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Abstract. Motor current signature analysis is cited in many articles to
detect the rotor bar fracture. Because of the small amplitude at the fault
frequency relative to the main frequency amplitude, the former cannot be
easily distinguished from the latter. As a solution, a method based on the
algebraic identity of trinomial expansion of the stator current is proposed
which enables us to display the difference between the frequency of the
fault signature and the base frequency. In addition, the components at
unwanted frequencies are attenuated using a low-pass filter. After that,
frequency weighting techniques are used to magnify the component at the
target frequency compared to the lower frequencies. Indeed, a weighting
method based on differentiation is used, and another method based on
convolution is proposed as tools to enhance the clarity of the frequency
spectrum display for a broken rotor bar. To validate the proposed
methods, they are examined on the laboratory data obtained from three
different operating conditions, including the direct online start, the direct
torque control, and the scalar control, and the results show the ability of
the proposed methods in fault detection of an induction motor.
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1. Introduction

Squirrel cage induction motors (SQIM) are widely used
in various industries [1–3]. In industries, where uninter-
rupted motor operation is necessary, timely detection of
rotor faults is important, as these faults account for ap-
proximately 10% of all motor faults. This issue is espe-
cially critical in harsh environments, such as oil and gas
environments, traction, and mines, where motor failures
can result in heavy process losses [4, 5].

Over the past few years, the use of induction motors in
the electric vehicle (EV) industry has become increas-
ingly widespread. The electric motor is a crucial compo-
nent of an EV as it converts electric energy to mechan-
ical energy [6]. Therefore, any failure in any of its com-
ponents can directly impact the reliability of the pow-
ertrain and the safety of passengers [7, 8]. As a result,
it is crucial to develop an electric motor that enhances
the efficiency and performance of EVs [9, 10]. Among
the various types of electric motors used in EVs, the
induction motor is more effective and economical than
others due to its reliability, simple mechanical design,
and effective field-weakening characteristics [9].

To increase the reliability of IMs used in EVs, re-
searchers have focused on different fault diagnosis meth-
ods in the past decade, in line with the growth of the
EV industry. These methods are aimed at identifying
and diagnosing faults in IMs before they lead to motor
failure, and include techniques such as vibration anal-
ysis, and motor current signature analysis (MCSA) [9,
11–19]. By implementing these fault diagnosis meth-
ods, the reliability of induction motors can be enhanced,
thereby improving the overall performance and safety of
EVs.

The broken rotor bar (BRB) is a type of rotor fault that
can cause damage to other parts of the motor, including
the winding, bearings, and mechanical parts. In addi-
tion, BRBs can lead to torque and speed pulsation and
create harmonics in the current, air-gap flux, and in-
duced voltage of stray flux [4, 20, 21]. A. H. Bonnett
and C. Yung [22] listed the distribution of induction mo-
tor faults as bearing (69%), stator windings (21%), ro-
tor bar (7%), and shaft/coupling (3%). Therefore, given
that the BRB of SQIM is a common type of rotor defect
[23], this article will focus on the diagnosis of BRBs.

Generally, there are three groups of fault detection
methods [24–26]:

1. Signal-based methods [25, 27, 28]

2. Model-based methods [25, 29]

3. Knowledge-based methods [26, 30, 31]

Model-based approaches require a precise and accurate
mathematical model of the motor, and knowledge-based
approaches have low accuracy in transient conditions
and require different and high-volume data for diagnos-
ing different motors [32]. Therefore, signal-based meth-
ods are of great interest for fault detection in electric
motors.

Any type of faults affects the general signals of the mo-
tor, such as current, torque, speed, and voltage, in a spe-
cific way and creates special harmonics in them. Most
of the existing electrical condition monitoring and fault
detection methods are based on the analysis of the mea-
sured output signals [4, 33, 34]. To detect the fault
based on the signal, three steps are usually taken:

1. acquiring a suitable signal to detect the fault,

2. using the proper method to analyze the signal,

3. determining the index to make the decision about
the faulty or healthy condition.

According to articles analyzing various types of mo-
tor output signals, research on fault diagnosis includes
MCSA, methods based on terminal voltage analysis,
air gap torque analysis, impedance sequence component
analysis, leakage flux measurement, infrared detection,
stray flux detection, vibration analysis, thermal analy-
sis, acoustic analysis, electromagnetic field interference,
and more [35–37]. Among these methods, MCSA is uti-
lized in this paper due to its non-destructive nature,
compatibility with several signal processing tools, and
being a spectral analysis method that is commonly used
for online and remote monitoring of induction motors
in industrial environments [20, 38, 39]. The following
are some MCSA methods: frequency spectral analysis,
current envelope analysis method, components of neg-
ative, positive, and zero current sequences, and Park’s
vector representation of three-phase current and Clark
transformation [5, 34, 40].

