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Abstract: This study presents a mathematical model for the fractional Oldroyd-B fluid flow 

through a ciliated tube. The proposed model simulates the movement of mucus (fractional 

Oldroyd-B fluid) within the respiratory tract, where symplectic and antiplectic metachronal wave 

patterns are generated by ciliary motion. The model, though intricate, is simplified using the 

lubrication approach, and the resulting partial differential Equations (pdes) are solved using the 

fractional Adomian Decomposition Method (ADM). For the analysis of fluid flow, mathematical 

expressions for the pressure gradient, pressure rise, frictional force, and streamlines are derived, 

plotted, and discussed. The graphical results demonstrate that the symplectic wave pattern is 

more effective than the antiplectic wave pattern in transporting mucus through the respiratory 

tract. 
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1. Introduction 

Cilia motion is of paramount importance in the physiology of almost all species in the animal 

and plant kingdoms. Cilia are mainly of two types: motile and non-motile (or primary) cilia, with 

the internal architectures of motile and non-motile cilia being 9+2 and 9+0, respectively. Cilia 

serve two main functions in the body: detection and the propulsion of fluids and cells within 

various organs of humans, animals, or plants [1]. Primary (non-motile) cilia are present in the 

ears, eyes, kidneys, lungs, and brain, and are responsible for detecting the mechanical and 

chemical signals communicated by these organs to the brain. In contrast, motile cilia play a 

significant role in respiration (mucus flow), successful pregnancy, locomotion, alimentation, and 

circulation in mammals. [2,3,4]. 

Nowadays, other interesting applications of micro-sized cilia have been found in biochemistry 

(testing samples of blood, sputum, and urine placed in drops on a chip), acoustic detection, and 

the sensing and detection of chemicals in the environment using micro-sized sensors [5]. Wang 

et al. [6] established a cost-effective technique for the fabrication of artificial cilia in the form of 

micro-sized beads with a polymer coating. Another important application of these microfluidic 

systems containing cilia is in micromixers [7, 8]. The development of artificial cilia on a chip is a 

hard nut to crack, and generating oscillations in the cilia when subjected to a magnetic field 

poses further complications, which have been addressed in the work of Hanasoge et al. [9]. 

In this study, we investigate the contribution of ciliary motion to the movement of mucus in the 

trachea. The motile cilia responsible for mucociliary clearance (MCC) have a complex internal 

structural architecture [1, 10]. More recently Su et al [11] presented a detailed and significant 

analysis of the role of motile cilia in relation to the recent worldwide coronavirus pandemic. 

Cilia beat in a coordinated and periodic pattern, and the hydrodynamic interactions among the 

cilia occur due to phase differences in their beating, generating metachronal waves [12]. It is also 

noteworthy that all ciliary activity results from hydrodynamic interactions among the cilia, their 

surrounding cells, and biofluids. The recent detailed work on ciliary hydrodynamics may be 

credited to Javid et al., [13] and Guo et al., [14]. There are various patterns of ciliary motion, 

such as effective strokes, recovery strokes, planar motion, flickering, stiff beating, low-amplitude 

beating, and very large circling motion [15]. Marino and Aiello [16] found the ciliary beat 

frEquationuency of human bronchial cilia to be 15.6 Hz at 34  C which tend to decrease as the 
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temperature decreases. 

Cilia driven mucous flow is a naturally occurring phenomenon which has recently been the focus 

of interest of experimental verification because of its practical application in human respiratory 

channel. To name a few only, in vitro cell culture investigations carried out by Matsui et al. [17] 

reported that mucous flow assumes the shape of large circles in human airways. Khelloufi et al. 

[18] observed that swirling patterns in mucous flow are the results of circular motion of cilia 

mats lying under the mucous and the sizes of these swirling patterns vary with the density of 

cilia. More recently, Gsell et al. [19] noted that due to invasive nature of invivo experiments, 

mechanism of mucous flow due to ciliary activity is not fully understood and hence further 

investigations are desirable to completely understand this biophysical process. They [19] further 

made a significant contribution by experimentally verifying that there is strong hydrodynamic 

connection between the mucous flowing in the human bronchial epithelium and the movement of 

cilia involved in this process. They also modeled the motion of cilia in the human bronchial 

epithelium as a 2 dimensional flow model in which cilia are aligned according to stream-wise 

alignment rule. Gsell et al. [19] treated mucous as a Newtonian fluid for which the Navier-Stokes 

Equations are developed and then solved numerically by using Bhatnagar-Gross- Krook lattice-

Boltzmann method on a hexagonal unit elements (having diameter 10 to 20    in which there 

are groups of 5 to 15 cells) for (i) multiciliated cells (ii) club and goblet cells. For details of this 

practical application of cilia motion we refer the readership to [19] 

More recently, Sedaghat et al. [20] studied the MCC by approximating the mucous as a Giesekus 

fluid which is capable of capturing shear thinning effect and the first and second normal stress 

differences in shear flows. Sedaghat et al. [21] further examined the complicated cilia driven 

mucous flow problem by approximating the lung mucous as a 5-mode nonlinear Giesekus model 

in which periciliary layer has been treated as a Newtonian fluid and the mucous above this layer 

as a non-Newtonian fluid . The key findings of [21] may be considered important in studies 

analyzing MCC rate issues. 

