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Abstract: 

Recently, potential applications of double-diffusive (DD) processes have been found in a number 

of scientific disciplines, including oceanography and geology. With the inclusion of a magnetic 

field, we numerically analyses the convection energy transfer in a triangular cavity susceptible to 

solute and diffusion buoyancy effects in this work. For momentum, concentration, and temperature 

distribution, a Galerkin finite element discretization with quadratic interpolation functions is 

utilized, and for pressure distribution, we use linear interpolation functions. Elements in the shape 

of triangles and rectangles are used to discretize the domain. The PARADISO matrix factorized-

based nonlinear solver and the Newton method are used to solve nonlinear discretized problems. 

The analysis of several factors such as Hartmann number (0 − 50), Rayleigh number 

(104 − 106), Lewis number (0.1-10), and inclination angle (0° − 90°) is conducted to investigate 

the impact of flow on streamlines, isotherms and isoconcentration patterns and graphical and 

tabular representations are used to show the local heat transfer, kinetic energy, and mass fluxes. 

Our findings shed light on how DD processes behave in cavities that are exposed to magnetic 

fields, and they may be useful in optimizing and designing magnetic devices for commercial use. 

Keywords: triangular cavity, (MHD) magnetohydrodynamics, finite element method, fillet, 

numerical simulation 

Introduction: 

An important dynamical phenomenon, fluid movement inside a cavity has drawn substantial 

attention in a variety of areas of life. Regarding cavity flow, several scholars worked. Zumbrunnen 

[1] emphasized the significance of the vortex formulation in the behavior of cavity flow and 

supported several applications in the synthesis of polymeric composites and drag-reducing riblets. 
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The researchers have looked at multiple experiments with the impacts of different physical 

circumstances after reading the literature-cited uses of cavity flow. The two forms of cavity flow 

are: (1) regular shape cavities and (2) irregular shape cavities. Every cavity form has a unique 

function in the real world, however recently, a lot of researchers have focused on irregular cavity 

shapes. In the world of engineering, these cavities are used extensively for cooling electronics, air 

cooling, collecting solar thermal energy, extracting geothermal energy, and damaging structures. 

Li et al. [2] using the unique iteration of multiple relaxation time, addressed the flow in a deep 

cavity. Manca et al. [3] described mixed convection in open cavity bearing heating wall borders 

into consideration. Aspect ratios of 0.1 to 1.5 and Reynolds numbers between 100 and 1000 were 

computed, with results. The findings indicated that the temperature decrease is observed for higher 

Reynolds numbers. They also mentioned aspect ratio performance for various heating 

configurations in isotherm and streamline patterns. The observed findings further showed the 

forced flow configuration had maximum level of thermal efficiency at the maximum temperature 

and heat transfer rate. Khanafer et al. [4] applied in a driven cavity for mixed convection flow, 

they discovered that depending on how the velocity cycle was conducted, the impacts of Gr and 

Ra would either accelerate or retard the energy transfer and drag force behavior. 

Flack [5] investigated triangular shaped cavities. The statistical properties of right triangular shape 

cavities were investigated in [6-8]. Polulikakos and Bejan [9] examined the same phenomenon in 

the bottom-heated right triangular channel numerically and theoretically. Finite element analysis 

was used by Holtzman et al. [10] to investigate isosceles triangles free of symmetric restrictions. 

The isosceles triangle was studied symmetrically by Saluman et al. [11]. The natural convection 

of water in triangles was studied by Lei et al.[12]. In the same Kent. [13] study, heated-bottom 

isosceles-triangular roofing were analyzed. Same problem discussed by Kent [14] again, this time 

with top-heated cavities. Research on natural convection flow in a variety of enclosures, including 

isosceles and right triangles, with a range of boundary conditions was discussed by Wang et al.[15]. 

Several bottom wall geometries for the triangular hollow were analyzed by Triveni and Panua [16].  

