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Abstract 

This study uses an elastic-perfectly plastic single degree of freedom (SDOF) system to 

investigate reaction of machinery-supporting foundations to harmonic and pulse loads. An 

exponentially decaying pulse is used and applied to an already operating machine foundation 

which may experience an emergency shutdown due to extreme loading. Based on response at 

end of positive phase of pulse, two cases are analyzed. The governing equations are derived 

and solved numerically. Random response of SDOF system, before vibrations die out, can be 

observed due to the interaction of the two different loadings. Overestimation of the response 

for zero decay coefficient, b representing a triangular pulse, is noted. The absolute maximum 

displacement, influenced by the negative phase, changes by approximately 10-11% as the mass 

increases from 180 tons to 220 tons. Stiffness of the system and damping ratio affected the 

response to maximum extent. For various input parameters considered, displacement reduces 

by an order of 73% with increase in stiffness and by about 65% when damping ratio increased. 

The results indicate that negative phase of pulse loading has significant impact, particularly on 

less stiff and less damped systems. 



2 
 

 

Keywords: Machine foundation, harmonic loading, pulse loading, variable frequency, SDOF 

system, elastic-perfectly plastic (EPP) response, emergency shutdown. 

 

1. Introduction 

Many industrial machines require foundations that support reciprocating, impulsive, or rotary 

equipment. Foundations for these machines are exposed to dynamic loads beside static loads, 

where the dynamic loads acting due to the unbalanced forces, or inertia from the moving 

masses, arise during the operation of the machine. If not designed properly, the foundation-soil 

system experiences significant vibrations that can influence functioning of the machine and 

harm the people working nearby. Thus, designing these foundations aims to limit their 

amplitude within acceptable tolerances [1]. Throughout the years, various researchers have 

analyzed the response of machine foundations under the action of dynamic loadings [2-19].   

An explosion due to mining, quarrying, or due to vibration transmission from another 

foundation supporting machinery in the vicinity [7, 20] may inflict significant loading in 

addition to the dynamic loads due to the operation of the machine. Apart from this, structures 

may also be subjected to seismic events where the response may be influenced by pulse-like 

ground motions [21-24]. Consequently, the foundation system may experience excessive 

vibrations, leading to an emergency shutdown of the machine. In addition, the behavior of the 

soil-foundation system will also change. Therefore, the dynamic response analysis to the 

interaction of harmonic and detonation (pulse like) loadings must be addressed for the 

efficacious design of these foundations. 

An explosion rapidly releases energy, compressing the surrounding air and generating a 

forward-moving wave. This blast wave experiences a swift pressure increase that quickly drops 

to zero (compression or positive phase) and then falls below zero (suction or negative phase) 
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before returning to equilibrium. For simplification, various researchers have modeled it as a 

triangular pulse that decays linearly, neglecting its negative phase [25-30]. However, the actual 

behaviour is described using the nonlinear exponentially decaying function. Many researchers 

such as Li and Meng [31], Wei and Dharani [32], Teich and Gebbeken [33], Bryant et al. [34], 

Rigby et al. [35], Alisjahbana et al. [36], Maheshwari and Yadav [37], and Samanta and 

Maheshwari [38] emphasized on the importance of suction phase of pulse loading in the 

analysis of such systems.  

Considering the extreme loading conditions during an explosion, the behaviour of the system 

cannot be regarded as elastic, and hence, over the years, several researchers have also 

investigated its elasto-plastic behaviour. Li and Meng [31] used rectangular, triangular, and 

exponential forms of pulse loading to analyse the response of an elastic-perfectly plastic (EPP) 

single degree of freedom (SDOF) structural system. Gantes and Pnevmatikos [39] studied the 

influence of the shape of the blast load-profile curve on the response of structures with the help 

of elastic-plastic response spectra. It was concluded that the triangular load-profile curve gives 

un-conservative results for flexible structures and over-conservative results for stiffer structural 

systems. Li et al. [26] computed an equivalent static force for an EPP-SDOF system to design 