Although positive, negative, and zero sequence compo-
nents of current or Park and Clark vector transforma-
tions can be used for MCSA, they require sampling of
three-phase current [41], which increases the cost com-
pared to single-phase current sampling, and there is no
indicator to recognize the fault type in many cases. In
the current envelope analysis method, there is a chal-
lenge to produce a suitable envelope without auxiliary
processing tools, and it does not show clear results
for fault detection. A common and simple frequency-
domain method for detecting BRB is applying the fast
Fourier transform (FFT) on the stator current and then
analyzing the produced spectrum [4, 32]. However,
the sampled current is almost always accompanied by
noise, and for motors that operate at small slips, the
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fault frequency is hidden in the shadow of the base fre-
quency. This means that base frequency leakage can
mask fault frequencies, making rotor fault detection dif-
ficult, and motor damage may progress to severe damage
[42]. Therefore, direct application of frequency spectral
analysis and FFT method on the stator current will not
have a useful and usable result and requires initiatives
and auxiliary processing tools.

In order to increase the slip and distinguish between the
fault frequency and the base frequency, a rotor breakage
detection test has been performed in [43], which is not
in the steady state motor operation mode. In [44], a
normalized energy operator in the frequency domain is
proposed for BRB fault detection, and energy operators
have also been used to diagnose the broken rotor bar in
some other papers [45]. Among the different methods,
those that can be practical in the condition of high cur-
rent noise are preferred, and in order to reduce the cost,
sampling the current of one phase is preferable. There-
fore, in this paper, we sample the current of one phase
of the stator and use the sum square identity along with
methods to remove unnecessary frequency components
from the current signal. Moreover, to elevate the peaks
at the fault frequency a weighting method based on the
differentiating is used and a method based on convolu-
tion is proposed.

In other words, concerning the BRB fault detection the
article proposes:

• applying the sum square identity, to separate the
fault related component from the other unwanted
components,

• elevating the peak at the fault frequency using the
proposed method based on the convolution.

Different signal processing tools have been utilized in
various studies. Typically, these tools can be categorized
into three groups: time domain, frequency domain, and
time-frequency domain [46]. Time domain indicators
such as mean, median, peak, kurtosis, and skewness are
less commonly used to detect BRB faults. Instead, some
research studies have utilized time-frequency decompo-
sition tools to identify fault components and harmonics
[47, 48]. For example, the Hilbert-Huang transform is
often used for analyzing non-linear and non-stationary
signals, but identifying the signal with the fault fre-
quency can be challenging [49]. Another commonly used
time-frequency domain transform is the wavelet trans-
form. In some applications, wavelet transform is used
as a filter, and simple filters can also be effective. In
some articles, wavelet transform has been used for time-
frequency analysis of non-stationary signals [50]. In
other cases, the short-time Fourier transform (STFT)

has also been used [43], but it has lower ability com-
pared to the wavelet transform.

Other methods belonging to the time-frequency signal
processing tools include the adaptive slope transform,
the Multiple Signal Classification (MUSIC) algorithm,
the Wigner-Ville distribution, and the Choi-William dis-
tribution [51, 52]. While fault detection and evaluation
in the time-frequency domain may require a skilled user
with powerful pattern recognition techniques, it also
takes more time for investigation and a relatively long
start-up time.

In this paper, FFT is used for BRB fault detection due
to its high speed and ease of analyzing the FFT spec-
trum results to identify the dominant frequency of the
BRB. Furthermore, FFT is widely applied in other ar-
ticles [53, 54] and provides the possibility to define an
index for the detection of the severity of the fault and
its type.

The rest of the paper is structured as follows: In Sec-
tion 2, the methodology used in this study is explained.
Sections 2.1 and 2.2 are dedicated to techniques for ele-
vating the peak at the fault frequency, using derivation
and convolution, respectively. Section 3 presents the
benchmark and experimental results and the compari-
son between different methods is presented in Section
3.3. The paper concludes with a summary in Section 4.