Because of its relevance to subjects as diverse as engineering and environmental science, MHD 

has gained a great deal of interest in recent years. In order to evaluate the effect of magnetic fields 

on heat transfer, whether through conduction or convection, several research have looked into the 

impact of MHD on heat transfer in enclosures. In order to investigate the effect of MHD and joule 

heating on double-diffusive mixed convection in a horizontal channel with an open cavity, Rahman 

et al. [17] performed a finite element analysis. Teamah [18] studied double diffusive flow in a 

rectangular cavity subjected to a magnetic field and an internal heat source. They discovered that 

the fluid circulation, thermal, and diffusive transport rates inside the hollow decreased with 

increasing magnetic field influence. Kumar et al. [19] describe the results of their study of thermal 

and diffusive transport in a 2D MHD free convection process taking into account the Soret and 

Dufour effects. The procedure takes place in a Darcy porous container filled with a thermal and 

mass fluid that has been stratified. The MHD behaviour of mixed convection heat transfer was 

investigated in a hexagonal cavity by Ali et al. [20]. The cavity's horizontal walls were held at a 

steady temperature while the slanted ones were heated. Gireesha et al.[21] studied the natural 

convection heat transfer of the moving porous radial fin with radiation effects. The governing 
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equations were solved using shooting technique. The found heat transfer enhanced for the 

increment of the convective parameter. 

In many disciplines of applied science and engineering technology, such as geophysical systems, 

the phenomenon of natural convection in cavities plays a vital role [22-24], performance of solar 

energy collectors [25], fire dynamics [26], design of bioreactor [27], fabrication of crystal [28] and 

the enclosure might have a variety of shapes, including rectangular, circular, elliptical, annular, 

triangular, or ones with more complicated geometries. Recently, issues with natural convection in 

the enclosure under various temperature circumstances have caught the attention of researchers. 

Sarris et al. [29] examined the natural convection in a confined chamber while taking the top wall's 

sinusoidal temperature into consideration and treating the other walls as insulated. Bahmani and 

Kargarsharifabad [30-32] conducted a study on natural convection of power-law fluids with 

laminar flow across a flat plated that is heated horizontally. It was discovered that for Pr<1, a 

decrease in viscosity index leads to increase in wall skin friction, thermal boundary layer thickness, 

resulting in a lower Nusselt number. The opposite patterns is observed for Pr>1. Shahzad et al.[33] 

investigated the mathematical study of natural convection energy transport in a trapezoidal 

enclosure caused by the combined buoyancy effects of thermal and solutal diffusion. Umair et 

al.[34] studied the double diffusive natural convection heat transfer in a waver cavity by a non-

Newtonian Casson fluid. They used FEM to discretize and solved the systems of equation. Chamka 

et al. [35] investigate the entropy generation resulting from the combined effects of MHD mixed 

convection flow in a gamma shaped enclosure. They found that the presence of nano particles 

enhance the heat transmission with in the enclosure. Further investigation on natural convection 

flow can be seen in articles [36-38] and references therein. 

An extensive examination of scientific studies highlights a significant lack of study in the 

investigation of diffusion phenomena when subjected to heat and solutal buoyancy forces. 

Remarkably, this specific component has received minimal attention, emphasizing the need for 

additional research and comprehension in this domain. The objective of this study is to examine 

the fluid dynamics, as well as the characteristics of mass and heat transmission, within a triangular 

enclosure containing elliptic obstacle. Next section provides a comprehensive explanation of 

problem formulation and mathematical modeling. Third section provides the solution to the 

problem, accuracy and effectiveness of the suggested methodology. The study’s findings are 

presented in fourth section though the use of streamlines, isotherms and iso-concentration patterns. 

Last section provides a concise overview and evaluation of the analysis and finding of the study. 

