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Abstract The growing application of unconventional resources and reservoir
heterogeneity has highlighted the importance of ragiile modelingRecentstudies indicate

that subresoluton porosity (SRP3ignificantly impactson the flow characteristics of porous
media However, SRP details are often absent in-tpyality images, leading to discrepancies
between pore network model predictions and experiaieesultsThis study presents a novel
approach for restoring lost details in pore network images using RealESRGAN, an advanced
generative adversarial netwo(6AN) model Traditional techniques like interpolation and
filtering have long been used tohemce image resolution, but recent advancements in artificial
intelligence, particularly GANs, have revolutionized this fielld petroleum engineering,
GANSs are utilized in supeesolution tasksin which theylearn to reconstruct higresolution
imagesfrom low-resolution inputsThis research employs various sandstone and carbonate
rock samples to train the RealESRGAN model and generates synthetiesiolwtion datasets

from highresolution images. Compared to earlier models like SRGAN, RealESRGAN
demastrates superior performance. Evaluation metrics, including LPIPS, are used to
investigate the quality of the generated images. Finally, pore network model constructed from
the generated images closely align with actual models.

Keywords: Pore Network Modking, Image Resolution, Image Recovery, Pattern Recognition,
Generative Adversarial Network, RealESRGAN.

1. Introduction

There is a growing interest in the development of unconventional oil and gas resources
because ahe depletion of conventional oil and gas resources. These resources are a significant
part of the total hydrocarbon resour¢ég?]. However, the presence of heterogeneity poses
some challenges in the development of such types of reservoirs. This @e&itygould be at
the reservoir scale and the pore s¢a@kd]. These are referred to as s@solution porosity
(SRP)[6]. The larger pores typically control the main flow, however, the SRP also influences
the flow characteristics of the porous mediaretf®ugh it has minimal impact on the porosity
[6-9].

1.1 Pore Network Modeling

The flow properties of the porous media can be obtained in three ways: using experiments,
and employing analytical or numerical models at the pore scale. The experimental method is
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relatively simple, but it has its drawbacks, such as measurement [ drk|, smaller core

sizes than the representative element volume (REX[) boundary effects [6, 13{lamages in
sanples due to flow measurements [14,1&)d tre mismatch of the flow regime wittne

reality of the porous medium [16,1Analytical modelsalculate the flow properties based on

the physical parameters of the porous melzenyCarman (K-C) equationis the most
popular analytical model for permeability determinati@8]. This model is obtained by
approximating the porous media by a boundagillary model. But this model has many
drawbacks, for instance, it takes into account only porosity and specific surface area. This
model has been recently updated and contains more detasggfdmetry of the porous media
[19,20]. Even though topolyy and heterogeneity have a significant impact on the flow
properties of porous media, these parameters cannot be taken into account in analytical models.
The analytical method has some limitations such as the high computational complexity, the
requiremendf high-resolution images, the low extensibility, and the difficulty of adjusting the
parameters. On the other hand, the pore network md8ieplifying porous media to pores

and throats) are relatively faster, more scalable, lenbfe in their appliability [17].

With the help of Xray computer tomography (X T) the possibility of numerical modeling
of the porous media has bedffered in the last few years [21,22) this method, hundreds or
thousands of twalimensional images of the rock sampleetalkat different distances are used
to reconstruct the porous media in three dimensions. Usually, the microstructures of porous
media reconstructed in such a manner have dimensions of about 1 to sevéeaid the
resolution of the images is up to 1fir®ther imaging techniques can also be used including
magnetic resonance imaging (MRI), confocal microscopy, optical serial sectioning microscopy
(OSSM), focused ion beastanning electron microscopy (FEEM), serial blockace
scanning electron microsco@BFRSEM), and transmgson electron microscopy (TEM) [23]

Every one of them has its advantages and disadvantages. The only key differences between
these methods are the image resolution and the-dfeliew (size of the final model). In
general, by in@asing the resolution of the images, the dimensions of the final model are
reduced and this model may no longer work as a REV. There are some problems in applying
imaging techniques in natural rocks. The major challenge is the fact that the pore sisucture
often heterogeneous and contains different pore sizes. Until recently, it was thought that the
flow in SRP is dominated by diffusion and is zero, and hence these pores were ontitéed in
construction of the model [228]. Some of the current researcishestablished that the SRP
contributes to enhancing the conductivity of the network through the establishment of links
betweenhe bigger pores [8]

The interaction between the total dimension of the network and resokaimibjnedwith
the cos of highresolution imagingsignificantly limits the availability of higkresolution
images Thus, it 5 essential to employ techniques that can improve the quality of existing
imagego restore the missing details.

Modeling of porous media using images can béopered through different approaches:
direct modeling which uses mief@T or SEM images of the porous medium to reconstruct its
structure. In this approach, the porous media is discretized into a network of voxels
representing pores and throats within tbeopisstructure [29] Thesecond method is the pore
network model where the porous medium is modeled as a network of pores and throats. This
model is used extensively to model the flfiav through the pore network [17]



The pore network models are comgiignally effective and can be used for quick
simulations and sensitivity analyses. It also needs fewer input data and is applicable for
multiphase flow and other processes suctvetsing and capillary pressure [1However, it
loses accuracy when trying model complex or irregular porous structures. In addition, it fails
to describe the nonelementary transport characteristics and can inadequately describe the fine
scale structuraheterogeneities in the medium [30Based on these assumptions, we empl
the pore network modeling approach due to the simplicity of the model and the speed of
calculations.