Mucus is represented by a fractional Oldroyd-B fluid model in this paper and MCC critically 

depends upon the ciliary motion, serous fluid properties, viscoelasticity and the adhesiveness 

with the bronchial tract of mammals. Viscoelastic fluid models in MCC has been considered in 

[15] and is observed that ciliary function is dependant upon mucous gel, periciliary hydration, 

temperature, mucous loading and operating frEquationuency of cilia. It is a fact that mucous flow 
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depends upon its viscoelastic behavior but due to mathematical complexity, researchers 

considered mucous as a Newtonian fluid [22] and as a shear thinning non-Newtonian fluids [23, 

24, 25]. Few studies [26, 27] have discussed the viscoelastic behavior of mucous. Oldroyd-B 

[28] with his coresearchers developed a frame-invariant constitutive Equationuation because it 

can explain all local and non local behavior of mucous. 

Fractional calculus [29] plays a prominent role in modern day medical science and medicines 

[30]. Fractional model is considered in this study because of the fact that cilia is a microscopic 

structure and its motion, functioning and various other characteristics in the respiratory and 

reproductive systems of humans/mammals can be better under-stood by using fractional order 

derivatives i.e., in the range from zero to unity. Recently much interest has been evolved in 

studying the fractional non-linear pdes and a variety of methods like Adomian decomposition 

method (ADM) [31], reduced differential transform nethod (RDTM) [32], modified 

decomposition method (MDM) [33], artificial neural networks (ANNs) [34] have been applied to 

obtain a semi-analytic solutions. More recently Altawallbeh et al. [35] introduced and applied 

generalized Riccati simple Equationuation method (GRSEM) to study nonlinear pde containing 

time fractional derivatives occuring in generalized nematic liquid crystals system and Az-Zo'bi et 

al [36] applied the same technique for the solution of conformable generalized Kudryashov 

Equationuation of pulses propagation. 

This study models mucus flow (as an Oldroyd-B fluid) in a ciliated tube, using the envelope 

model [37, 38] to address challenges in simulating MCC that numerical solvers fail to capture. 

ADM [33] is applied, effectively simulating mucus flow in the human trachea, driven by ciliary 

motion under a low Reynolds number, long-wavelength approximation [39]. 

The novelty of this study lies in the fact that, to the best of the authors' knowledge, no prior 

research has examined mucus flow in the respiratory tract using a fractional Oldroyd-B model 

within a ciliated tube, incorporating both symplectic and antiplectic wave patterns. The Oldroyd-

B model, a viscoelastic model accounting for both relaxation and retardation time effects, closely 

aligns with mucus flow, as the viscosity and elasticity of mucus vary over time due to external 

conditions, composition, and applied mechanical forces. Mathematically, this study is significant 

because (i) the nonlinear partial differential Equations involved rEquationuire careful analysis 

and are solvable via the lubrication approach, and (ii) analytical expressions for the stream 

function, pressure, and velocity are derived, enabling the evaluation of frictional forces on the 
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ciliated tube's surface, which could be a breakthrough for bioengineering. 

 

2. Mathematical Model 

The regime considered is shown in Fig. 1 and comprises a circular tube of length L. The inner 

tube is circular and collective cilia beating generates the metachronal waves and fluid flow. 

The geometry of ciliated tube can be simulated by the following equations [27]. 
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No slip condition implies that fluid velocities due to cilia tips satisfy the following conditions: 
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where the alphabetical subscripts denote the partial derivatives with respect to the respective 
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The constitutive Equation for fractional Oldroyd-B fluid is governed by:  
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Where  and   are the fractional parameters with  .10     When 1   then this 

model represents Oldroyd-B model which can be see in [40]. When 01   and ,1    the 

present model reduces to Maxwell fluid model and if ,011  then it depicts the classical 

Navier-Stokes model thus validates the applicability of this model. Thus governing 

Equationuation of motion becomes: 
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The moving and fixed frames are connected via the transformations 
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where  is the Reynolds number. Introducing Equations (11-12) and the approximations  

   ,0Re  [38], Equation (9) reduces to:  
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Using Equation (16) in Equation (15) will result in: 
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Twice integration of Equation (17), one gets: 
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where  and  are constants of integration. To find the values of constants  and ,  

following boundary conditions are used. 