RC frame structures subjected to blast loading. Rigby et al. [40] also employed similar system 

to obtain the response spectra for blast loads and used the linear acceleration explicit dynamics 

method to derive the dynamic equations of motion. Zheng et al. [41] used an elastic-plastic 

model to analyse stiffened plates subjected to blast loads. Most of these studies emphasize the 

effects of blast on the response analysis of structures or structural components. Few studies 

were conducted to investigate the impact of the blast loading on the dynamic response of elasto-

plastic foundation systems [42-44]. Furthermore, fewer attempts have been made to investigate 

the analysis of how machine foundation systems respond elastically and plastically to blast 

loads [27, 38, 45, 46].  
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As previously mentioned, owing to the excessive vibration of the machine during an extreme 

loading condition, the machine may experience an emergency shutdown. Maheshwari and 

Naramsetti [27] and Samanta and Maheshwari [38] assumed that the machine would stop 

immediately if the system entered the plastic stage, which may be during or after the duration 

of blast loading. This may not be the case in reality. Whenever a machine experiences an 

emergency shutdown, it stops gradually with varying frequency [47]. Samanta and Maheshwari 

[45] attempted for such a situation, however, did not address the issue especially for EPP 

systems. 

Keeping the above-stated points in mind, this study uses an elastic-perfectly plastic single 

degree of freedom (EPP-SDOF) system to analyse the response of an already operating 

machine foundation to the extreme loading condition. An exponentially decaying pulse 

capturing both the compressive (positive) and suction (negative) stages is used to idealize this 

loading. Upon entering the plastic region, it is expected that the machine will gradually come 

to a stop, with the exciting frequency exponentially decreasing until it eventually dissipates, 

thus addressing the gap in the existing literature. This study focuses on assessing the machine’s 

behaviour during an emergency shutdown due to the extreme conditions of a blast. Two cases 

based on the positive phase duration, td are considered. Based on this, the governing dynamic 

equations are formulated and solved numerically with the help of fourth-order Runge-Kutta 

method. Subsequently, these solutions are used to compare pulse loading with varying extent 

of negative / suction phase and to emphasize its influence on the response of the machine-

foundation system.  

The analytical model for an EPP-SDOF system is formulated in the following section, along 

with the methodology for its solution in terms of displacement-time relationships. Emphasis is 

given to the influence of the varying extent of the suction stage of pulse during the emergency 

shutdown of the machine. A parametric study considering the effect of the mass of the machine 
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and foundation block, peak pulse magnitude, stiffness, frequency ratio, and damping ratio on 

the response of the SDOF system is conducted. 

 

2. Modeling of Soil-Foundation System 

A mass-spring-dashpot SDOF model is used to represent a machine foundation system 

vibrating in the vertical direction due to operation of machine. The governing dynamic equation 

of motion used to describe the SDOF system is given as, 

                                                           t, sinP=kx(t)+(t)xc+(t)xm     (1) 

Here, m represents the mass of the machine and foundation block, c denotes the coefficient of 

viscous damping, and the equivalent spring constant k corresponds to the elastic resistance of 

the soil. P is the amplitude of the externally applied dynamic force originating from the 

machine's operating condition with ω as its exciting frequency. Displacement, velocity, and 

acceleration functions are given by x(t), ẋ(t), ẍ(t), respectively. It is assumed that the water 

table is situated below the level of the foundation, and the SDOF system is analysed for an 

underdamped case.  

The analysis is conducted for a case where an explosion occurs at a significant distance from 

the foundation when the machine is under its operating conditions. There may be significant 

deformations without any physical damage to the system which will also depend upon the 

magnitude and distance of the blast from the target source. The pulse, idealizing the extreme 

loading, is applied directly to the foundation system, thus ignoring the effects due to 

propagation of waves as a consequence of the blast.  

The blast load is modelled as a pulse having exponential decay function with a peak load Fo 

considering both the compression and suction stages. Both these stages are represented by the 

modified Friedlander's equation, as described by eq. (2) and shown in Fig. 1, which depends 
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on the time t, calculated from the onset of the pulse loading to the reference point [39, 48, 49, 

50]. The equation is given as follows, 

dt
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where td is the duration of the positive phase of pulse load, and b, the decay coefficient that 

determines the rate of decrease of load. The parameter b will always be greater than zero for a 

pulse with exponential decay function, where the extent of the suction stage depends on its 

specific values. b = 0 implies a particular case of triangular loading. 