1.2 Increasing Image Quality

Images are important in petroleum engineering for characterization, monitoring, and
decisionmaking, and higfguality images a essentialAs mentioned, due to limitations and
the lack of highguality images in porous media, we need to enhance image qgalitsgncing
image qualityis usually associated with operations Iii@se reduction, increasimgsolution,
contrast enhanceent,and edge and feature detien [31] Since image quality enhancement
is a rather broad concept, many techniques have been developed over time, from traditional
methods to cuttingdge deep learning approaches.

Earlier methods relied on statisticacthaiques and filtering, which focused on basic
improvements, often at the expense of detail preservation. Sdimeweltknown techniques
in this category are Filtering [32], histogram equalization [33], and edge detectioi g4
approaches are nefficient when dealing with complex features and they lead to image quality
degradation.

With advances in image processitigere were new methods developed such as single
image super resolution (SISR) and muitiage super resolution (MISR). These methods
enhance the level okthil and clarity collectively [35,36Fuch methods as image fusion [37]
and deconvolution [38}rovide better and more accurate visualization of the original scene and
are especially useful in situations where high detail is requifferent techniques are often
applied in conjunction, such as combining summolution and noise reduction for a clearer
final image.These advancements have increasgroved image qualitypy enabling adaptive
and finetuned adjustments, resultingclearer, more informative imagg89].

Deep learning has introduced a new way of improving image qudityods like SRCNN
[40], WDSR [41], and EDSR [42pioneered using deeper CNN architectures to increase
upscaling accuracy and detail preservat®RCNN leverages a convolutional neural network
to establistrelational mappings between leamd highresolution image. However, a major
drawback of conventional CNNs is in the ability to reconstemnpleximage textures
especially whemvorking at largescale factors [43]in order to solve this problem, GANs were
proposed to be used for image super resoluA0OBAN is a modern deep learning algorithm
that enables two neural networks to compete with each other in the form of a game with zero
sum. This famework can generate artificial graphical samples that are similar and nearly
indistinguishable from images in a training get]. The superesolution problem was one of
the first to be tackled by the use of Generative Adversarial Networks (Gwills)the
development of SRGAN [45]Recent advancements in supesolution (SR) techniques
include transformebased methods, diffusion models, and GANs, each tailored to enhance
image quality with minimal computational resourp&s]. Transformeibased SR modig such
as detaHpreserving transformers and EPIT, capture intricate spatial and angular details,



especially beneficial in ligHiield imaging task$46]. Diffusion models, like SinSR, streamline

the typically lengthy diffusion process by using a-step distillation method, allowing for
faster and more efficient SR without compromising dé€kagi et al., 2024)Meanwhile, GANs
continue to evolve, often incorporating perceptual loss functions that improve image realism
and fidelity, which are especiallyseful for 4K video and compressed image upsca#id

These innovative approaches offer versatile solutions for-fegblution imaging across
various applicationsHowever, GANs are often regarded as the best method due to their
superior ability tgoroduce finer deils and more realistic imagg$7].

SRGANsas one othefirst GAN-based modelsisea generative adrsarial network to
enhance lowesoluton images to a higher quality [43]he SRGANs architecture consists of
a deep convolutional ngbrk with aresidual block that uses a perceptual loss as its objective
function. This objective function contains hadversarial and content loss [48he feature
loss in this model is determined by measuring the difference between the feature heap of t
generated image (derived from the -ma@ned VGG19 network) and that of the real image.
GANSs incorporate skip connections within deep residual networks (Rggietin SRGAN,
similarity between feature maps is assessed using Mean Squared Error Ad&Epnally,
the model leverages the hitgvel feature map from the VGG network to establish a perceptual
loss, combined with aliscriminator to produce a result perceptually matching the- high
resolution (HR) reference imagélang et al. [50proposed ESRGANs an enhancement to
SRGAN, aiming to improve visual output qual.
architecture, including the removal of the BN layer and the addition of RDDB blocks to
optimize training. The discriminator was foer refined by introducing Relativistic GAN
(RGAN) for enhanced classification.

Jiang et al[51] proposedEEGAN, a GANbased edgenhancement network, to promote
high-frequency edge details in noisy satellite images as well as-segmution reconstrdion
enhancement. It employs an UHgense Subnetwork (UDSN) and Edehancement
Subnetwork (EESN) to enhemcontours and suppress noi€anet al.[52] proposed udGAN
which incorporates UltrDense Residual Blocks and adversarial learning for phdistie &R
even when the degradation is unknowiu et al. [53] proposed SWCGAN combines
convolution and Swin Transformer layers to achieeter performance than other approaches
on the LPIPS measurdia et al[54] introducedMA-GAN with AttentionbasedJp Sampling
(AUP) for highquality output in the remote sensing application. Finally, F&SRGAN
proposed a higlorder degradation model for realistic image segsplution without
generatingpversmoothedmageg55].

One of the main disadvantages/ué blder methods of image enhancement compared with
theAl-basednethods is the problem of detail lo$saditional approachesften struggle with
detail preservation and contrast adjustment, especially irdugiplexity imagesAl-based
methodsespecidly deep learning modelbave the advantage of being able to automatically
adjust the parameters of the algorithm based on the characteristics of the imagekesdso,
methods are able to learn patterns and adjust to them, which, in general, cannot be said about
traditional method§56].