2. Methodology

The fault-related component obtained through direct
FFT analysis of the current signal is often character-
ized by a much lower amplitude when compared to the
fundamental frequency component (as illustrated in Fig-
ure 1). Furthermore, given that the fault frequency is
usually very close to the fundamental frequency, the
latter can mask the former, particularly during low-
slip operations. In other words, within the FFT spec-
trum, the fault frequency spectrum can be concealed
within the shadow of the fundamental frequency spec-
trum, thus rendering the fault undetectable [55]. To
overcome this issue, it is crucial to attenuate the funda-
mental frequency component while magnifying the fault
frequency component to distinguish the fault frequency
in the spectrum. To this end, one possible solution is to
calculate the difference between the fault frequency and
the base frequency. In this context, we propose a math-
ematical method that is based on a particular identity,
which we present in the following.
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Figure 1. Direct application of FFT on stator current
and comparison of the healthy rotor and one broken bar
in DTC operating condition and low load.

The frequencies resulting from the BRB fault [56] are as
Relation (1).

fbrb = (1± 2ks)fs = fs ± kff (1)

where fbrb is the fault frequency of broken rotor bar,
k = 1, 2, 3, . . . ., s is slip, ff is the difference between the
base frequency and the fault frequency, which introduces
the fault, and fs is the fundamental (base) frequency.
A fault detection method is proposed in which the fault
signature concealed by the fundamental frequency com-
ponent is detected using the trinomial expansion. To
facilitate understanding of this approach, the identity
of the trinomial expansion is presented in Relation (2).

(a+ b+ c)2 = a2 + b2 + c2 + 2ab+ 2bc+ 2ca (2)

where a, b, c are either numbers or variables. Consid-
ering an amplitude modulation caused by the fault and
referring to Relation (1) with k = 1, the stator current
can be expressed as following [57]:

x(t) =
(
1 +Mcos(2πff t)

)
·Acos(2πfst)

= Acos(2πfst) +
AM

2
cos

(
2π(fs − ff )t

)
+

AM

2
cos

(
2π(fs + ff )t

) (3a)

where A and M are the fundamental current amplitude
and the modulation depth, respectively. In cases of
SQIM with rotor bar breakage, two sideband frequen-
cies related to the rotor bar breakage will appear in the
stator current signal spectrum, around the fundamen-
tal frequency (fs). These frequencies are denoted by

f2(= fs − ff ) and f3(= fs + ff ), and they are both sit-
uated in proximity to fs. Let us consider Relation (3a)
as a signal comprising three sinusoidal terms :

x(t) = a1cos
(
2πf1t

)
+ a2cos

(
2πf2t

)
+ a3cos

(
2πf3t

)
(3b)

acquiring i

bandpass filter
(35-65 Hz)

normalization

square

LPF

DC-term cancellation

FFT
d

dt

FFT

Section 2.2

FFT

x(t)

x2(t)

ξ(t)

First method:

without elevating.

Second method:

elevating using

differentiation.

Third method:

elevating using

convolusion.

Figure 2. The flowchart of the proposed methods
(LPF: low-pass filter, FFT: fast Fourier transform).

Here f1 = fs, a1 = A, and a2 = a3 = AM
2 . It is

known that cos
(
2π(f3 − f1)t

)
= cos

(
2π(f1 − f2)t

)
and

a2 ∼= a3. Using the trigonometric relations and neglect-
ing the term of 2a2a3cos(2πf2t)cos(2πf3t), due to its
very small amplitude, yields:
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Table 1. Analysis of terms and frequency components of Relation (4)

Term Frequency Used for
fault de-
tection

Frequency elimination
method

a21cos
2(2πf1t) DC and 2fs no DC part by removing the

average value and f = 2fs
by low pass filter

a22cos
2(2πf2t) DC and near 2fs no DC part by removing the

average value and f ≈ 2fs
by low pass filter

a23cos
2(2πf3t) DC and near 2fs no DC part by removing the

average value and f ≈ 2fs
by low pass filter

2a1a2cos
(
2π(f1− f2)t

)
Difference of base
and fault frequen-
cies

yes needed for fault diagnosis

a1a2cos
(
2π(f1 + f2)t

)
nearly 2fs no f ≈ 2fs by low pass filter

a1a3cos
(
2π(f1 + f3)t

)
nearly 2fs no f ≈ 2fs by low pass filter

x2(t) ∼=a21cos
2(2πf1t) + a22cos

2(2πf2t) + a23cos
2(2πf3t)+

2a1a2cos(2π(f1 − f2)t) + a1a2
[
cos(2π

(
f1 + f2)t

)
+

cos
(
2π(f1 + f3)t

)]
(4)