A bilinear resistance function representing the elastic-perfectly plastic SDOF system, as 

displayed in Fig. 2, comprises of four sections: (i) linear response with constant stiffness k till 

the elastic limit xel, (ii) plastic response from the elastic limit xel until the occurrence of 

maximum displacement xm, characterized by a constant resistance Rm, (iii) unloading with the 

stiffness k till “resistance” -Rm is reached, and (iv) plasticity in rebounding with a “resistance” 

-Rm, till the maximum displacement xm
' is obtained. These sections can be presented 

mathematically as follows, 
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These four sections form a full cycle, after which another cycle with four alike sections will 

commence and can be approached in a similar manner. Owing to the shape and short duration 

of the pulse loading, the maximum displacement of the SDOF system will primarily be 

obtained from the first cycle. Further, there will be no any change in the damping 

characteristics.  
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3. Analysis 

The machine foundation system subjected to harmonic and pulse loading may behave 

elastically, wherein it experiences a jerk due to the pulse and starts vibrating in its operating 

condition [27]. However, for extreme loading conditions, the implementation of elastic-plastic 

analysis is more realistic. Also, excessive vibration of the machine during a blast may lead to 

an emergency shutdown. When the response of the foundation system enters the plastic region, 

an assumption is made that the machine will gradually stop operating with time with a 

frequency that varies exponentially. 

The following equation gives the expressions for varying operating frequency of the machine 

with respect to time t,  



t

1 e



           (4) 

where ω is the initial value of the frequency at which the machine operates; τ is the time 

constant that influences the rate of decrease of operating frequency with time.  

Eq. (4) suggests lower values of τ cause rapid decay of operating frequency to zero. The 

exponent in eq. (4) should always have a value less than zero to ensure that the system is stable 

and the frequency reduces with time. Having an exponent greater than zero causes the system 

to become unstable, as the frequency increases over time, which does not accurately represent 

an emergency shutdown condition. 

 

3.1 Cases considered for the study 

The dynamic analysis of the EPP-SDOF system is carried out and solutions for the governing 

equations of motion are derived. The system undergoes elastic vibration when subjected to a 

harmonic load from time t = 0. At time t = t1, a pulse having positive phase duration, td (Fig. 1) 

is applied to the system. tel represents the time at which the system enters the plastic domain. 

The corresponding displacements of the SDOF system are given by xt1, xtd, and xel respectively. 
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The system is assumed to experience an emergency shutdown when plasticity is mobilized. 

Further, it is also assumed that the maximum displacement xm occurs after the time duration td 

[26, 27]. Two cases of analysis are considered based on relative values of xtd and xel and are 

explained below,  

i. Case 1: xtd < xel (Fig. 3(a)): Duration of compression stage of pulse (t1 to td) gets over 

in elastic region, i.e., tel > td. While the system is still in the elastic region, the pulse 

loading hits and the system then vibrates under its normal operating condition till the 

end of its elastic state represented by t = tel. Subsequently, upon entering the plastic 

region, the machine experiences an emergency shutdown and its operating frequency 

disappears with time following an exponentially reducing function. 

ii. Case 2: xtd > xel (Fig. 3(b)): The system undergoes a transition from the elastic to the 

plastic region during the compression stage of pulse, i.e., t1 < tel < td. Harmonic loading 

will still act upon the system on entering the plastic domain but with a varying operating 

frequency that will eventually disappear with time. 

 

For the two cases, the governing equations of motion are similar; however, the initial conditions 

differ. These equations of motion are given as follows, 
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where, tm corresponds to the time when displacement achieves a maxima xm, as obtained in 

section 2 of Fig. 2. trb denotes the time at the end of the elastic rebounding stage where the 

corresponding displacement is x = xm – 2xel (section 3 of Fig. 2). tm
' represents the time when 

displacement attains xm
' in section 4 (Fig. 2) due to the effect of the suction phase in exponential 

loading. The absolute maximum displacement of the system can be either of xm or xm', 

analogous to the first plastic stage and the plastic stage during rebound, respectively. 

Following this, the system will behave in an elastic manner under the effect of decaying 

operating frequency of the machine, frequency of SDOF system, and initial conditions at the 

end of section 4 of Fig. 2.  

