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Abstract: Forecasting the long-term electrical yearly peak load is pivotal in power system expansion planning. 

The accuracy of the forecasting method holds immense significance in preempting economic losses and 

budgetary issues arising from unwarranted or inadequate investments. Although conventional techniques like 

time-series methodologies such as Auto-Regressive Integrated Moving Average (ARIMA) are extensively 

employed for long-term electrical peak load and energy demand forecasts, their limitations in dealing with 

inefficiencies, nonlinearity, and seasonality trends present considerable challenges. This paper proposes a novel 

approach that leverages the ARIMA method, incorporating Support Vector Regression (SVR) and the Genetic 

Algorithm (GA) technique. This approach aims to forecast the long-term yearly peak load of the Tehran 

Regional Electric Company (TREC), Iran’s largest regional electric company. The SVR algorithm parameters 

are fine-tuned to minimize forecasting errors using a combination of GA and the ARIMA method. The resulting 

optimized forecasting approach, ARIMA-GA-SVR, is applied in a real-life case study network within TREC. 

Comparative analysis with existing forecasting methods is conducted. The ARIMA-GA-SVR approach is a 

reliable and accurate forecasting solution based on established error criteria and simulation outcomes. 

Keywords: ARIMA; Long-term Peak Load Forecasting; ARIMA-GA-SVR; Tehran Regional Electricity 

Company (TREC). 

Nomenclature 

Sets and Indices 

N The number of predictor variables of the SVR model 

 t             Number of years 

T Total number of existing data in the long-term peak load forecasting time horizon 

Parameters 

iY  The average of 
thi  epoch of past long-term electrical peak load data of the grid 

p  Unknown parameters of the ARIMA approach 

q  Unknown parameters of the ARIMA approach 

tW  The 𝑑𝑡ℎ difference of the original time series (i.e., ( )y t ) 

b Constant parameter or bias of the SVR model 

ω Weighting vector of the SVR model 

ε Loss function 

σ Kernel width for SVR model 

C Regulation for SVR model 
*,i i   Lagrangian multipliers  

,i jx x  The inputs in the 
thi  and 

thj  dimensions of Kernel function 

R̅ The average of the real amount of long-term electrical peak load of the time series 

Variables 

Y(t) The forecasted long-term electrical peak load of the 
tht  year 

*,i i   The positive slack variables showing the distance between real and corresponding boundary values in the ε-    

               tube model of function approximation 

( )X   The applied mapping function in the feature space of the SVR model 
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2
‖ ‖ Smoothness of the objective function 

( , )i jK x x Refers to the Kernel function for showing the inner product of ix and jx in D-dimensional feature space 

tF  The forecasted value of long-term electrical peak load 

 



1. Introduction 

In today’s world, the quality of human life relies heavily on the assurance of a consistent and dependable 

electricity supply. In pursuit of this, precise forecasting of long-term electrical peak load is paramount in planning a 

robust and secure power infrastructure. Given the ongoing surge in electrical demand, the significance of precise long-

term electrical peak load forecasting has grown even more critical within power networks. 

1.1. Research motivation 

The initial phase of planning a robust and secure electric power system hinges on accurately forecasting the 

peak load. Failure to ensure the proper design of power networks will result in substantial challenges. Hence, electric 

utilities must forecast peak load and energy demand consistently and accurately. This paper addresses one of the 

crucial steps of accurately forecasting the yearly peak load in the design of power networks. It presents a highly 

accurate method, offering valuable insights into this important issue. 

1.2. Literature review 

Long-term load forecasting is a critical step in power system planning as input for both generation expansion 

planning (GEP) and transmission expansion planning (TEP) investigations [1]. On the other hand, one of the priorities 

of planning the power networks is supplying the loads efficiently [2], which depends on accurate planning. Electrical 

load forecasting involves over different time frames, including short-term, mid-term, and long-term periods. Long-

term forecasting involves higher levels of uncertainty compared to shorter-term forecasting. Given the economic and 

societal significance of long-term forecasting and the inherent challenges posed by this extended time frame, this 

paper’s primary objective is to introduce a precise and dependable long-term forecasting methodology. It is important 

to note that as the forecasting horizon extends, the complexity of the forecasting task increases, which in turn directly 

impacts the accuracy of the results, as discussed in references [3] and [4]. 

Over the years, numerous research endeavours have been dedicated to the field of long-term electrical peak 

load forecasting. These forecasting methodologies can be broadly categorized into two groups: univariate and 

multivariate approaches. In the univariate approach, future electrical peak load levels are predicted based solely on 

historical peak load data. This category encompasses techniques like Modified Exponential, Gompertz, and Logistic 

methods, which utilize past peak load data to project future trends [5]. On the other hand, the multivariate forecasting 

approach considers long-term electrical peak load as a dependent variable influenced by a range of external factors. 