1.3 Objective of This Paper

In this work, we employed the RealESRGAN as our model for s@setution tasks. With
the help of the devetoments made in RealESRGAN, we plan to improve the quality of
synthetic images and restore the lost detsls.use images of a mukcale microstructure



including nter and intragrain poressihg an innovative method, the resolution of the primary
images is reduced to investigate the effect of reducing the resolution on the constructed pore
network. Pore network model propertissich as the size of pores and thraatsextracted

using the Snow algorithniinally,theReaESRGANmMethod is used to recavihe lost details

in thesyntheic images

2. Methodology
2.1 Image Recovery

As stated above, GAlNased methods are employed in the improvement of image quality
and in thecreation of fake images that are as good as the original images. These networks
consist dtwo main components: The Genergi@r) andthediscriminator © ). The generator
draws a random number from a distribution that is known and preferably easy to model, for

example, the Gaussian distributign(z), and tries to generate images that are similar to real
ones.This noise is then mapped to the image data space through a differentiable function
G(z;q,), whereg, r epr esents the gEhe genesatootries © prpdaige a me t e

imagesG (z) thatare like to real imagg$7].
To overcome the problem of lack of real image pair for each generator output, a
discriminator network is used. ThescriminatorD (x; g, ) , takes the generated image and tries

to differentiate it from the real image extracted from the dat@ggtepreserd the

discriminatot s p a r).alheedis@imisatoreturns a scaler valuB (x) that shows the

probability of X being real.This processssists the generator in enhancing its performance
over time Using the loss function as defined in Et), the parameters of both generator and

discriminator networkgg, and g, ) can be adjustederatively through the use afradient

based optimization techniques like stochastic gradient descent (SGD) until the model
convergeg57].

mnmaX G D)=E, , ., [l0gD 6] +E, ., ., oot D (G (2)) @

The generator tries to m'rnizelog(l— D (G (z ))) and make the generated images close to

real, while the discriminatamaximizeslog(D (x)) for real imagesln the training process,

the generator is trained to generate images that are more difficult for the discriminator to say
that trey are fake. The discriminatas trained to become more effective in the classification
of images as being real or fake. This is done in a manner where the two are pitted against each
other until the generator is able to produce images that are almo3taaks to the generator
and discriminator in GAN, it is possible to carry out very powerful image generation and image
enhancement that cannot be done with other image processing niétfjods

SRGAN [45]contains a residual block in both the generator and the discriminator, and the
generator has skip connections. This architecture is designed to enhance the quality of the
generated images by capturing and utilizing the fine details. The primary noveIRGAN



is the method of generator initializatioanlike GANs that are initialized with noise, the
generator of SRGAN is initialized with an image of low resolution. This approach provides a
better point of reference for the generation of higbolution mages as such the final output

is enhanced.

To guarantee that the generated higbolution images are phetealistic and at the same
time have high perceptual quality, SRGAN employs three types of loss functions for the
training of thenetwork. Asshownin Eq. (2), the L1(Mean Absolute Errorpr the L2(Mean
Square Error)oss functions are employed to minimize the piwee difference between the
reconstructed supeesolved image and the ground truth image. This step allows each of the
pixels in the generated image to correspond with a pixel in theréggiution image.

1 W rH

ISR = aas ey @

MSE — 2
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| ©7 andG(I LR) represent the ground trutfigh-resolution imageand generated high

resolution imagédrom low-resolution input using the generaf@r, respectively.H andW

are the height and width of the ground truth image and the upscaling factorThis pixel

wise loss ensures that each pixel in the generated image closely matches the corresponding
pixel in the referene highresolution image.

Beyondpixel-wiseaccuracy SRGAN targets improving the perceptual quality of generated
images. To achieve this the model uses VGG loss and adversarial. The VGGeksspre-
trainedVGG architectureo extracthigh-level features and textures to produce visually better
results[58]. It measures the similarity between the feature maps of the generated image and
the ground truth, as defined ky. (3):

SR — A 1 MMy HR _ LR i (©)]
5= A aa(m), i),

ki layers H |<W|< x4y

f, denotes the feature maps extracted from Iafrthe VGG Network, ™ is theground
truth highresolution imag, andG (I LR) is the generated imagél, andW, are the height

and width of feature maps at laykr. The VGG loss guides the generator to produce images
with better textues and more realistic features by focusing on hi¢ghwesl abstractions rather
than just pixel accuracy.

Additionally, SRGAN uses adversarial loss to force the generator to generate images that
are as realistic as higlesolution images. The adversaili@és is defined with thedfp of a
discriminator networlD that aims at distinguishing between real and fake images generated
by the generator. This adversarial training makes the generator to come up with more realistic
imageq45].

To improve the pedrmance of the network, ESRGAJ$0] made a number of changes:
Firstly, to expand the learning capability of the network and to ease the training process, the
basic residual blocks were replaced with complex Reside@kesidual Dense Blocks
(RRDB). This modiication was important as it helped in better feature representation and



training as the residual blocks are densely connected. Further, to enhance the training process
and the quality of the generated images, all the batch normalization layers weretetimina
from the network. This removal was beneficial in avoiding the introduction of artifacts that
batch normalization can sometimes bring hence improving the training process. Secondly, there
were major enhancements to the discriminator part of the network.