                         

 .2cos1     where0             0

,         )(1
2cos21

2cos2

1

1

zhratw

hrathw
ze

ze
w

r 













  (19) 

After using the values of constants  and  Equation  takes the form:  
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Defining the volume flow rate as 
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The flux q  and the volume flow rate  are related as: 
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whereas  (dimensionless mean volume flow rate) is computed as: 
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Integrating Equation (30), one gets:  
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Using Equation    in Equation   , one obtains the following recursive relation:  
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Multiplying Equation (22) with the factor    will yield to:  
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With the help of Equation (22) and (40), one gets the following expression:  
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As:  
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                        .
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Therefore integrating Equation (42), one gets:  

                          , zgrwdr                                 (45)  

and 
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From Equation (44) 
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From Equations (43) and (44), one has: 
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Then Equation (51) becomes:  
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From Equations (47), (50) and (55), one arrives at:  

                      ,0´ zg                                                                         (56) 

so that 
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Thus Equation (45) becomes:  
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so that the stream function is determined and thus by virtue of Equations (43) and (44), 

complete velocity profile is determined for the problem under consideration. The pressure 

difference p and friction force per wavelength are computed as 

                            dz
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3. Results and discussion 

Table 1 shows that ciliary flow requires the high change in pressure for fractional Oldroyd-B 

fluid and least for Maxwell fluid. Fractional Oldroyd-B fluid and fractional Maxwell fluid 

models require more change in pressure as compared to the classical Oldroyd-B and Maxwell 

fluid models. 

The dynamics of the fractional Oldroyd-B fluid flow through a ciliated tube are mainly 

dependant upon the  , ,  , ,1 1   and time .t  The mathematical results of the pressure 

gradient, velocity and stream lines are drawn to observe the impacts of involving parameters by 

fixing ,4.0a ,5.0b ,5.1Q ,1.0 ,6.01  ,7.01  4.0 and 6.0  . 

Figs. 2a-2b displays the effects of fractional parameters ( and ) on Oldroyd-B fluid flow 

through the ciliated tube. Fig. 2a indicates that when the order of fractional derivative increases 

then the flow of Oldroyd-B fluid through the ciliated tube requires less change in pressure but 

Fig. 2b shows that increasing values of fractional order derivative of first Rivlin-Erickson tensor 

gives increasing effect on pressure gradient. Physically Fractional-order derivatives introduces 

the memory effects into the fluid and when a pressure gradient is applied, the fractional 

derivative leads to a slower response in terms of flow development compared to integer-order 

derivatives, causing a lag in flow. Fractional derivatives often highlight the elastic nature of the 

fluid more strongly than traditional models and also these can reduce the overall flow resistance, 

depending on the fractional order. Fig. 2c portrays the increasing effect of   on pressure 

gradient i. e., when the cilia length rises more change in pressure is required for the flow of 

fractional Oldroyd-B fluid. In the physical context of the Oldroyd-B fluid (a viscoelastic fluid) in 

a tube with cilia, the cilia length can significantly influence the flow and pressure gradient since 

longer cilia tend to have a greater capacity to propel the fluid, contribute greater shear stresses 

due to the enhanced fluid-cilia interaction and may cause greater fluid mixing due to their more 

extensive motion, leading to a more homogeneous flow distribution. The effect of relaxation 

time 1 on pressure gradient is depicted in Fig. 2d, it is noticed that the growing values of 1   

causes to reduce the change in pressure due to rise in restoring force. Physically the larger values 

of parameter 1 indicates that the fluid retains its elastic memory for a longer period and thus 
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takes longer to return to its original state after being deformed by forces. The delayed response 

on stress is measured by the retardation time 
1 in Fig. 2e, the delayed response shows that 

pressure gradient decays when the delayed response on stress rises which can be physically 

interpreted that for larger values of parameter 
1  that the viscous effects take longer to develop, 

leading to delayed viscous stress accumulation. This means that even if the pressure gradient is 

applied, the fluid does not immediately experience a full viscous response and for high 

retardation times, the flow may become more stable and less sensitive to abrupt changes in the 

pressure gradient, resulting in a more uniform flow profile. The impact of time on unsteady flow 

is shown in Fig. 2f which depicts that with the passage of time, flow of fractional Oldroyd-B 

fluid requires the less amount of pressure gradient. 