These factors may include population growth rates, Gross Domestic Product (GDP), unemployment rates, social 

welfare, and other relevant driving parameters, all of which contribute to a more comprehensive forecasting model 

[6]. In [7], the impact of independent inputs on peak load forecasting through various combinations and subsets using 

multilinear regression (MLR) equations is examined. 

Most existing methods for long-term peak load forecasting have primarily centered around traditional 

techniques, including trend curves and ARIMA models. Despite their simplicity in implementation, these methods 

suffer from various drawbacks. Notably, they lack a well-founded approach for parameter selection, particularly in 

the case of the ARIMA method. Furthermore, their incapacity to capture nonlinearity restricts them from relying solely 

on historical peak load data. For instance, in [8], electric energy consumption is predicted using the ARIMA method 

for both mid-term and long-term forecasts. In [9], electric load forecasting is accomplished through a combination of 

clustering and ARIMA models, with [9] indicating superior performance of the combined forecasting method 

compared to using the ARIMA model in isolation. In [10], an ensemble hybrid forecasting model is introduced to 

address data scarcity issues, offering a suitable approach for forecasting annual energy consumption in Iran. 

Additionally, the findings from [4], which encompass long-term electric peak load and energy demand in Iran’s 

national grid, underscore that both ARIMA models utilized therein exhibit higher error rates and inaccuracies 

compared to alternative approaches. On the other hand [11], the Advanced Autoregressive Moving Average 

(AARMA) model, is proposed. AARMA is designed to detect the possible intrusion of the given data set. 
Recognizing the limitations of ARIMA methods, researchers have pursued the development of alternative 

approaches, particularly those grounded in Machine Learning (ML) and Artificial Intelligence (AI) techniques, to 

attain more precise forecasting outcomes. In [12], statistical, machine learning, and deep learning techniques in the 

energy forecasting field, highlighting both traditional and cutting-edge methods that advance the industry are 

examined. In [13], an energy forecasting model was introduced, harnessing machine learning-based methodologies, 

including Artificial Neural Networks (ANNs), linear and nonlinear autoregressive multivariable models, and the 

adaptive boosting model. [14] conducted a comparative study on aggregated short-term load forecasting, employing 

various data strategies. The simulation results in [14] revealed that the mean absolute percentage error criterion 

(MAPE) ranged from 1.67% to 4.80%, contingent on the ML algorithm and the chosen forecasting horizon. In [15], 

long-term electric energy consumption spanning from 2010 to 2030 was predicted using a blend of optimization 



methodologies and ANN models, encompassing both Iran’s and the U.S.’s energy consumption. [15] also corroborated 

the high accuracy of AI-based methodologies. Additionally, [16] conducted a comparison between ANN and a hybrid 

technique known as wavelet decomposed Artificial Neural Networks (WANN). In [17], a novel hybrid predictive 

method using multivariate empirical mode decomposition (MEMD) and SVR with parameters optimized by PSO, 

which can capture precise electricity peak load is proposed. For mid-term daily peak load forecasting, [18] introduced 

an approach utilizing recurrent artificial neural networks (RANN). The outcomes, using peak load data from South 

Korea, underscored the performance and effectiveness of the proposed RANN approach. Moreover in [19], a 

comparative analysis to determine the best peak load-forecasting model for Korea, by comparing the performance of 

time series, machine learning, and hybrid models is proposed. In [20], monthly peak load forecasting using all essential 

information for good long-term strategic planning is addressed. In [21], the authors presented a methodology for 

forecasting solar energy, employing machine and deep learning techniques. In [22], utilizing a deep learning approach, 

the peak load of Panama is forecasted, as a real-life case study. Another illustration of the ANN method’s application 

in peak load forecasting can be found in [23]. In this case, [23] employed two ANN-based models: a three-layered 

back-propagation network and a recurrent neural network. These models were tested for forecasting peak electric 

loads in Japan up to the year 2020. In [24], a monitoring and peak load forecasting system was designed and tested on 

the experimental open pit mine. 