Compared to the pr models, the discriminat@dopted the Relativistic average GAN
(RaGAN)losd50]. Thi s approach alters the discrimin.
deciding whether an image is real or fake but also the degree of reatiemenfited images to
real ones. This relativistic perspective gives more informative feedback, therefore improving
the discriminator’s capacity to direct the g
modifications combined and contributed to timeprovement of the performance where
ReaESRGAN surpassed SRGADY providing more realistic images with higher resolution
and better texturfb5]. The main new feature of the RealESRGAN model is the use of higher
order degradation, which applies randomstforder degradation to create more realistic
degradations. This approach enables the model to perform well in a greater number of image
degradation scenarios, thus making it more practical. While the overall network structure of
RealESRGAN is highly sinar to that of SRGAN, there is a major improvement in the
discriminator networf55].

Unlike other works that use a convolutional network to estimate the likelihood of the input
images being real, RealESRGAN employs the UNet. The use of the UNet archiisctu
major improvement as it captures more spatial details within the images, thus the discriminator
can give more detailed feedback. This improved feedback is important in the enhancement of
the parameters of the generator network. By including tHesmeges, RealESRGAN performs
better than other models, providing better directions for the generator and therefore improving
the image restoration and supesolution quality55].

2.2 Evaluation Metrics

By applying superesolution methods, a predicted imaggenerated for each of the high
guality images in the test image dataset. Different metrics are used to evaluate the quality and
precision of superesolution algorithms. These metrics are generally categorized into classical
and deep learningased apmaches. Classical metrics include Mean Squared Error (MSE),
Root Mean Squared Error (RMSE), Peak Sigoalloise Ratio (PSNR), and Structural
Similarity Index (SSIM). MSE calculates the average squared difference between pixels of the
restored and originalmages, offering simplicity but often poor correlation with human
perception. RMSE, a scaled version of MSE, measures error more intuitively, while PSNR
assesses signt@d-noise ratio in the reconstructed image, though both metrics lack strong
alignment vith human visual assessment. SSIM, in contrast, evaluates structural similarity
based on luminance, contrast, and structure, making it more suitable for complex structural
comparison$59].

Advanced metrics leverage deep learning to capture perceptual similarity better. For
example, Learned Perceptual Image Patch Similarity (LPIPS) uses deep feature extraction to
align more closely with human perception but requiregnaieed networks. Fréet Inception
Distance (FID) compares feature distributions to evaluate the similarity between generated and



real images, focusing on quality and realistic appearance. Inception Score (IS) measures the
diversity and quality of images generated by GANsessiag conditional label distribution.
Finally, the MultiScale Structural Simildy Index (MSSSIM) extends SSIM to multiple
scales, useful in perceptual assessments requiring scaling. Each metric has strengths and
weaknesses, making the best choice ddeet on the specific goals and requirements of the
application[59].

In this study, MSE, RMSE, and PSNR are used as classical metrics that are among the most
widely used methods due to the high speed and ease of calculation. The MSE is computed from
Eq. (2) and RMSE is the square root of MSE. The value of R&\also calculated using Eq.

(4).

PSNR=20log,( MAX) -10log,( MSH @

Whereb o0& refers to the maximum value among the red, green, and blue components for
an RGB color image (255 for antt RGB image).

In addition to the classic metrics, we also use the LPH®Sthe network training and
calculation of this metricwe use Ipips library in PythoWe first train the model using the
training dataset introduced in the results secti®fiPS evaluates the distance between image
patches and higher value meansmore difference

2.3. Pore NetworkExtraction

In pore network modeling, the simplification of pores and throats to spheres and tubes aids
in the modeling of singkphase and muHpha® flow with less computational intensity.
Different approaches can be used to extract pore network information from images. One of the
most popular methods is the Maximal Ball Algorithm, which was describ&idibyand Patzek
[60]. This has been embracbky researchers because it is so effective in identifying the main
themes in the data. But it is tireensuming and the results usually show more throats
connected to the pores than in reality. To overcome this prolidemg and Blunt [29]
proposed a twstep algorithm which was an improvement over the initial method and gave a
better estimation. Besides these improvem@&iteppard et al. [§Introduced a new extraction
technique for pore networks using watershed segmentation. This method was developed to
provide a more accurate determination of the pore network structure. The same watershed
segmentation technique was later applieRiapbani et al. [62on a sandstone sample with
low porosity proving the versatility of the technigéeyaesse et al. [§3urther expanded on
this approach to model flow in the gas diffusion layer of proton exchange membrane fuel cells
in a number of applications. On these achievem@&aistick [64] proposed improvements to
the watershed segmentation method, which was arsegenentation technique called SNOW.

This was done by flattening some of the peaks in the distance transform; this made the
segmentation better for both high and iparosity rocks.

For extracting pore network data, we use the Snow algorithm which is d&aladPython
library known as PoreSpy. PoreSpy is a suite of image processing algorithms that is aimed at
extracting information from 3D images of porous media that are usually obtained fragn X
tomography. While there are many generic image anabais that are available in the market
like Skimage and Scipy. In the case of NDimage in the Python environment, ImageJ, and
Mat Lab’s I mage Processing Tool box, t hese ma



scripts or macros to accomplish tasks paléicto porous media analysis. Compared to the
general purpose tools, PoreSpy is more specialized and allows for more efficient extraction of
pore network data from 3D images.