Mathematical Formulation 

The physical real problem geometry is shown in Figure 1. Let's consider about the laminar, 

incompressible, 2-dimension viscous fluid’s flow in a certain enclosure. Magnetic field B0 

enforced by an angle γ on horizontal plane. Heat is applied to the cavity's bottom wall at a high 

concentration (Ch) and constant temperature (Th). While right and left boundaries are supposed to 

be cool (Tc) and have less concentration (Cc), respectively. The remainder enclosure is supposed 

to be adiabatic heated. 
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Laminar flow, two-dimensional, steady and incompressible are the assumed characteristics. The 

fluid magneto hydrodynamic motion is appropriate to described using the Navier-Stokes 

equations. 
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The problem’s relevant boundary conditions 

0, 0, ,h hu v c c T T            at Hot side 

0, ,c cu v c c T T                 at Cold wall 

0, 0
c T

u v
m m
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   

 
            at Rest of the side 

(6) 

 

Where 

 2 2

0 sin sin cosxF B u v     
 (7) 

     2 2

0 cos sin cosy c c T cF B v u g c c T T                

 

For boundary condition m represents the normal vector. In order to investigate the influence of 

relevant parameters, all of these equations are converted into dimensionless form. The following 

parameters are used to turn equation (1-7) into dimensionless form. 
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By putting equation (8) in equation (1-7), set of ordinary non-linear difference is acquired 
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The boundary values condition’s dimensionless form 

0, 0, 1, 1 at Hot side

0, 0, 0 at cold side

0, 0, 0 at Rest of theside
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Where 
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The Nusselt number (Nu), average Nusselt number (Nuavg), Sherwood number(𝑆ℎ), average 

Sherwood number(𝑆ℎ𝑎𝑣𝑔) and kinetic energy(𝐾. 𝐸) on the hot side in triangular cavity can be 

defined as 
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Solution Methodology 

The equations (9-14) are highly nonlinear and cannot be solved analytically. In order to tackle the 

nonlinear discrete system of equations, the Newton method is used in conjunction with a direct 

solver called PARDISO. PARDISO utilizes the LU factorization, which helps to minimize the 

amount of cycles needed to achieve the desired level of convergence. The iterative process for 

dealing with non-linearity ceased after certain threshold factor is verified. The detail methodology 

is explained in the articles [34, 39-41] and references therein.  

Weak formulation: 

The given expression represents the weak form of equations (9)-(14) 
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In order to obtain a numerical approximation, we compare the solutions obtained from continuous 

and discrete methods within finite dimensional sub-spaces 
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Using equation 28 into above equation the discrete version is as follow 
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For discrete solution the basic function is as follow 
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The parameters retain their typical definitions, and in order to obtain the solution, the non-linear 

system is iteratively processed until a certain threshold of tolerance is reached. 

Grid convergence 

Several grids were used for 51,  10 ,  15Le Ra Ha    and 6.8Pr   to demonstrate the result’s 

efficacy (table 1). Both the total number of elements (#EL) and the number of degrees of freedom 

(DOFs) ranged anywhere from 396 to 20908 correspondingly and from 4662 all the way up to 

193600 respectively. Following an examination of the average Nusselt number, for the two grids 

(L8 and L9), it was discovered that there was hardly any variation between them. As a result, there 

was grid independence supplied by 157798 DOF and 16696 #EL, and the results that were reported 
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are based on these values. Figure 1b depicts the largest mesh size that was used for this 

investigation. For this study, the coarsest mesh size is shown in Fig.1b. 

Code validation 

After grid independence is achieved, we reproduced existing results of Oztop and Abu-Nada [41]. 

Fig. 2 shows the agreement between the two isotherms, demonstrating that our data is reliable and 

can be trusted. 

Discussion and Result 

Being compared to a wide variety of pertinent physical factors, such as the Rayleigh number (𝑅𝑎), 

Hartmann number (𝐻𝑎), and Lewis number (𝐿𝑒), the interpretation of the data is displayed in the 

form of concentration distribution, streamlines and isotherms. The mass flux coefficient, heat flux 

coefficient, and K.E are additional global and local parameters that are determined. 