To optimize SVR performance, heuristic search methods such as Genetic Algorithms (GA) and Particle Swarm 

Optimization (PSO) can be employed for parameter selection [25]. In the study presented in [25], the PSO-SVR model 

was assessed for its capacity to forecast near-infrared non-invasive glucose detection. The findings validate that 

meticulous parameter tuning in SVR leads to minimized forecasting errors. Additionally, [26] introduces recurrent 

support vector machines with genetic algorithms (RSVMG) for peak load forecasting, where genetic algorithms are 

utilized to determine support vector machine parameters. In [27], a novel approach using chaotic particle swarm 

optimization (CPSO) is proposed for selecting appropriate SVR model parameters. Simulation results indicate the 

superior performance of the CPSO-based model when compared to other algorithms such as GA and simulated 

annealing (SA). Furthermore, [28] explores the optimization of SVM and neural network (NN) parameters, including 

network structures, penalty parameters, and kernel function widths, through a dedicated optimization program. This 

optimization enhances the forecasting accuracy. The effectiveness of SVM in short-term peak load forecasting is 

underscored in [29], where a new SVM kernel function, the Gaussian wavelet kernel, is introduced. Simulation results 

demonstrate that this novel approach not only improves forecasting accuracy but also accelerates the forecasting 

process. 

Support Vector Regression (SVR), a subset of Support Vector Machine (SVM) techniques, proves to be another 

instance of employing evolutionary algorithms for forecasting can be found in [30]. In [30], a novel concept called 

the Season-Specific Similarity Concept (SSSC) is employed to capture the season-specific meteorological 

requirements (seasonality effect) and incorporate them into the short-term load forecasting (STLF) process in Assam, 

India. This innovative approach combines the Firefly Algorithm (FA), Support Vector Machine (SVM), and the newly 

introduced SSSC. The simulation results convincingly demonstrate significantly higher forecasting accuracy 

compared to traditional forecasting methods. In the same geographic region in India, as described in [31], the Grey 

Wolf Optimizer (GWO) is utilized to identify suitable parameter combinations for SVM in power system load 

forecasting (PSLF) during regional special event days (RSEDs). In [32], an SVR-based model is applied to predict the 

short-term electric load of office buildings. In [33], long-term load forecasting for large residential communities 

including smart homes with energy storage is performed. Meanwhile, in [34], a novel SVR-based load forecasting 

model is proposed. Here, the PSO, known for its global optimization capabilities, is used to determine the higher-

frequency parameters of the SVR model. Conversely, for lower frequencies, the GA, based on evolutionary selection 

and crossover rules, is employed to select appropriate parameter values. The integrated energy system, which includes 

electricity, heat, cooling, and gas loads, is the subject of forecasting [35]. The proposed approach, rooted in multi-task 

learning theory and the Least Squares Support Vector Machine (LSSVM) algorithm, demonstrates its effectiveness. 

Furthermore, [36] adopts a novel multi-task learning approach to simultaneously forecast both active and reactive 

power in smart grids. The results presented in [36] affirm the robustness and reliability of this method for practical 

applications in power systems. 

In [37], Genetic Programming (GP) is introduced as a tool for predicting electricity consumption in China 

based on data spanning from 1991 to 2019. The simulation results demonstrate that the proposed Multi Expression 

Programming (MEP) method outperforms both Gene Expression Programming (GEP) and Adaptive Neuro-Fuzzy 

Inference System (ANFIS) in terms of power and accuracy. In [38], smart grid loads are accurately forecasted using 

a fuzzy logic approach within short-term time horizons. Furthermore, in [39], one-day-ahead energy using a deep 

learning approach is proposed. 

 



 

The literature review has been summarized in Table 1, providing an overview of common and widely used 

methodologies for electricity demand forecasting.  

1.3. The necessity of the research based on challenges of the literature 

Iran’s power sector comprises 16 regional electricity companies, and TREC is the country’s largest sector. 

TREC relies heavily on imported power from other regional electricity companies to meet its energy demands. Given 

the critical nature of the power supply in Tehran REC, it is imperative to address its electrical peak load, which has 

experienced significant fluctuations in recent years. Factors contributing to this change include a growing population, 

ongoing urban development projects, and the concentration of industries in Tehran province, such as automotive 

manufacturing. Long-term load forecasting for Tehran is indispensable to ensure the effective planning of power 

generation technologies and transmission lines. On the other hand, power deficit or scheduled load interruptions in 

TREC in the coming years is one of the main challenges that necessitates conducting research in the field. Tehran, 

being the capital city with numerous large industries, is expected to witness significant electrical demand growth. 

Another noteworthy challenge in reshaping load consumption is the emergence of Bitcoin mining in Iran’s power 

industry. Given these factors and the anticipation of hot summers due to climate change, accurate peak load forecasting 

becomes crucial to prevent power outages in Tehran province. 