2.4. Flow Calculation

The nature of porous structures makes it very difficult to accurately use conventional fluid
dynamics equations such as Navier Stokes equations. These equations while basic in defining
the flow of fluids become less useful when analyzing the complex ggoafgiorous media.

To simplify the analysis, the pores and throats in these media are often replaced by simpler
shapes such as spheres and tubes which significantly reduces the computational load. As clearly
shown by the Hageiroiseuille equation (Eq5)), there is a direct correlation between the
permeability of the fluidG ), pressure dropDP ), and flow rate(q ):

q:G 12X )

The fluid permeability for the movement of fluid inside a tube is calculated usin@)Eq.
based of viscosity of fluid 4;) and structural property of tube such as length and radius (

r:

_prt (6)

m

For each-th pore, thenass balance is written as Eg).(z represents the number of pores
connected to theth pore):

aa; =0 )

e

The amount of flow in the throatuyhich connects pore j to pore i is caldelhas Eq(8)
for a twophase flow (the singiphase flow equation is the same, but the value of capillary
pressure is zero):

q; :GIj (IP -P E’u ) ®)

J

The combination of E(7) and Eq(8) results in Eq(9).
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By applying the constant pressure boundary conditions on the pores at the inlet and outlet
of the network and solving the linear equations pitessure in each pore and the flow in each
throat are obtained.

2.5. Preparing Dataseind Experimental Settings



We use images of different rock samples in our warkable1 representsnore detail of
4 rocksamples andFig. 1 shows some examples of these datasetsach case, four sample
images from different sections are provided to demonstrate the diversity of images.

The first rock sample is chosen for upsaglwork because of itswlti-scale natureAs
shown inFig. 2, the pore size distribution of this sandstone is bimodal. This characteristic
makes the dataset partiatly suitable for the objectives of the current study because it enables
a study of the various pore scales and their impact. Other rock samples are usedtte train
RealESRGAN moddb createavariety of inputs in the model training process.

To evaluate the pattern recognition method and to be able to reconstrucegogliion
images, we need lowesolution images of the rock sample. To this end, we employ a
downsampling strategy. The first principle of downsampling is to reduce the insadetian
and pixel number of the image. Thispess entails choosing a value that represents the new
pixel used to replace a set of original pixels. In other words, downsampling is a process of
condensing information from several pixels into one pixelstimaking the image simple but
retaining some features. In the present paper, we develop a synthetic dataset that contains
images with different degrees of downsampling, namely, 2, 4, 8, 16, and 32.

For examplewhen the dimensions are scaled down bywetdr of 2, each new voxel
corresponds to 8 of the original voxels. Before going to the binarization step where the image
is converted to black and white, the pixel in the grayscale image has a valR®fTb decide
the value of each new pixel we cdbte the average value of the group of 8 original pixels
corresponding to the new pixel.

Fig. 3 shows the results of two different downsampling sa®emith a reduction factor of
2. Based on the results of the extraction method, it caednthat it is better to use an image
with the original size for downsampling as showrig. 3(b). Using an image with a smaller
size causes unreasonable results due to different settings in the extraction process. Therefore,
the method that keeps the size of the images is used, instead of replacing one Ipixet wit
example, 8 pixels in downsamplimgth a factor of 2, the pixels remain in the image and only
the new pixel value is replaced for the first 8 pixels.

After generating the synthetic images, each image is then converted to a binary format.
Fig. 4 presents examples of binary images at all the scales which have been described above.
From the images, as shownFig. 4, it can be seen that when the resolution efithages is
low then there is a lot of detailed information that is lost. The decrease in image resolution
entails loss of more detail and this affects the precision of network extraatboads and the
generated network.

As stated, when training the model, we require a number of images in various rock samples.
To this end, 4 dataseits Table1 have been employed. One of the issues with these images is
the different dimensions, also, given the fact that the increase in the size of the images results
in the expansion of time neededtain the model and germate artificial images in GANGS].

Thus, the selection of an appropriate size that is small enough to be used between the datasets
and large enough to represent porous media is critical. Further, this size should be suitable for
the creation of images of low resolution as it is ineghd-rom the results obtained in the results
section and since size 16 has been selected as the scale factor, the selected size should be able
to be downsampled up to 16 times. After checking the data, size 96 is chosen as the desired
size, so it is neceapy to transfer the initial images to a modified size. Because of the initial

size of the images, it is impossible to reduce all the images to the same size, unless we crop the
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borders of the images until they get to the closest to the modified size wevkeh is given
for each dataset ihable?2.

In Fig. 5, we provide an examplef image modification for each datasetachhigh-
resolution image and its desired downsamjheaige is convertetb some new image with
specific size. Afteupscaling lowresolutiontest images with the help of the trained model, the
generatedhigh-resolution images will beombinedo obtain the base higiesolution imageas
the result of the model. Evaluatioretrics are then used to evalutdtese outputs.

3. Results and Discussion
3.1 Determining theddownsampling Factor

To study the effect of image resolution on the results of the network analysis, we used
downsampled images to extract relevant network data and subsequently constriet a po
network modelFig. 6 shows the effect of different resolutions on permeabilityingle phase
flow. As shown inFig. 6, there is a clear trend: the reduction of resolution which in turn means
that the smaller pores and throats are excluded from the network, causes a decrease in the
porosity and permeability. This is because as image resolution decreases, some of the details
within the pore structure are not captured, especially the flow pathways which are important in
determining the permeability of the material. Therefore, the removal of these details in the
network simplification results in the reduction of the flow and, seguently, lower
permeability values. Hence, it is importémtomprehend and choose the right resolution when
modeling and simulating the fluid flow characteristics in porous media.

