plate detection network 

Table 10. The same Persian characters 

Table 11. Data augmentation and hyperparameters details for character recognition network 

Table 12. Detailed information about the license plate detection dataset 

Table 13. Performance of the license plate detection algorithm 

Table 14. Performance of the character recognition algorithm 

Table 15. Performance results of proposed end-to-end algorithm on personal computer and Jeton Nano 

Table 16. Comparison of the proposed method with other Iranian automatic license plate recognition system 
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Figure 32. 

 

Figure 33. 

Table 17. 

Data augmentation techniques Optimizer Learning rate 

Scale, Mosaic, Fliplr Adam 1 × 10−4 
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Table 18. 

Similar Persian Characters 

1-9 2-3 

3-sin 6-ain 

9-vav pe-be 

saat-sin non-ghaf 

 

Table 19. 

Data augmentation techniques Optimizer Learning rate 

Scale, Mosaic, Degrees (Rotation) Adam 5 × 10−5 

 

Table 20. 

Dataset Type No. Samples Participation Percentage (%) 

Purchased Dataset (Private) 1466 23 

Public Dataset 2840 45 

Collected Dataset 2000 32 

Custom Dataset (combinatorial) 6306 100 
 

Table 21. 

Model Parameters GFLOPs Precision(%) Recall (%) mAP (%) F1 (%) 
Inference Speed 

(FPS) 

YOLOv5s 7022326 15.8 95.5% 94.9% 97.6% 95.2% 
Video Image 

90 66 
 

Table 22. 

Model Parameters GFLOPs Precision(%) Recall (%) mAP (%) F1 (%) 
Inference Speed 

(FPS) 

YOLOv5m 20962041 48.2 96.8% 98.8% 98.2% 98% 
Image 

56 
 

Table 23. 

Hardware Inference Speed (FPS) Precision (%) 

PC 23 95.5 

Jetson Nano 6 93 
 

Table 24. 

Studies Methods 
Accuracy & Time 

LPD CR End-to-End 

Hatami et al. [40] 
CNN (YOLOv4-tiny), 

CNN+RNN+CTC 
87.81% 87.22% 

75.14%, 

435msec 
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Tourani et al. [18] CNN (YOLOv3), CNN (YOLOv3) 97.8% 97.9% 
95.05%, 

119.73msec 

Shahidi and Rajabi [43] CNN (YOLOv3), Faster R-CNN 98%, 23msec 98.8% - 

Tabrizi and Cavus [41] -, SVM-KNN - 97.03% - 

Ashtari et al. [42] 

Traditional Algorithm (Modified 

Template Matching + Color Features 

Extraction), Decision Tree + SVM 

96.6% 95.85% 92.6%, , - 

Our proposed method CNN (YOLOv5s), CNN (YOLOv5m) 
97.6%, 

15.15msec 

98.2%, 

17.86msec 

95.5%, 

43.47msec 
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