As indicated in Table 1, there is a noticeable absence of accurate hybrid methods aimed at reducing errors in 

long-term peak load forecasting of real-life case studies. Therefore, this paper introduces a comprehensive combined 

approach with the primary objective of minimizing peak load forecasting errors. This means this paper proposes an 

ARIMA-GA-SVR method that leverages several tools, including GA, Autocorrelation Function (ACF), and Partial 

Autocorrelation Function (PACF) functions, to enhance the accuracy of forecasting. These tools are employed to 

preprocess the input data and refine the model dimensions, ultimately reducing forecasting errors. 

1.4. Novelty and main contributions of the paper 

This paper introduces a novel approach for forecasting the long-term electrical peak load over ten years, 

employing the ARIMA-GA-SVR method. In this methodology, we not only employ the ARIMA method to set SVR 

parameters but also utilize the GA to optimize the SVR parameters further. The historical peak load data for the TREC 

from 1996 to 2019 (corresponding to the Persian solar calendar years 1375-1398) is the basis for our analysis. 

Subsequently, we extend our forecasts to predict TREC’s peak load from 2020 to 2029 (Persian solar calendar years 

1399-1408). As of mid-2024, we possess known values for TREC’s peak loads for the years 2020 to 2023, which we 

use to verify and validate our forecasting results. Additionally, we employ four commonly accepted error criteria to 

evaluate the accuracy of our forecasting approaches. The proposed method’s performance is then benchmarked against 

the ARIMA model, the GA-SVR approach, and the Multilayer Perceptron Artificial Neural Network (MLP-ANN) 

method. The noteworthy novelties and contributions of this study can be summarized as follows: 

1. Forecasting the long-term electrical peak load by four approaches including the proposed ARIMA-GA-SVR 

method in TREC as a real-life case study is presented. The proposed method optimizes SVR model parameters using 

ARIMA and GA, enhancing forecasting accuracy. 

2. Utilization of standard error criteria to assess the accuracy of long-term electrical peak load forecasts, 

demonstrating the effectiveness and potency of the proposed approach in this domain. 

3. Implementation of the proposed approach on the existing data from previous years to demonstrate the 

accuracy and validity of the results obtained from the proposed method. 

1.5. Organization and structure of the paper 

The paper is divided into four main sections. The first section is the introduction, which includes the research 

motivation, the literature review consisting of the explanation of related research and papers in the field of peak load 

forecasting, the necessity of the research based on the challenges of the literature, the novelty and main contributions 

of the paper, and the organization and structure of the paper. The second section explains the proposed approach of 

the paper as the most accurate method for forecasting the long-term electrical peak load and energy demand. The third 

section presents the simulation results, including the outputs of the models and their validations to illustrate the 

accuracy of the model. Finally, the paper concludes in the conclusion section by presenting the achievements of the 

paper and future works of the research. 

2. Proposed Methodology 

Univariate methods for long-term electric peak load forecasting rely on historical data and observations as their 

foundation. In this paper, we utilize three existing peak load forecasting approaches alongside our proposed ARIMA-



GA-SVR method to forecast the long-term electrical peak load of TREC. In this section, we introduce these various 

methods. 

2.1. Autoregressive Integrated Moving Average (ARIMA) approach 

In the context of time series forecasting, historical data observations are interrelated, signifying that past data 

points are essential for projecting future values using ARIMA models. Consequently, a vital prerequisite for applying 

ARIMA models is the requirement for the series to exhibit stationarity and to be free from any trends. Stationarity is 

attained when statistical characteristics remain consistent over time. The ARIMA approach comprises three 

fundamental steps: model identification, estimation of model parameters, and model diagnostic verification. The 

ARIMA model is formally presented in equation (1). 

 

1 1 2 2 1 1 2 2t t t p t p t t t q t qW w w w a a a a                                                (1) 

tW as the 
thd  difference of the original time series (i.e., ( )y t )is defined in (2). 

( )d

t tW Y  (2) 

Then, the model parameters (i.e., ( )B , ( )B ) are estimated by minimizing the mean square of errors (MSE) as 

(3). 
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Given the nonlinearity conditions outlined in equation (3), these parameters are estimated through the ARMAX 

approach, as detailed in [40]. In the final step, during the diagnostic checking phase, the estimation model is deemed 

valid if the model errors exhibit randomness or if the autocorrelation of the residuals suggests a random pattern. 

2.2. Multi-Layer Perceptron Artificial Neural Network (MLP-ANN) 

In contemporary times, one of the most robust and precise approaches for peak load forecasting involves 

artificial intelligence methods. Artificial Neural Network (ANN) models have gained significant traction in producing 

accurate long-term load forecasts. In this study, for the sake of a comprehensive comparison, we not only employ 

conventional peak load forecasting methods like the ARIMA approach but also integrate ANN-based techniques, 

including the Multi-Layer Perceptron Artificial Neural Network (MLP-ANN). Consequently, this paper employs the 

MLP-ANN approach to predict the electric peak load of TREC. 