For a pore not to be seenan image, the size of the pixels in the gaahould be at least
twice the size of the pore. When this condition is met, the pore is not considered in the
extraction process and hence is not included in the final network. As shadwig. & the
entrance of the pores and throats are usually between 3 to 12 um in size. This is why even if
the pixel size is increased to double these pore sizes, the impact on porosity and permeability
is relatively small. But when the resolution is reduced hdybis value, the effects are much
higher, and the porosity and permeabiéitg deteriorated to a certain extent. Porosity does not
reduce to zero even though the resolution is lowered, because some of the pores are still
discernible. Howeveras the redution continues to decrease, the pores that connect various
pore clusters are eliminated which leads to a significant decrease in permeability to zero value.

As pointed otiearlier, and as seenkhing. 2, at higher pixel sizes, the small pores are almost
invisible and one is left with the impression of a large pore rather than a network lggaresl
This is shown inFig. 7 in terms of the modeled pore network for the base images and the
downsampled images by a factor of 16. Hence, in these downsampled images, it is crucial to
recognize the patteraf these smaller pores and reconstruct the images such that the true
characteristics of the pore network are not [bable3 andTable4 compare network and flow
parameters for the original and downsampled network

3.2 Model Modification

We are going to present our method to address the discussedissdermulated the
problem as one of supegsolutiontasksand used RealESRGAN [58F our selected super
resolution model. However, the original RealESRGAN has been developed to support only 2x
and 4x superesolution which is not enough for our purp8®]. The aim of our work is to
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create a model that could upsample the input intaga factor of 16. To achieve this, we
adjusted the base ESRGAN module in the generator component of the model to increase its
capacity to deal with this increased scaletda Fig. 8 shows the multstage enhancement
process employed by the RealESRGAN model to achieve a 16xraspdution. The model,
originally designed for 4x upscaling, is applied sequentially in two stages. In the first stage, the
low-resolution input image undergoes a 4x stngsplution process, producing an intermediate
image with improved resolution and restored details. This intermediate imageserves as

the input for the second application of the model, further enhatioengesolution by another

4x, resulting in a final output with a total 16x improvement in resolution. This approach
leverages the model's ability to effectively upscalegesawhile preserving fine details, as
demonstrated by the progressive refinement observed in the intermediate and final outputs. The
two-stage process ensures that finer structures and textures are reconstructed incrementally,
avoiding artifacts that couldarise from a single, larggcale transformation. Such a
methodology is particularly effective for applications in porous media analysis, where retaining
the intricate details of pore structures is crucial for accurate modeling and analysis

3.3 Results of ModeTraining

Themodifieddataset we have used for our experiments coniaié86images. From this
dataset, we usetl, 724 images for training and the rest of the images were used for testing.
To speed up the training, we fitigned the weights correspondito the 4x scale factor for the
parameters that were present in our extended model. The training of the model was done using
theAdamopt i mi zer with B1 = 0. 9 and [}2150606000. 99.
iterations with the help of Nvidia Gerce RTX 3090 GPU which took alma@gthours. During
the training, the batch size was set to 8 to enhance the processingigageshows the
calculated loss function value for all images after 150,000 iterations.

As shown inFig. 9, after 50,000 iterations, there is no significant change iarh@unt of
loss function. In addition, continuing these iterations can lead to overfitting of the model on
the current data. Therefore, by accepting the data obtained after 50,000 attempts, we use the
generated resdtfor the pore network modeling.

Fig. 10to Fig. 13showsome examples of the generated image along with the orapdal
the downsampled image for each data&stshown, the difference between the images is very
small and in some cases, it cannot be distinguished. So, it is necessary to use evaluation metrics
to discover the difference between generatedoaigihal high-resolution images

3.4 Evaluation of Results

As mentioned, 4 different criterre used to eWaate the accuracy of the modElg. 14
shows a comparison between different evaluation meffies.low value®f MSE and RMSE
indicate more similarity betves images, so as showrFig. 14, our supetresolution algorithm
has been able tringthe generated images closer to the real ones in terms of these two metrics.
In addition, the higher PSNR indicates more similarity, which also mosfithe proper
performance of the model.

We discussed that the classical criteria cannot understand human perception very well. The
LPIPS can check this issue to a good extentoBkihg at the results iRig. 14 and comparing
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them with the results @b et, al. [7(, we realize that according to the LPIPS metric, the images
are produced with proper accuracy. Lower values of LPIPS show more similarity between
images.Jo et al. [7Q have been able to produce images with a scale factor of 16, which
compared to the real images, had an average LPIPs vadlibah thebest case. As shown in
Fig. 14, except for one of our datasets, we have been able to get better results than this paper.
However, in the Doddington sample, we have also a good result, which is comparable to the
results othe mentioned article.

We can see ifrig. 14 that the lowquality images and generated higgsolution images
have less difference from each other. While in LPIPStshhere is a greater difference
between these images. This issue shows that the classical metrics cannot be a suitable metric
in such problems and may lead to unreliable results and false image quality enhancement.