The system might complete all four sections for the exponential loading, thus completing one 

cycle (Fig. 2). This will depend on the characteristics of the pulse (such as pulse shape, 

duration, and magnitude), all of which will be further exemplified in the upcoming sections. 

Numerical differentiation techniques are employed to solve these dynamic equations of motion 

by applying the fourth-order Runge-Kutta method, which is widely used in solving the initial 

value problems for ordinary differential equations [51]. 

 

3.2 Procedure for solving the dynamic equations of motion using the Runge-Kutta method 

The order of differential equation ẍ(t) = f (t, x, ẋ(t)) is transformed from two to one by writing 

z  (t)x  and the resulting equations are as given below,  

     ,zx,t,f z  (t)x  and  zx,t, z )t(x          (6) 
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Conditions at time, to: x(to) = xo, z(to) = zo       (7)                                                                                      

Eq. (6) and conditions given by eq. (7) are employed to obtain the solutions for the equations 

corresponding to different chosen values of t.  

In this study, initial conditions, i.e., the velocity and displacement at t = 0, are considered as 

zero for eq. (5a). For eqs. (5b-e), the velocity and displacement functions obtained at the end 

of previous time range, will be the primary conditions for the succeeding equation. ẋt1 and xt1, 

the velocity and displacement functions at time t = t1 (from eq. 5a), are applied as the primary 

conditions for eq. (5b). Hence, the solution for the corresponding displacement x1 and velocity 

z1, at time t1 can be computed by the formula,  
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Using k1, k2, k3, k4 for f (t, x, z) and l1, l2, l3, l4 for ϕ (t, x, z), Runge-Kutta expression develops 

into the following, 

   

   .lz,kxh,thl               .lz,kxh,thfk

  ,l
2

1
z,k

2

1
xh,

2

1
thl    ,l

2

1
z,k

2

1
xh,

2

1
thfk

 ,l
2

1
z,k

2

1
xh,

2

1
thl     ,l

2

1
z,k

2

1
xh,

2

1
thfk

    ,z,x,thl                                    ,z,x,thfk

3o3oo43o3oo4

2o2oo32o2oo3

1o1oo21o1oo2

ooo1ooo1



















































 

Where to, xo and zo are the known initial conditions for the respective equation. The increment 

of the displacement x at each step is given by k, and the increment for velocity z is l, 

corresponding to the increment of the time t as h. A smaller step size h is chosen for more 

accurate results. To achieve the desired efficiency first, an interval h is chosen and the values 

of x and ẋ are computed. Value of h is then halved and x and ẋ are computed simultaneously. 

Then error E is estimated following eq. (9) and compared with a tolerance ε (=10-3). For E ≤ ε, 

the step size h is adopted which is halved for the case if E ≥ ε. 
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Accordingly, the step sizes are chosen between 0.0001 to 0.005 so that peaks of time-

displacement history are captured properly. Replacement of to, xo, zo in eq. (8) with t1, x1, z1 

provides responses for the next time increment.  

The solution for eq. (5a) is obtained by using the following equation and its initial conditions 

in the Runge Kutta expression eq. (8), for chosen values of the time t,    
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Initial conditions: .0)0(z,0)0(x   

Similarly, eq. (5b) is solved by employing the following equation and its initial condition,    
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Consecutively for eq. (5c), the following equation and its initial condition are used, 
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Likewise, the following equation and its initial condition are employed for eq. (5d), 
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Initial conditions: .0)t(z,x)t(x mmm   

For eq. (5e), the following equation and its initial condition are used, 
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The methodology is confirmed using studies from the existing literature and presented in the 

subsequent section. Thereafter, time-displacement histories are acquired for the cases 

mentioned above to investigate the response of the SDOF system. 

 

4. Validation of the Study 

The response of the SDOF system to the exponentially varying pulse loading is validated by 

the Gantes and Pnevmatikos [39] as shown in Fig. 4. Gantes and Pnevmatikos [39] analyzed 

an elastic-perfectly plastic SDOF system for a time period T = 1 s. They used blast arrival time 

as zero and the response was reported as x/xel with td = 0.2 s. The harmonic loading is 

considered as zero for the present work, and other input parameters from Gantes and 

Pnevmatikos [39] are used. The maximum response is obtained as x/xel = 1.37, identical to that 

documented by Gantes and Pnevmatikos [39]. 