2.3. Proposed GA-SVR approach 

Support Vector Regression (SVR) model can solve the regression problems with multiple predictors such as

{ , 1,..., }iX X i N  , where N denotes the number of predictor variables and each iX  has 𝑁 variables. The 

predictors as the inputs are linked to the output as { , 1,..., }iY Y i N  . The matrix X is mapped into a higher-

dimensional feature space using a proper function [41]. Based on this methodology, a non-linear regression problem 

is defined as given in (4) [42]. 

( ) ( )y f X X b      (4) 

By solving the minimization problem as given in (5)-(8), the coefficients of ω and 𝑏 in (4), are determined. 
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According to the Lagrange function, the optimality conditions make a non-linear regression function [43]. 

In this paper, a polynomial kernel function is utilized to expand the SVR forecasting methodology as given in 

(9) and (10).  
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The GA is employed to fine-tune the SVR parameters. GA is designed to comprehensively explore the entire 

search space in pursuit of the global minimum. Consequently, in this paper, we propose the GA-SVR method as the 

approach for long-term electrical peak load forecasting. 

Equation (11) introduces the objective function of the proposed GA-SVR algorithm, aimed at minimizing the 

disparity between actual and predicted values. 

Min 
1

1 T
t t

t t

R F
obj

T R


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The dimension of input-output pairs is determined by utilizing the GA. In a time series vector as 

1 2( , ,..., )nP P P P , an input-output sample can be considered as  , ( 1) ( ) ( 1)[( , ,..., ), ]k k k n kP P P P     , where the   

is determined using the GA along with other settings of SVR algorithm such as (C ,  , ). Each sample or pair 

includes ( 1) ( )( , ,..., )k k k nP P P  as the input and ( 1)kP    as the output. In each pair of samples, the dimension of the 

input vector is[1 ] , while the output dimension is one (i.e. [1 1] ). 

2.4. Proposed ARIMA-GA-SVR approach 

In this proposed approach, like the GA-SVR approach, the parameters of the SVR algorithm are optimized by 

the GA. However, the main difference between these approaches is that in addition to the GA, the ARIMA approach 

is also utilized to optimize one of the parameters. In other words, three SVR parameters (C, σ, ε) are optimized by the 

GA, and the other variable (τ) is determined by the ARIMA. Unlike the GA-SVR approach, in the ARIMA-GA-SVR 

approach, this parameter of (τ) is not optimized by GA. Instead, τ is determined using the ACF and PACF analysis 

according to the ARIMA approach. 

Following the proposed ARIMA-GA-SVR model, input-output pairs for existing samples are generated. The 

schematic representation of the proposed ARIMA-GA-SVR flowchart is illustrated in Fig 1. 

The flowchart in Fig 1 takes historical electrical peak load data from 1996 to 2019 for the TREC as input. It then 

forecasts the long-term electrical peak load for TREC over the next ten years, from 2020 to 2029. The flowchart uses 

an ARIMA model to determine how many past inputs (historical data points) are needed for accurate future 

estimations. After that, the SVR parameters are optimized using the GA. This entire process allows for the accurate 

forecasting of TREC’s long-term electrical peak load. The flowchart in Fig 1 provides a comprehensive demonstration 

of how the historical data is processed through the ARIMA model to determine necessary inputs, followed by the 

optimization of SVR parameters using GA, ultimately leading to the accurate forecast of TREC’s long-term electrical 

peak load.  

This comprehensive approach ensures the accurate forecasting of TREC’s long-term electrical peak load. 

3. Simulation results 

3.1. Outputs 

The primary objective of this study is to employ both traditional and data mining methods to achieve the most 

accurate forecast possible for the long-term electrical peak load of TREC. This forecasting exercise covers ten years, 

from 2020 (equivalent to 1399 in the Persian solar calendar) to 2029 (equivalent to 1408 in the Persian solar calendar). 

To accomplish this, historical data spanning the last 24 years, from 1996 (equivalent to 1375 in the Persian solar 

calendar) to 2019 (equivalent to 1398 in the Persian solar calendar), has been utilized as input for all forecasting 

methods. The annual long-term electrical peak load data for TREC during this period is provided in Table 2. It is 

worth noting that the actual values for the electrical peak loads of 2020 to 2023 are known and available. However, 



for the sake of comparison and validation, these years (i.e., 2020 to 2023) are considered part of the forecasting time 

horizon in this paper. 