Thus, decomposing Relation (4) yields one component
at DC and five terms with frequencies twice or nearly
twice the base frequency (2fs) and one component at the
difference of the base frequency and the fault frequency
or at f1 − f2(= ff = 2sfs). Five components among
them are filtered out and the DC-term is removed by
subtracting the mean value from the signal, and only
the component at the frequency of f1−f2 is used in the
proposed fault detection method. Table 1 shows all of
these components and indicates that which of them are
going to be used in the proposed fault detection tech-
nique. Therefore, what remains is the following signal,
which is used to diagnose the faulty motor:

ξ(t) = 2a1a2cos(2π(f1 − f2)t) (5)

To obtain the component at f1 − f2 the stator current
signal is gathered. Then using a band pass filter the
component around the base frequency are kept and af-
ter normalization the square of the signal (x2(t)) is com-
puted. An low-pass filter (LPF) is used to attenuated
the remaining unwanted parts. The cut-off frequency
can be tuned at half of the base frequency. The DC
component yet remains and it is filtered out by means
of DC-term cancellation. The spectrum of the resultant
signal is compute through FFT. The flowchart of the

proposed technique is shown in Figure 2. By applying
the trinomial expansion identity to the stator current
signal and subsequently removing unwanted frequencies,
a resulting signal can be obtained that contains Relation
(5). As mentioned in first method in Figure 2 the com-
ponent at the differential frequency of this expression
can be obtained by using FFT transformation. There
are also two other methods in the flowchart which are
going to be explained in the following subsections.

2.1. Elevating the peak at the fault frequency us-
ing derivation

After differentiating Relation (5), the following equa-
tion is obtained, in which the amplitude is weighted by
the difference between the fault frequency and the base
frequency:

dξ(t)

dt
= −4π(f1 − f2)a1a2sin

(
2π(f1 − f2)t

)
(6)

This technique elevates the peak at the fault frequency
in comparison to the neighboring peaks at lower fre-
quencies, making the fault signature more prominent
and facilitating fault detection.

2.2. Elevating the peak at the fault frequency us-
ing convolution

The convolution of two time-discrete signals x and y is
defined as follows [58]:
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(x ∗ y)[n] =
+∞∑

m=−∞
x[m] · y[n−m] (7)

Based on the convolution theorem, convolution in the
time domain corresponds to multiplication in the fre-
quency domain [53, 55, 59].

F
(
(x ∗ y)[n]

)
= X(ω) · Y (ω) (8)

Therefore, by performing the convolution of the ξ(t) and
its derivative ξ̇(t) in the time domain while strength-
ening the fault component amplitude with frequency
weighting in the time domain, the fault frequency am-
plitude is magnified in the frequency domain. Conse-
quently, in the FFT spectrum, the amplitude of the fault
frequency is amplified, while the amplitude of the fre-
quency components around the fault frequency is weak-
ened. The block diagram of the proposed method is
shown in Figure 3.

ξ (t) Convolution

d/dt
Convolution

FFT

Frequency spectrum 

evaluation and fault 

frequency

Figure 3. Proposed method for high resolution FFT
(fast Fourier transform).

By using this technique, the peak at the fault frequency
in the FFT spectrum is more pronounced compared to
neighboring peaks. This means that the fault signa-
ture becomes more visible in the spectrum with high
resolution. Repeating the convolution will increase the
visibility in a great extent.

3. Benchmark and experimental re-
sults

The characteristics of the motor under examination are
presented in Table 2. The experimental setup com-
prises a 3 kW AC generator, a 1.5 kW induction mo-
tor with broken rotor bars, and the corresponding load,
a LA55-PSP1 Hall effect current sensor and a DSP,
TMS320F28379D and a control drive and a computer.

The resolution level of the DSP analog to digital con-
verter is 12 bits. A photo of the setup is illustrated in
Figure 4.

Figure 4. The experimental setup and the rotor with
two broken bars.

Table 2. The specifications of the experimented motor.

Parameter Value
Rated Power 1.5 kW
Rated Frequency 50 Hz
Rated Speed 1500 RPM
Efficiency 85.3%
Rotor Bar no. 28
Rated Voltage (∆, Y ) 220/380 V
Rated Current (∆, Y ) 5.7/3.3 A
Power Factor 0.81
Pole no. 4
Air Gap Length 0.25 mm

Coupling

SQIMGenerator

3 ph. Source

Adjustable 

Resistive Load

current probe

oscilloscope

Drive

Figure 5. Schematic diagram of the test (SQIM: squir-
rel cage induction motor).