Further, an attempt is also made to compare the findings of present study with experimental 

results available in the literature. To address this, reference is made to an experimental study 

conducted by Surapreddi and Ghosh [13]. For comparison a special case of present work, in 

the absence of pulse loading, is considered. Results exhibit strong concordance near the 

resonance. For eccentric force setting of 0.090, 0.134, 0.172 N-sec2, the amplitudes of vertical 

displacement are found to be 0.563, 0.707, and 0.861 mm from the present study as against 

0.566, 0.706, and 0.860 mm from Surapreddi and Ghosh [13], respectively.  
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5. Results and Discussion 

The governing equations of motion for the two cases are simulated to obtain displacement-time 

graphs for various parameters to analyze the response of the SDOF system to complex loading 

as discussed above. The study incorporates input parameters sourced from existing literature, 

detailed in Table 1. A positive phase duration of 0.005 s and 0.01 s are chosen for Case 1 and 

Case 2, respectively [8, 35]. The SDOF system's response is comparable in both cases, albeit 

with higher displacement magnitudes observed in Case 2. This phenomenon is attributed to the 

system transitioning from the elastic to plastic region during the pulse, coupled with a longer 

duration of the positive phase in Case 2. The possibility of resonance is not considered in this 

study. The results obtained are presented in this section by means of displacement-time plots. 

 

5.1 Influence of time constant, τ 

The influence of τ for b equal to unity for Case 1 and Case 2 is depicted in Figs. 5 and 6, 

respectively. The machine operates in elastic domain under the influence of only harmonic 

loading till 3 s. The response shoots up due to the application of the pulse and the system enters 

the plastic stage. Concurrently, there is a gradual decline in the operational frequency, which 

diminishes over time based on the specified time constant. The system enters the plasticity 

region twice, thus completing an entire cycle (Fig. 2), and then performs with varying 

operational frequency of the machine which eventually dies out.  

Appropriate values of τ are adopted from speed vs. time curves after shutdown as provided by 

Kurz et al. [47] for various types of machines. As the value of the time constant increases, the 

machine operates for a longer time with an exponentially decreasing frequency before finally 

coming to a halt. In other words, higher the value of τ, longer the machine will vibrate before 

it ceases to operate. The machine will vibrate for about 200 s, 800 s, and 1800 s for τ values of 

10 s, 40 s, and 100 s, respectively before ultimately coming to a stop, for the set of input 
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parameters given in Figs. 5 and 6. The response gets random during the rebounding after the 

second plastic stage between the time instance between 3.5 to 5 s. This randomness in the 

response is attributed to the interaction of the pulse and harmonic loads with varying exciting 

frequency.  

 

5.2 Influence of the decay coefficient, b  

Decay coefficient, b is a non-dimensional parameter influencing the shape of pulse and the 

magnitude of the suction phase, as depicted in Fig. 1. Greater extent of the suction/negative 

phase signifies that b < 1. In this study, various values of b ranging from 0 to 3 are selected. 

Specifically, b = 0 corresponds to a triangular profile, b = 0.8 represents a load profile with a 

more pronounced suction phase, b = 1 reflects a load profile validated experimentally by 

Jacinto et al. [52], and b = 2 and b = 3 are included for comparative purposes. The results are 

presented for both cases of analysis in Fig. 7. The maximum response for the triangular 

distribution of pulse loading is much higher than the exponential loading because of the faster 

decay of the exponential distribution of pulse loading than the triangular one. 

The system with values of b = 0.8 and 1 undergoes elastic behaviour followed by plastic 

behaviour where the first peak response xm is obtained. Subsequently, the system rebounds and 

attains the second peak response xm
', completing one entire cycle (Fig. 2). The system then 

vibrates elastically with random vibration which dies out with time. 