The simulation results for the long-term electrical peak load of TREC are detailed in Table 3. As per the 

findings in Table 3, it is observed that in most instances, the ARIMA method tends to yield the lowest annual peak 

load forecasts for the same year. Conversely, the proposed ARIMA-GA-SVR method consistently delivers the highest 

peak load forecasts compared to the other methods. 

 

  
As illustrated in Table 3, the electrical peak load projections for TREC in the summer of 2023 stand at 

11,600.27 MW, 11,733.08 MW, and 12,214.41 MW when employing the ARIMA, MLP-ANN, and GA-SVR 

methods, respectively. Conversely, for the final year within the forecasted time horizon (i.e., 2029), the electrical peak 

loads are estimated at 13,616.25 MW, 13,444.98 MW, and 15,011.38 MW utilizing the ARIMA, MLP-ANN, and GA-

SVR methods, respectively. Notably, the ARIMA-GA-SVR method predicts peak loads of 12,225.65 MW during the 

2023 summer and 15,550.64 MW in the summer of the concluding forecast year. 

The appropriate ARIMA model for forecasting TREC’s electrical peak load is determined to be ARIMA 

(1,2,0), as established through an examination of the Autocorrelation Function (ACF) and Partial Autocorrelation 

Function (PACF), as depicted in Fig 2. Subsequently, the parameters of the selected model are estimated employing 

the least square technique, resulting in the final load forecasting model presented in equation (12). As indicated by 

equation (12), the annual peak load for a given year relies on the values from past years along with an associated error 

term.  
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The schematic depiction of the forecasted long-term electrical peak loads using the ARIMA method is presented 

in Fig 3. As illustrated, the ARIMA approach indicates an upward trajectory in TREC’s long-term electrical peak load, 

ascending from 11,600.27 MW in 2023 to 13,616.25 MW in 2029. In simpler terms, the electrical peak load for the 

final year within the forecasting horizon is estimated to be 17.37% higher than the peak load observed during the 

summer of 2023. 

In the MLP-ANN approach, the projected peak load for the concluding year (i.e., 2029) is anticipated to be 

14.59% higher, equivalent to 1,711.9 MW, than the peak load observed in the summer of 2023. The graphical 

representation of the forecasted long-term electrical peak loads using this method is depicted in Fig 4. 

Under the GA-SVR approach, the predicted peak load for the concluding year (i.e., 2029) is expected to be 

22.89% higher, equivalent to 2,796.97 MW, than the peak load observed during the summer of 2023. The graphical 

representation of the forecasted long-term electrical peak loads using this method is depicted in Fig 5. 

Within the proposed ARIMA-GA-SVR approach, it is projected that the peak load for the concluding year (i.e., 

2029) will register a notable increase, specifically 27.19%, amounting to 3,324.99 MW, in comparison to the peak 

load 

recorded during the summer of 2023. The graphical representation of the forecasted long-term electrical peak loads 

using this method is presented in Fig 6.  

Finally, the results suggest that TREC’s yearly peak load may surge to 15,000 MW, signifying a 50% load 

growth over a ten-year horizon. 

3.2. Validation of results 

The forecasted results are subject to evaluation using two distinct methods. Firstly, consider previous years for 

which the long-term electrical peak load is known (i.e., 2020 to 2022). Secondly, error indices quantify the disparities 

between actual values and forecasts. 

The error metrics utilized for performance evaluation are detailed in Table 4, including the mean absolute error 

(MAE), the mean absolute percent error (MAPE), the root mean square error (RMSE), and the index of agreement 

(IA). 

The outcomes derived from the employed error criteria are summarized in Table 5. As per the findings in Table  

5, all three methods—MLP-ANN, GA-SVR, and ARIMA-GA-SVR—exhibit an acceptable level of forecasting error. 

The ARIMA-GA-SVR approach is the method with the lowest error values, thus validating its accuracy in long-term 

electrical peak load forecasting for TREC. Specifically, higher levels of accuracy are indicated by lower values for 

MAE, RMSE, and MAPE, and an IA index value of one signifies a closer match between forecasts and actual data. 



Notably, all of these favorable characteristics are exhibited by the proposed approaches. In contrast, despite being a 

well-known approach in peak load forecasting, the ARIMA method demonstrates the highest error level. 

 Furthermore, the error indices used in the evaluation are visualized in Fig 7 and Fig 8. The consistently low 

values across all error indices when employing the proposed methods underscore their efficiency. These results 

collectively serve as compelling evidence for the effectiveness of the proposed methodologies in forecasting the long-

term electrical peak load of TREC.  

The error indices employed in various peak load forecasting approaches are presented in Fig 9. As depicted in 

Fig 9, the proposed methods yield results that closely align with the actual data. 