Impacts of Ha 

Table 2 illustrates how Ha affects, the heat and mass transfer rate  4 5 6   10 ,  10 ,   10for Ra and  

respectively. Heat and mass transfer rate reduces for increasing values of Hartmann number which 

indicate the reduction in velocity of the system. The impact of Rayleigh number on heat and mass 

transfer rate is opposite to that of Hartman number hence increasing hence increase Ra increases 

the velocity inside the enclosure. The effects of Ha on streamline, isothermal, and iso-

concentration contours are shown in Fig. 3. It clearly shows that the intensity of streamline 

circulation decreases as 𝐻𝑎 values increase. Furthermore, it is evident that the thickness of the 

thermal boundary layer reduces as 𝐻𝑎 increases. On the other hand, at lower boundary wall, 

circulation strength rises with rising 𝐻𝑎, and the thermal boundary layer is thicker. 

Impact of Rayleigh number 

Table 2 illustrates how Rayleigh number (𝑅𝑎)  affects, the heat and mass transfer rate

)0 ,  30 ,   60( o o oand       respectively. Heat and mass transfer rate increases for increasing 

values of 𝑅𝑎. Higher Ra values result in smoother isothermal and isoconcentration contours and a 

sharper streamline at the triangle's slope, as seen in Fig. 4. The inverse effect is observed for 

isothermal and isoconcentration contours. Also, heat and mass transfer rate has maximum value at 

30o   and its values reduces for 0o   and 60o   (see Table 3.). 
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Impact of Lewis number 

Table 4 illustrates how Lewis number (𝐿𝑒) affects, the heat and mass transfer rate (for 

4 5  10 ,  10 ,Ra   and 106) respectively. Lewis number has different impact on heat transfer rate. 

Heat transfer rate for 
410Ra    increases from 0.1 7.5Le   then decreases. Nusselt number for 

510Ra   increases from 0.1 5Le   then decreases. For large values of Rayleigh number 

610Ra  , heat transfer rate decreases for variation in 𝐿𝑒. Sherwood number has dominated effect 

on mass transfer rate. Mass transfer rate increases for increasing values of 𝐿𝑒. Fig. 5 describe the 

iso-concentration, isotherms, and streamlines for varying 𝐿𝑒. As 𝐿𝑒 increases, the streamlines 

become more strongly circulated. The isoconcentration and isothermal contours are forced towards 

wall’s lower side, while in lower section of the tri-angular cavity their contours show more 

concentration. 

A 3D view of concentration for variation in Lewis number is shown in Fig. 6. The figure clearly 

shows that for 0.1Le   , the concentration is highest at the bottom; as Le grows, the concentration 

inside the enclosure rises correspondingly. 

Fig.7 shows the impact of Hartmann number on velocity, concentration and temperature. Due to 

the Lorentz force's there is increase in resistance that decreased the velocity. While, heat and 

concentration increases with increasing values of 𝐻𝑎.  

Fig. 8 shows effect by Le on velocity, concentration and temperature. As 𝐿𝑒 increases, velocity 

and concentration decrease, while temperature remains relatively unchanged. 

The impact of Rayleigh number (𝑅𝑎) on concentration, temperature and velocity. profiles are 

depicted in Fig. 9. The is increase in velocity for increasing values of 𝑅𝑎, but the temperature 

profile and the right and left side's concentration profile exhibit random disruption on the bottom 

wall. 

The heat (a) and mass (b) transfer rate versus Hartmann number for variation in 𝑅𝑎 for 

( 30 , 1, Pr 6.8)
o

N     is plotted in Fig. (10). The heat and mass transfer has maximum values 

for pure hydrodynamic case ( 0)Ha  . When the value of Hartmann number increases the heat 

and mass transfer rate starts decreasing.  