The proposed methods were tested under three differ-
ent operating conditions, including direct online start
(DOL), direct torque control (DTC), and scalar con-
trol. Each operating condition was evaluated under
three load levels: light, medium, and heavy (full) loads.
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The light load mode represented the condition where
no electric load was connected to the generator. In the
medium and full load modes, 600 watts and 1200 watts
of electric loads were respectively connected to the gen-
erator. Accounting for the 80% efficiency of the gen-
erator, the load on the motor was 750 watts and 1500
watts for medium and full load modes respectively. The
sampling frequency used was 10 kHz. The experimental
setup was illustrated in Figure 5.

For instance, in DOL operation mode under the light
load condition, the signal to be analyzed is shown in Fig-
ure 6. After removing the DC component and the com-
ponent at frequencies around twice the base frequency
(f = 2fs), the resulting signal is used for analysis. The
rotor speed in this case is 1493 RPM, and the corre-
sponding slip is s = 7/1500 = 0.467%. The results for
three scenarios, including the healthy state, one broken
rotor bar, and two broken rotor bars, are depicted in
Figure 7.
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Figure 6. Sample output signal containing Relation
(5) in DOL operating mode under the light load.
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Figure 7. Produced spectrum, under the light load
mode in the case of DOL operating conditions, with (a)
healthy rotor, (b) one broken bar, and (c) two broken
bars.

Figure 8 illustrates the analysis results for the case of
DTC under the light load operation mode, where the ro-
tor speed is 1490 RPM. The analysis was conducted for
three scenarios, including the healthy rotor, one broken
rotor bar, and two broken rotor bars, and the results are
presented in Figure 8.

Figure 9 shows the results for the case of scalar control
under the light load mode of operation. In this case the
rotor speed is 1492 RPM and the situation of healthy
motor, one broken rotor bar and two broken rotor bars
are studied.
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Figure 8. Produced spectrum, under the light load
mode in the case of DTC operating conditions, with (a)
healthy rotor, (b) one broken bar, and (c) two broken
bars.

Table 3 demonstrates that there is a strong correlation
between the fault frequencies obtained from Relation (1)
and those obtained from the proposed method. Addi-
tionally, there is a relationship between the peak values
and the number of BRBs, as evidenced by the results
presented.
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Figure 9. Produced spectrum, under the light load
mode in the case of scalar control, with (a) healthy ro-
tor, (b) one broken bar, and (c) two broken bars.

As seen in Table 3, the results are presented for three
operational states of the motor including DOL, DTC,
and the scalar control. The provided results include the
frequency deviation of the fault and the base frequency
of the stator current signal in Hz. The fault spectrum
amplitude is also given in per-unit. The results are cate-
gorized for low, medium, and full load motor conditions,
considering motor states with a healthy rotor, one bro-
ken bar, and two broken bars. For each load condition,
the fault frequency spectrum amplitude increases with
the number of broken bars. As the motor load increases,
the fault frequency also increases due to increased slip.

3.1. Amplifying peaks using derivation

The results for the DOL operating condition under full
load, with one BRB, without frequency weighting and
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with frequency weighting through derivation, are de-
picted in Figure 10. Comparison of Figure 10 (a) and (b)
reveals that the differentiating technique increases the
ratio of the peak value at the fault frequency relative to
the lower frequency region.

Table 3. Summarizing the frequency results obtained
by the method (DOL: direct on-line, DTC: direct torque
control, BRB: broken rotor bar).

Starting
Method

Load
Amount

Motor
Status

Ampl.
(pu)

Fmesured

(Hz)

DOL

Low
Healthy 0.00256664 0.495911
1BRB 0.00314357 0.495911
2BRB 0.00397067 0.495911

Medium
Healthy 0.00403241 1.15256
1BRB 0.00546961 1.22071
2BRB 0.00626237 1.2207

Full
Healthy 0.00365003 2.32697
1BRB 0.00383345 2.32697
2BRB 0.00455207 2.36511

DTC

Low
Healthy 0.00156775 0.667572
1BRB 0.00642336 0.667572
2BRB 0.00870922 0.667572

Medium
Healthy 0.00207091 1.4782
1BRB 0.00647853 1.4782
2BRB 0.00825256 1.52588

Full
Healthy 0.00113611 2.81334
1BRB 0.00402521 2.81334
2BRB 0.00514829 2.86102

Scalar

Low
Healthy 0.00136112 0.524521
1BRB 0.00372104 0.524521
2BRB 0.00381647 0.524521