3.5 Final Pore Network Mdel

The last proess is to use all the images produced by RealESRGAN to build the pore
network model. We use higiesolution generated images in musitiale sandstone dataset to
build our pore network model. It is believed that by incorporating the-duglity image
enharement from the RealESRGAN, the pore network model will have improved accuracy
and efficiency inportraying the pore structureig. 15 shows the network model obted
from real images and generated imagesble 3 and Table 4 compare network and flow
parameters for the original and generated network. It is clear from these tables that the number
of pores and throats has increased, but the increase in the porgsaats volume in the
generated network is less than the increase in their nuifiisrshows that the model tends to
generate some pores and throats with smaller sizes. However, this issue does not have much
effect on the final result and the flow propes of the network.

3.6. Discussion

In this article, a new method used in the modern science of computer engineering called
RealESRGAN is usedSuperresolution techniques can be applieddifferent fields of
petroleum engineering to improve the quality o&ges. These applications are; enhancing the
resolution of seismic data for better interpretation of subsurface structures, reconstructing well
log data and core sample images for more accurate reservoir property analysis, enhancing the
guality of satelliteand remote sensing images for modeling exploratory regions, and increasing
the resolution of Synthetic Aperture Radar (SAR) images for monitoring sutiacges and
geological analysis [41 Such techniques help in improving the accuracy of the reservoir
evaluation and in decisiemaking in exploration. One of its applicat&that is mentioned in
this papers related to increasing the quality of porous media images. The lack edjinadjby
images often causes the flow properties obtained from thenetnark model to not match
the laboratory results in some porauedia. To find such criteria we studied different porous
media and we found that in a medgale sandstondappened by studying a muéitale
sandstonesample in section 3.1. The resultowsled that in this network, by reducing the
resolution, somgoreswith a size smaller than the specified size are removed, which, as a
result, reduces the permeability of there network model. This shows that this dataset is a
suitable option for our wér
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The purpose of our work is to use the originaldgumality images and increase their quality
to recover the lost details. For this purpose, we used the RealESRGAN nireht#EESRGAN
is designed based on ESRGAN with the Resitu&tesidual Dense blocknd the Perceptual
Loss, and it can generate images with more realistic and sharpersithagethe original
method. These features and the stability during training make this choice suitable for petroleum
engineering applications wteehigh-quality imagesare requiredBecause of the nature of the
problem a sample that is sensitive to the resolution reduction is required and thus a multiscale
sandstone sample was included. Because the size of the pores and throats in the sample is
bimodal, the loss of ddtan the images used to construct the pore network model was apparent
and details had to be recovered in this samietrain the model, using only the images of a
dataset can cause problems such as overfitting. Therefore, we also use three othelirdataset
the model training proces$o evaluate the results of the model, different classical and new
evaluation metrics are used. The results show that in such problems, the use of classical metrics
because the criteria only measure the pixel similarity éetwthe images, can confirm the false
guality of the images. The new metrics such as Lpips used in this research can better distinguish
the difference between the images. So, using the LPIPS we can evaluate the result of the model.
Finally, the pore netwérmodel is constructed using the generated-hggolution images from
the model. The comparison between the generated model and the original network shows that
the obtained model is reasonably close to the real model, although there are also minor
differences that did not have much effect on the flow parameters of the model.

As mentioned in the introduction section, different supsplution methods such as
Transformetbased SR models and Diffusion models are introduced. The void of these methods
can befelt in the study of porous media, especially in increasing the quality of images and
recovering the lost detailds a suggestion for the next works, the application of these methods
can be used to increase the quality of poroadiaimages

In thisresearch, we use 16 as an upscaling factor. One of the things that can be investigated
in the future is the use of different scale factors in the process of training the model and
comparing the results. The use of different scale factors requires regrdirimodel, which
makes it difficult due to the long training time of the model. To speed up the training process
of the model, we can use other methods such as TPUs (Tensor Processing Units) and FPGAs
(Field-Programmable Gate Arrays) [[{2The use of tase methods increases the speed of the
model, which allows us to work with a larger dataset.

TPUs are highly optimized for machine learning tasks, especially deep learning, as they
excel in performing fast matrix operations with high efficiency. While FBG#er flexibility
by allowing custom designs tailored to specific tasks, they tend to be faster for highly
specialized applications but require more effort in design and optimization. Overall, TPUs
generally lead in speed for deep learning, while GP¥atter for generglurpose parallel
tasks, and FPGAs shine instom, specialized applications [[72

4. Conclusionand Recommendation

To improve the quality of the images of the pore network, we employed RealESRGAN.
The conventional GAN techniques are eoygld to create fake images and cannot enhance the
resolution of thdow-quality images. Thus, we used this model that has the ability to perform
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superresolution. First, a study was conducted to demonstrate that the selected afataset
multi-scale sandenhe contained suitable images. We assessed the impact of reducing the
resolution, which revealed that in this dataset, characterized by a bimodal pore size distribution,
resolution reduction, decreases porosity and permeability due to the loss of sorabeie

used 3 other datasets to reach the dataset for training the.ntodelly, using the
RealESRGAN method, we were able to obtain synthetic images that look alImd3iffesdnt

metrics were used to evaluate the accuracy of the model, and the sbsw that th&PIPS

is a more suitable metric to evaluate the results of the model.