Table 5 shows the average kinetic energy changing for variation in Hartmann number, magnetic 

field inclination angle and Lewis number. K.E decreases for increasing values of 𝐻𝑎 and have 
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increasing trend for 𝐿𝑒. At 610Ra  , and 0Ha  , the K.E is enhanced by a factor of 2257 

compared to 
4

10Ra   and 0Ha  .  

Conclusion 

In the current communication, a triangular enclosure with uniform concentration and thermal 

distributions is studied for viscous flow by Double Diffusive Natural Convection. To prevent 

singularity development in the computational domain, fillets are employed at the cavity's corners. 

Governing equations for the problem are formulated in dimensionless form and solved by applying 

finite element procedures. The resulting momentum, temperature, and concentrate distributions, 

as well as the isothermal and iso-concentration patterns, all exhibit modifications as a result of the 

numerical simulation. Also, as a function of the relevant physical parameters, variables of 

engineering importance including local heat, kinetic energy, and mass flow coefficients are 

calculated. The key findings are summarized as. 

 Velocity is maximum for pure hydrodynamic case ( 0)Ha  , but for variation in 

Hartmann number it decreases. Hence, concentration and temperature profiles 

decreases. 

 For 
4

10Ra   streamlines patterns shows the flow is dominant near bottom wall but 

for the variation in Rayleigh number streamlines are equally distributed in the 

whole enclosure around the elliptic obstacle, which clearly indicates the increase in 

velocity. Rayleigh number enhances the heat and mass transfer rate significantly.  

 There is no noticeable alteration in streamlines and isotherms for the variation in 

Lewis number since it is not directly related to momentum diffusivity. However, 

fluid concentration rises with in enclosure for variation in Le. 

 γ and Le significantly affect the Sherwood profiles and Nusselt number. 

In future research, the model being explored might be expanded to investigate entropy generation, 

micropolar fluids, nano and hybridnano fluids in various configurations.  
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𝑥 & 𝑦 x and y coordinate (m) 𝑋 & 𝑌 X and Y coordinate  

𝑝 Fluid Pressure (Pa) 𝑃 Fluid Pressure 

𝑐 Concentration (𝐾𝑔.𝑚−3) 𝐶 Concentration 

𝑇 Temperature (K) 𝜃 Temperature 

u&v Velocity components along x &y U&V Velocity components along X&Y 

Symbols 

𝛾 Angle (Inclination) (rad) 𝐿𝑒 Lewis number 

𝜌 Fluid density (𝑘𝑔.𝑚−3) N Buoyancy ratio 

𝑔 Gravity (m/s) 𝑅𝑎 Rayleigh number 

𝐵 Magnetic Field (Tesla) 𝑃𝑟 Prandtl number 

𝐵0 Magnetic field strength (Tesla)  𝑆ℎ𝑎𝑣𝑔 Averaged Sherwood number 

𝑐𝑝 Specific Heat (𝐽. 𝐾𝑔−1. 𝐾−1) 𝑆ℎ Sherwood number (local) 

K.E Total Kinetic energy (J) 𝐷𝑂𝐹 Degree of freedom 

𝑇ℎ&𝑐ℎ High temperature & 

concentration 
#𝐸𝐿 Number of elements 

𝑇𝑐&𝑐𝑐 Low temperature and 

concentration 
𝑁𝑢 Nusselt number (local) 

𝜌 Fluid density 𝑁𝑢𝑎𝑣𝑔 Averaged Nusselt number 

𝜇 Kinematic viscosity Ha Hartmann number 

g gravity   
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Figure 1: Schematic diagram of the problem. 