Another way to assess the accuracy of the results and outputs is to test existing data. As indicated by the 

outcomes depicted in Fig 10, the proposed SVR-based methods consistently deliver the most favorable results, 

whereas the ARIMA method is less effective in providing valuable forecasts. 

 

Furthermore, for a fair comparison, as indicated in [44], the electrical peak load of TREC increased from 7471 

kW in 2012 to 11525 kW in 2021. The forecasted peak load using different methods of the paper is as follows: ARIMA 

method: 10950.18 kW, MLP-ANN method: 11023.86 kW, GA-SVR method: 11250.62 kW, and the proposed 

ARIMA-GA-SVR method: 11232.06 kW. 

As shown in Table 3, the difference between the forecasted amount of electrical peak load and the real amount 

of electrical peak load in 2021 of the paper is 574.82 kW, 501.14 kW, 274.38 kW, and 292.94 kW, respectively. This 

demonstrates the superiority of the GA-SVR and ARIMA-GA-SVR methods. 

3.3. Sensitivity Analysis 

In this section, the impact of an independent variable on specific dependent variables is investigated. 

In this paper, the independent variable is the long-term electrical peak load of TREC. This is influenced by the 

SVR parameters optimized by the GA, as well as the long-term electrical peak load of TREC in previous years, etc. 

To evaluate the ARIMA-GA-SCR approach, the input of the problem is changed to Iran’s long-term electrical peak 

load. The long-term electrical peak load of Iran’s grid is considered as input from 1986 (7464 kW) to 2016 (53198 

kW) [44].  

Therefore, the ARIMA-GA-SVR method is used to determine the peak load amount in Iran’s network over a 

ten-year time horizon ( 2026-2017 ). According to the results, the forecasted long-term electrical peak load for Iran in 

2023 is 71216 kW, and it is forecasted to be 80123 kW in 2026. To validate the proposed method of this paper, the 

long-term forecasted electrical peak load can be compared with the actual peak load in 2023, which was recorded at 

73463 kW. In other words, the ARIMA-GA-SVR method of this paper forecasts that Iran’s network will have a peak 

load of 2,247 kW lower than its actual value in the summer of 2023. The forecasting of the ARIMA-GA-SVR method 

using Iran’s network data and its comparison with real values is presented in Fig 11. 

4. Conclusions 

This paper introduced a novel approach for long-term yearly peak load forecasting in power networks. The 

study demonstrated that traditional methods like the ARIMA approach often led to overestimations or 

underestimations in long-term electrical peak load forecasts, which creates challenges in the network. Consequently, 

the GA-SVR and ARIMA-GA-SVR approaches were proposed to enhance accuracy compared to conventional 

methods. These approaches are considered hybrid methods because they optimize SVR parameters through a 

combination of GA and ARIMA. Given the versatility of this method, it can be readily applied to long-term peak load 

forecasting in various networks. Furthermore, the paper employed error criteria for validating the accuracy of the 

proposed approach. 

4.1. Main findings of the research and comparison of results 

The paper introduced the ARIMA-GA-SVR approach as a hybrid method with high accuracy for long-term 

electrical peak load forecasting. The main accomplishment of this research is the forecasting of the long-term electrical 

peak load of Iran’s most important regional electricity company (TREC) over ten years. This was achieved using 

ARIMA, MLP-ANN, GA-SVR methods, and the ARIMA-GA-SVR method. According to the results, the ARIMA-

GA-SVR method demonstrated the highest degree of closeness to the actual peak load values and the lowest error 

criteria. The main discoveries of this paper can be summarized as follows:  

 

1) The ARIMA methods may result in unreliable outputs for peak load forecasting. 



2) The GA-SVR method can effectively forecast the electrical peak load with minimal errors, provided that 

the SVR parameters are optimally set using an optimization method such as the PSO algorithm. In the 

proposed ARIMA-GA-SVR method, the parameters of the SVR model are optimized using ARIMA and 

GA to enhance the accuracy of the forecasting. 

3) Four error criteria, including MAE, RMSE, MAPE, and IA, are utilized to evaluate method accuracy. 

The comparison of error criteria demonstrates that the ARIMA-GA-SVR approach delivers more 

accurate results. 

4) The forecast indicates a potential power shortage or scheduled load interruption in TREC over the next 

few years. 

4.2. Bridging the gap and future directions 

Future research in electrical peak load forecasting should focus on improving the accuracy of forecasting 

techniques to the highest possible level. Addressing these concerns could assist network planners in developing a more 

reliable and adequate power network. This paper could be enhanced by investigating the following aspects: 

 The multivariate methods consider other important factors in load forecasting, such as climate changes, 

GDP growth, population rate, and global warming. Exploring the potential enhancement of the hybrid 

univariate method using a multivariate approach can be addressed in future research. 