To further test the model on other rock samples, it is recommended that the model be
applied to broader datasets, including those that it has not encountered bbferellT
determine whether it can accurately replicate the results or improve the quality of existing
images. Additionally, this model can be employed in the construction of-scale networks
to model detailed parts within large domain networks.
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Figures

Fig. 1 Sample images for (a) mukicale sandstone, (b) Brea Sandstone, (c) Doddington
sandstone, and (d) tight carbonate

Fig. 2 Probability distribution for (a) pore size, (b) throat size, and (c) sizes of all pores
and throats in mukscale sandstone

Fig. 3 An example of (a) the original image, (b) a dmampled image with a factor of 4
at the same size as the original, and (c) a downsampled image with a factor of 4 with a reduced
size, in multiscale sandstone

Fig. 4 An example of (a) original image, and synthetic isgwith (b) 2, (c) 4, (d) 8, (e)
16, (f) 32, times reduction in dimension in midtiale sandstone

Fig. 5 Example of image modification in (a) muticale sandstone, (b) Brea Sandstone,
(c) Doddington sandstone, and {djht carbonate

Fig. 6 Effect of resolution on (a) porosity, and (b) single phase permeability, of-multi
scale sandstone

Fig. 7 Pore network model using (a) original images (b) downsampled images by scale
factor of 16, in multiscale sandstone

Fig. 8 Representation of the proposed extension to ESRGAN generator to support scale
factor of 16

Fig. 9 VGG loss function during training the model

Fig. 10 (a) Original images (b) generated images from RealESRGAN (c) downsampled
images, in multscale sandstone

Fig. 11 (a) Original image (b) generated image from RealESRGAN (c) downsampled
image, in Brea Sandstone

Fig. 12 (a) Original image (b) generated image from RealESRGAN (c) downsampled
image, in Doddingtonandstone

Fig. 13 (a) Original image (b) generated image from RealESRGAN (c) downsampled
image, in tight carbonate

Fig. 14 Comparison between different evaluation metrics in ragiilesandstone (solid
lines: between highesolution and generated images, dash lines: betweendsghlution and
low-resolution images)

Fig. 15 Pore network model using (a) original images (b) generated images from trained
model, in multiscale sandstone
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(a)

(b)

Fig. 1 Sample images for (a) multcale sandstone, (b) Brea Sandstone, (c) Doddington sandstone, and (d)
tight carbonate
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Fig. 3 An example of (a) the original image, (b) a deampled image with a factor ofa4 the same size
as the original, and (c) a downsampled image withcéof of 4 with a reduced size, in medtiale sandstone

®

Fig. 4 An example of (a) original image, and synthetic images with (b) 2, (c) 4, (d) 8, (e) 3B, (fnes
reduction in dimension in muiticale sandstone
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Fig.5 Example of image modification in (a) mu#icale sandstone, (b) Brea Sandstone, (c) Doddington
sandstone, and (d) tight carbonate
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Extended ESRGAN (16x)
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Fig. 9 VGG loss function during training the model

Fig. 10 (a) Original images (b) generated images from RealESRGAN (c) downsampled images, inaalelti
sandstone
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Fig. 11 (a) Original image (b) generated image from RealESRGAN (c) downsampled im&gea
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Fig. 12 (a) Original image (b) generated image from RealESRGAN (c) downsampled im&ygdington
sandstone

Fig. 13 (a) Original image (b) generated image from RealESRGAN (c) downsampled imégat
carbonate
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Fig. 14 Comparison between different evaluation metrics in ragiéile sandstone (solid lines: between high
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Fig. 15 Pore network model using (a) original images (b) generated images from trained model.-scateilti
sandstone
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Tables

Table 1 All datasets used in our work
Table 2 Modified datasets for model training

Table 3 Network parameters for original, downsampled and generated network in multi

scale sandstone

Table 4 Flow parameters for original, downsampled and generated network ir multi

scale sandstone

Table1 All datasets used in our work

Number Name Resolution |- Number 'm?‘ge Related Work
(HO of Images| Size
Multi-scale .
1 Sandstone 3.00 512 300 Mohammadmoradi and Kantzpg5]
2 Brea 2.25 1000 | 1000 Neumann et a[66]
Sandstone
Doddington
3 Sandstone 5.40 600 600 Moon et al[67]
Tight .
4 Carbonate 30.60 500 500 Mohammadmoradi and Kantzpg5]
Table2 Modified datasets for model training
Number of | Number Real Modified
Number Name Training of Testing | Image Image
Images Images Size Size
p | Multi-scalel g7, 864 300 288
Sandstone
2 Brea 7120 2880 | 1000 | 960
Sandstone
3 | Doddington g0, 1728 | 600 576
Sandstone
Tight
4 Carbonate 1060 1440 500 480

Table 3 Network parameters for original, downsampled and generated network irsgal#i sandstone

Network Parameters Original Network DownsampledNetwork | Generated Network
Porosity 0.24342 0.12435 0.24959

Pore Number 8416 325 9114
Throat Number 11754 308 12718
Average Coordination Number 2.79 1.89 2.85

Pore Volume (mr) 38.1435 214079 39.7425
Throat Volume (mr) 123.8119 61.3239 126.3147

Table4 Flow parameters for original, downsampl

ed and generated neiwaorilti-scale sandstone

Flow Parameters

Original Network

DownsampledNetwork

Generated Network

Permeability (mD) 630.28 ! : 657.34

Volumetric Flow Rate (mimin) 0.032595 0.021628 0.033994
Darcy Conductivity (mm/min) 0.366128 0.24294 0.381847
Darcy Velocity (mm/min) 0.042768 0.028378 0.044604
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