The second peak displacement may take either negative or positive values as per properties of 

the pulse. It is evident from Fig. 7 that the second peak displacement is more pronounced than 

the first peak displacement when compared in its absolute values for b less than unity. This is 

ascribed to the impact of the suction phase during elastic rebounding. Similar behavior is also 

observed with reference to response of various structural components as presented by Wei and 

Dharani [32] and Aune et al. [53]. 
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For b = 2 and b = 3, the system reaches its first peak xm immediately following the compressive 

phase td of the pulse and subsequently undergoes elastic motion without transitioning back into 

the plastic deformation stage. This behavior may be due to the diminishing influence of the 

suction phase for values of b > 1. Likewise, in the absence of a negative phase for b = 0, the 

system obtains its maximum displacement after the positive phase duration and does not enter 

the plasticity stage again. The table presents the maxima of displacement magnitude for various 

values of b (decay coefficient), as detailed in Table 2. 

Fig. 7 and Table 2 suggest that the response is significantly overestimated in case of a triangular 

pulse (b = 0). The exponentially decaying pulse, taking into account both the positive and 

negative phases, provides a more realistic way of modeling the extreme loading conditions.  

Subsequently, the impact of the suction phase on the response of the SDOF system is examined 

through a parametric analysis. The effect of different parameters is evaluated by calculating 

the displacement response using the dynamic equations of motion provided and presenting the 

time-displacement graphs (Figs. 8-12). Various parameters include mass of the machine and 

foundation block, peak pulse magnitude, stiffness, frequency ratio, and damping ratio. The 

value of the decay coefficient is chosen as 0.8 throughout the parametric study to illustrate the 

impact of the suction phase of the pulse. The modulus of maximum displacement of the SDOF 

system could be any of two peak displacements, viz., xm corresponding to the compressive 

phase of pulse and xm' due to the suction stage of the pulse. Results from the parametric study 

are quantified, expressed in terms of the absolute maximum displacement, and presented in 

subsequent sections. 

 

5.3 Influence of mass of the machine and foundation block, m 

Fig. 8 depicts effect of parameter, m on the response of SDOF system. As the mass varies, a 

phase difference in the response is noted during the elastic vibration stage. The system's 
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response is higher for Case 2 compared to Case 1 owing to its transition from elastic to plastic 

state during the pulse and also due to the longer compressive pulse for Case 2. On account of 

increase in the inertial force with increase in mass, the maximum displacements (both xm and 

xm') decrease for Case 2 (Fig. 8b). However, for Case 1, the first peak xm decreases with the 

increase in mass, and the second peak xm' increases with increase in mass, due to the 

combination of negative pulse and elastic rebounding (Fig. 8a). For better clarity, absolute 

values of peak displacement are presented in Table 3 and it can be observed that the absolute 

values of xm' are significantly higher than those of xm, highlighting the impact of the suction 

stage of the pulse. The modulus of xm' resulted from the impact of the suction phase, increases 

by 11% for Case 1, and decreases by 10% for Case 2 with as parameter, m changes from 180 t 

to 220 t.  

 

5.4 Impact of peak pulse load magnitude, Fo 

The maximum displacement of the system shows an increasing trend with the rise in parameter, 

Fo, as shown in Fig. 9. The results are also presented in Table 4 in terms of peak displacements. 

The displacement xm', occurring in the second plastic stage, is significantly higher than xm, 

which occurs in the first plastic stage. xm' increases by about 43% and 24%, respectively, for 

Case 1 and Case 2 with the increase in peak magnitude of pulse, Fo from 900 kN to 1100 kN.  

 

5.5 Influence of stiffness, k 

The impact of stiffness on displacements is presented in Fig. 10 and maximum displacements 

are shown in Table 5. Displacements are bound to be higher for systems with low stiffness. 

Modulus value of displacement is reported to be reducing by approximately 64% and 73% 

respectively, for Cases 1 and 2, with an escalation in stiffness value from 100 kN/mm to 810 

kN/mm. Effect of the negative phase of pulse loading on the maximum response is more 
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prominent for low stiffness values, i.e., for relatively flexible systems. For Case 2, the absolute 

difference in the two peak displacements is found to be 2.416 mm, 1.733 mm, and 0.847 mm 

for stiffness values of 100 kN/mm, 200 kN/mm, and 810 kN/mm, respectively. 