The flow behaviour is observed through the radial and axial velocity of a fractional Oldroyd-B 

fluid. Fig. 3a indicates the growing effects of cilia length parameter   on u , it displays that the 

length of cilia help to increase the flow in radial direction due to strong deriving force produced 

by the tips of cilia. Fig. 3b illustrates the variation of Q on radial velocity   It is noted that the 

rise in volume flow rate causes to reduce the flow of fractional Oldroyd-B fluid in radial 

direction. Since volume flow rate is across the radius, therefore reduces the flow in radial 

direction. 

The axial flow for the variation of   is shown in Fig. 4a. The growing values of cilia length 

parameter indicates that the axial flow increases with the deriving force due to high length of 

cilia. 

Also axial flow at  is forward but at the tip of cilia it is in reversed direction. Fig. 4b shows 

that rise in volume flow helps to accelerate the flow in axial direction, it is also observed that 

volume flow rate works as a booster for the fractional Oldroyd-B fluid in axial direction. 

The stream line patterns help to note the flow characteristics of fractional Oldroyd-B fluid. 

Therefore Figs. 5(a-c) are plotted for stream lines. Figs 5 a-c display that bolus size decreases 

with the growing values of Q. The size of bolus in (fractional Oldroyd-B fluid) reduces due to its 

high viscosity in the existence of volume flow rate. 

Figs. 6(a-c) display the stream line plots for different values of cilia length parameter  . These 

graphs show that size of bolus in fractional Oldroyd-B fluid increases as the cilia length 

parameter rises and it is due to the large deriving force employed on fluid by the tip of cilia. 
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Figs. 7(a - b) display the axial flow for different values of   and Q in symplectic and antiplectic 

wave configurations. The plots show that symplectic wave pattern gives the high velocity profile 

in comparison with antiplectic wave pattern. For fast flow of fractional Oldroyd-B fluid, the 

symplectic wave pattern is suitable choice therefore in this study authors have considered the 

symplectic wave pattern for the mucous flow. 

4. Conclusions 

This research describes the dynamics of mucous flow through the tracheobronchial tree. Mucous 

is considered as a fractional Oldroyd-B fluid and tracheobronchial tube is chosen to be the 

ciliated tube. Due to the fractional differential model, the investigations under consideration 

become complex and complexity in mathematical analysis can be overcome by the ADM. 

Mathematical expressions for pressure gradient, stream function and velocity are evaluated and 

their effects are displayed through graphs and the following features are observed. 

 The pressure gradient decreases with the rising values of fractional parameter  but increases 

with the growing values of fractional parameter   

 The relaxation parameter help to rise in pressure gradient whereas the retardation time   

causes to reduce the pressure gradient. 

 The cilia length acts as a deriving force for flow of fractional Oldroyd-B fluid. Therefore 

the pressure gradient and bolus size rise by increasing cilia length    

 The volume flow rate causes to accelerate the axial velocity and decay the radial velocity and 

the bolus size. 

 In this study, authors have ignored the thermal and concentration effects, which will be 

considered in an upcoming work. 

Data Availability Statement 

No Data is associated in the manuscript. 
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Figure 5: Variation in streamline for Q   Q  and Q    

Figure 6: Variation in streamline for cilia length   =0.1, =0.2 and  =0.3.  
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List of Tables: 

 

Symbols Definitions Units 

a mean tube radius m 

c wave speed m/sec 

e eccentricity of the elliptical path  

Fr frictional force N 

h amplitude of the wave m 

J differential operator  

k summation index  

P fluid pressure N/m² 

q Flux m/sec 

Q volume flow rate m³/sec 

Q  mean volume flow rate m³/sec 

r, z cylindrical coordinates in fixed frame m 

R, Z cylindrical coordinates in wave frame M 

Re Reynolds number  

S extra stress tensor N/m² 

t Time Sec 

u, w velocity components in fixed frame m/sec 

U, W velocity components in wave frame m/sec 

 

Greek Letters 

Greek letter Abbreviation Units 
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α, β fractional parameters  

β* ratio of mean tube radius to 

wavelength 

 

ε cilia length M 

θ₁ retardation time of Oldroyd-B 

fluid 

S 

λ Wavelength M 

λ₁ relaxation time of Oldroyd-B 

fluid 

S 

μ fluid viscosity kg/ (m.s) 

ρ fluid density kg/m³ 

Ψ stream function kg/ (m.s) 

Γ Incomplete gamma function  

 

 

Table 1: 

 

Fluid Models Rheological Properties dp/dz 

Frac Oldroyd-B λ₁=1, θ₁=0.7, α=β=0.5 0.723073 

Oldroyd-B λ₁=1,θ₁=0.7,α=β=1 0.615308 

Frac Maxwell λ₁=1,θ₁=0,α=β=0.5 0.370013 

Maxwell λ₁=1,θ₁=0,α=β=1 0.295904 
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