(A) 

 

(B) 

 

Figure 2: (a) present (b) H.F. Oztop, E. Abu-Nada [41] (Isotherms) 

(a) 

 

(b) 

 

 

Table 1 - Grid independency test 

Grid #El DOF 𝑁𝑢𝑎𝑣𝑎 

L1 396 4662 3.1803 

L2 567 6498 3.2208 

L3 837 9252 3.2456 

L4 1405 14998 3.3016 

L5 1815 18993 3.3377 

L6 2786 28088 3.3523 

L7 6321 62139 3.4220 

L8 16696 157798 3.4612 

L9 20908 193600 3.4612 
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Figure 3. 5(  0,  10 ,  2.5)Ra Le     

Streamlines Isotherms Isoconcentration 

0Ha   

   
25Ha   

   
 50Ha   
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Figure 4: )0,  2.( 5,  20Le Ha      

Streamlines Isotherms Isoconcentration 

410Ra   

   

510Ra   

   

610Ra   
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Figure: 5 5( )20, 0, 10 ,  2.5Ha Ra Le     

Streamlines Isotherms Isoconcentration 
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Figure 6: Variation of concentration for various values of Le 

1Le   

 

2.5Le   

 

7Le   

 

Figure 7: Ha (0,25,50) effects on velocity, temperature and concentration 
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Figure 8:  Change in velocity, temperature and concentration for variation in Le (5,7,10). 

 

Figure 9:  Change in velocity, temperature and concentration for variation in Ra (104, 105, 106). 

 

Figure 10: Heat (a) and mass (b) transfer rate versus Hartmann number for variation in 𝑅𝑎 

(104, 105, 106) 

(a)     (b) 
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Table.2 Change in heat and mass transfer for variations in Ha.  0,  2.5,  6.8Le Pr     

 Heat transfer rate (𝑁𝑢) Mass transfer rate (𝑆ℎ) 
𝐻𝑎 410Ra   510Ra   610Ra   410Ra   510Ra   610Ra   
0 1.62870 3.61027 8.788238 1.792794 5.935344 12.41775 

25 1.608398 2.981206 8.293355 1.670083 5.00928 11.96894 

50 1.600288 2.176384 7.133760 1.613821 3.540247 10.93293 

75 1.598985 1.804213 5.823254 1.602478 2.552625 9.541713 

100 1.598809 1.669447 4.684678 1.599763 2.010336 8.049433 

 

Table.3 Change in heat and mass transfer for variations in γ.  0, 2.5,  6.8Ha Le Pr    

 Rate of heat transfer Rate of mass transfer 

𝑅𝑎 0o   30o   60o   0o   30o   60o   

104 1.6125 1.6186 1.6179 1.6956 1.7311 1.7273 

105 3.1711 3.7130 3.8050 5.3041 5.4753 5.6842 

106 8.4614 8.0395 8.1563 12.118 11.495 11.603 

 

Table.4 Change in heat and mass transfer for variation in 𝐿𝑒. ( 20, 30 , 6.8)oHa Pr    

 Heat transfer rate (𝑁𝑢) Mass transfer rate (Sh) 

Le 410Ra   510Ra   610Ra   410Ra   510Ra   610Ra   

0.1 1.6084 2.9367 9.1403 1.5991 1.6188 2.7694 

2 1.6147 3.2450 8.6063 1.6686 4.8061 11.309 

5 1.6556 3.0111 8.1277 2.5945 7.2863 15.064 

7.5 1.6581 2.8849 7.9453 3.2562 8.4941 17.127 

10 1.6525 2.7977 7.8295 3.7002 9.3768 18.773 

 

Table 5. Numerical values of Kinetic energy for the variation of Ha, φ and γ. 

Ra 0 25 50Ha Ha Ha  │ │  0 30 60o o o    │ │ │  0.1 2 5Le Le Le  │ │  

104 ⟨2.826490|0.953089|0.213979⟩ ⟨2.1048|2.4082|2.1807⟩ ⟨1.4268|2.0934|4.8608⟩ 
105 ⟨300.2700|160.526|50.76216⟩ ⟨311.51|453.93|432.92⟩ ⟨264.39|319.48|241.34⟩ 
106 ⟨6381.706|4344.643|2152.520⟩ ⟨7411.3|7032.3|6902.1⟩ ⟨19674|7610.2|5948.1⟩ 

 