 Utilizing innovative combined approaches with artificial intelligence can significantly minimize 

forecasting errors. 

 The implementation of the proposed method in this paper on other real networks in Iran and around the 

world can be considered one of the future goals. 

 The presented methods of this research can also be used to forecast peak load and energy demand for 

power network design in shorter time frames such as mid-term and short-term. This can be considered 

as one of the future directions of this research. 
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Table 1 Summary of some prior load forecasting methods 
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Table 3 The forecasted electrical peak load of TREC in MW 

Year The approach of long-term electrical peak load forecasting 

ARIMA MLP-ANN GA-SVR ARIMA-GA-SVR 

2020 10500.07 10724.56 10889.73 10879.08 

2021 10950.18 11023.86 11250.62 11232.06 

2022 11221.29 11382.91 11595.64 11709.64 

2023 11600.27 11733.08 12214.41 12225.65 

2024 11914.24 12056.94 12551.29 12720.25 

2025 12267.39 12368.89 12971.70 13241.47 

2026 12596.93 12666.66 13502.60 13791.52 

2027 12940.70 12945.44 14021.80 14356.39 

2028 13275.89 13204.92 14451.80 14941.58 

2029 13616.25 13444.98 15011.38 15550.64 

 

 

Fig. 1. Flowchart of the ARIMA-GA-SVR approach for initialization procedure and 
determining the optimum parameters 
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Table 2 Electrical peak loads of TREC in previous years [44] 

Year Peak load (MW) Year Peak load (MW) 

1996 3487 2008 5956 

1997 3876 2009 6779 

1998 4014 2010 7223 

1999 4090 2011 7491 

2000 4351 2012 7471 

2001 4597 2013 8244 

2002 4876 2014 8757 

2003 5337 2015 9007 

2004 5652 2016 9364 

2005 6356 2017 9873 

2006 6442 2018 9701 

2007 6572 2019 10347 
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Fig. 2. Autocorrelation function (ACF) and partial autocorrelation function (PACF) of the 

long-term electrical peak load of TREC 
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Fig. 3. Long-term electrical peak load forecasting of TREC using the 

ARIMA approach 

 



  

Peak load forecasting in GA-SVR approach
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Fig. 5. Long-term electrical peak load forecasting of TREC using the GA-SVR 

approach. 
 

0

2000

4000

6000

8000

10000

12000

14000

Year

Peak load forecasting in MLP-ANN approach

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

2
0
1
7

0 2
0
2
3

2
0
2
4

2
0
2
5

2
0
2
6

2
0
2
7

2
0
2
8

2
0
2
9

P
ea

k
lo

ad
(M

W
)

2
2
2

2
0
2
1

2
0
1
9

2
0
2
0

2
0
1
8

 
Fig. 4. Long-term electrical peak load forecasting of TREC using the MLP-ANN 

approach. 

 



  

Table 4 Definitions of error criteria [45], [46] 

Metric Definition Equation 

MAE 
The mean absolute 
of T forecasting 
results 1

1 T

t t

t

R F
T 

  

RMSE 
The Root Mean 
Square Error 

2

1

1
( )

T

t t

t

R F
T 

 

MAPE 
The average of T 
absolute 
percentage errors 1

1
100%

T
t t

t t

R F

T R


  

IA 
Index of 
Agreement 
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1
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( )

1

( )

T
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Fig. 6. Long-term electrical peak load forecasting of TREC using the ARIMA-GA-

SVR approach. 
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Fig. 7. Schematic of error indices for long-term peak load forecasting approaches 
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Fig. 8. Schematic of the IA index for long-term peak load forecasting approaches 

 



  

Table 5 Error criteria results using different forecasting approaches and the proposed methods. 

Approach 
Error Criteria 

MAE RMSE 
MAPE 

% 
IA 

ARIMA 580.1039 683.0015 7.2076 0.9471 

MLP-ANN 217.9326 311.1249 3.1636 0.9907 

GA-SVR 192.2619 302.7507 2.7658 0.9914 

ARIMA -GA-SVR 233.7054 340.5084 3.3962 0.9893 
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Fig. 9. Validation of electrical long-term peak load forecasting approaches  

 



  

 
Fig. 11. Long-term electrical peak load forecasting of Iran’s grid using the ARIMA-GA-SVR 

approach. 
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Fig. 10. Testing the electrical long-term peak load forecasting on the existing data  
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