Medium
Healthy 0.0026973 1.19209
1BRB 0.00603295 1.23978
2BRB 0.00728799 1.28746

Full
Healthy 0.0028846 2.38419
1BRB 0.00459908 2.43187
2BRB 0.00413 2.47955

3.2. Amplifying peaks using convolution

By using this technique, the peak at the fault frequency
in the FFT spectrum is more pronounced compared to
neighboring peaks. This means that the fault signature
becomes more visible in the spectrum with high resolu-
tion. To illustrate, Figure 11 depicts the fault frequency
spectrum using the proposed method during DOL op-
eration under full load conditions with a single BRB.
Figure 12 illustrates the fault frequency spectrum un-
der light load mode and during DTC operation.
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Figure 10. Comparison of fault frequency detection
(a) without frequency weighting and (b) with frequency
weighting through derivation. Using derivation, the ra-
tio of amplitude at point A (fault frequency) to the am-
plitude of the neighboring peaks is increased in Figure
10b.
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Figure 13 shows the scalar operation mode and light
load condition to distinguish the severity of faults with
one or two broken rotor bars from the healthy state.
The figure illustrates that the proposed method accu-
rately detects the state and severity of faults compared
to the healthy state.
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Figure 13. Comparing healthy, one and two broken
bars condition in the scalar operation mode and light
load (third proposed method).

3.3. Comparison

To compare the proposed method with some competi-
tors these methods are used to detect one BRB in the
case of DTC and low load. The stator current signal
is filtered using BPF. The results of applying FFT on
the stator current is shown in Figure 14 (a). As it can
be seen differentiating between the healthy and faulty
condition is not straightforward. In Figure 14 (b) the re-
sults obtained by FFT of envelope of signal is presented.
In this method, an analytic signal that is a complex sig-
nal is produced. The real part is the stator current
and the imaginary part is its orthogonal produced by
Hilbert transform. Using this method the fault can be
detected but the difference between healthy and faulty
conditions is not clear. In addition, a component with
relatively high amplitude is there around the base fre-
quency which is not shown in Figure 14 (b).
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Figure 14. Comparison of the proposed method
with other methods: (a) FFT,(b) the envelope method,
(c) the square of stator current without filtering, (d)
the square of current with filtering (the first proposed
method), and (e) the third proposed method based on
convolution and differentiation. All results are for the
case of DTC under low load and for both healthy and
one BRB conditions.

The spectrum of the square of current without any other
filtering is shown in Figure 14 (c). It is observed that
the component at twice the base frequency is high. The
spectrum of the square of the current after applying the
mentioned filters is presented in Figure 14 (d). This is
the first proposed method of Figure 2. Comparing Fig-
ure 14 (b) and Figure 14 (d) reveals that the first pro-
posed method is as successful as the envelope method
while it dose not have any component at high frequency.

Finally, the results of the third proposed method of Fig-
ure 2 is shown in Figure 14 (e). As illustrated the faulty
situation can be easily distinguished from the healthy
condition. Because the second proposed method is not
better than the third one, its results are not presented
in this comparison.

4. Conclusion

This article presents a diagnostic approach to identify
and detect the broken rotor bar defect in squirrel cage
induction motors using the identity of the square of sum,
and the results are compared and analyzed. To validate
the proposed methods, laboratory data obtained from
three different operating conditions, including Direct-
On-Line (DOL) start, Direct Torque Control (DTC),
and scalar control, are examined, and the results demon-
strate the effectiveness of the proposed methods in fault
detection of induction motors.

Through the analysis of results and formulas, it is evi-
dent that the proposed method accurately identifies the
broken rotor bar defect in squirrel cage induction mo-
tors. As the severity of the rotor bar breakage increases,
the amplitude of the spectrum at the fault frequency
also increases. Additionally, a frequency weighting tool
is presented to enhance the clarity of observing the fault
frequency in the resulting spectrum. The resolution of
the proposed method is shown to be higher with the fre-
quency weighting tool, which involves differentiation of
the signal under spectral analysis to obtain a frequency
weighting factor combined with convolution.

In conclusion, this article presents a high-resolution bro-
ken rotor bar fault detection method, which has the po-

tential to improve the performance of induction motors
in various applications.

The proposed method can be examined on the other
signals such as the stator voltage to find out its efficacy
with them. Future work may focus on the detection
of combined faults, which may occur simultaneously or
fault detection in the presence of the oscillations natu-
rally caused by the load or the supply.
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