 

5.6 Influence of frequency ratio, fr 

The frequency ratio is varied from 0.5 to 1.6, and respective results are depicted in Fig. 11. 

With the increase in fr from 0.5 to 0.7, the maximum responses of the system, xm and xm' 

increase marginally by about 4% (Case 1) and 3% (Case 2). However, with additional increase 

in the value of fr from 0.7 to 1.6, the maximum displacements are found to reduce by about 6% 

and 8% respectively, for Cases 1 and 2. There is minimal impact observed on the peak response 

with variations in frequency ratio, as indicated in Table 6. This is due to the reason that 

maximum response is obtained after the system transitions into the plastic domain where the 

exciting frequency gradually reduces.  

 

5.7 Influence of damping, ζ   

The damping ratio ranges from 0 to 25% and its impact on the response is presented in Fig. 12. 

On increasing ζ from 0 to 25%, a corresponding reduction of 54% (Case-1) and 66% (Case-2) 

in the absolute maximum displacement is observed. The time of occurrence of peak response 

also reduces for more damped system. Table 7 indicates that the effect of suction stage of pulse 

in terms of the second peak displacement is more predominant for the undamped system and 

systems with lower damping ratio values. The randomness in response of the system in 

rebounding stage due to the interaction of two loadings is not observed for the undamped 

system, which undergoes sinusoidal oscillations. 

The result of this study is presented under the combined influence of harmonic and pulse 

loading. This information can be utilized to design effective vibration mitigation measures [54], 
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particularly in scenarios where such loading conditions are expected, ensuring optimal 

performance of the foundation. The following section discusses the key conclusions drawn 

from this study. 

 

6. Conclusions 

Dynamic response analysis of a soil-machine foundation system was studied in the event of an 

emergency shutdown of the machine due to extreme loading from a blast. It was assumed that 

machine on entering the plastic stage, will continue to oscillate but with a decreasing frequency 

which will eventually disappear with time. Due to the interaction of the two different loadings, 

a random response of the SDOF system was observed in the rebounding stage before the 

vibration dies out and the machine ceases to operate. The impact of various system parameters 

on the response of the SDOF system was summarized in terms of the absolute maximum 

displacement (either of xm and xm
'). The following conclusions were drawn from the detailed 

study conducted in this paper: 

i) A notable impact of the suction phase of pulse loading on the maximum response was 

observed by varying the decay coefficient of pulse, b. For values of b less than unity, the 

absolute value of xm
' was more pronounced than xm. This was due to the combined effect of 

negative phase and elastic effects of rebounding stage. 

ii) Any variation in mass has a significant impact on the response of the SDOF system. The 

maximum displacement due to the influence of the negative phase increases by 11% for Case 

1 and decreases by 10% for Case 2 as there is a rise in mass from 180 t to 220 t. In addition, a 

phase difference was observed in the response of the SDOF system while the system is in the 

elastic region for both cases. 

iii) Peak pulse load affects the response considerably as very high displacement was observed 

on increasing the pulse load magnitude. The absolute maximum displacement was found to 
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increase by about 43% and 24% respectively when the peak pulse magnitude was increased 

from 900 kN to 1100 kN. 

iv) Both cases of analysis exhibited a reduction in the absolute maximum displacement when 

the stiffness is varied from 100 kN/mm to 810 kN/mm. The pronounced second peak 

displacement was observed specifically for flexible systems.  

v) The frequency ratio has a minor impact on the system's response in elastic-plastic cases, 

primarily due to the gradual decrease in the operational frequency during the plastic stage. 

vi) An increase in damping ratio from 0 to 25% was found to decrease the system's response 

by 54% and 66%, respectively for both cases, and was also found to reduce the time for peak 

displacement. Additionally, the influence of the suction phase was observed to be more 

dominant for undamped systems and systems with lower values of damping ratio. 

Several aspects, such as modeling wave propagation from blasts, changes in damping 

conditions during transition from elastic to EPP response, and the shape of pulse loading, are 

of significant importance and represent future endeavors for the authors. Results presented in 

this study can help in designing the machine foundations for emergency shutdown conditions 

where such type of loading is expected. Further, presented approach and the derived 

information can help in designing suitable vibration barrier systems for such a soil-foundation 

system. 
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TABLE CAPTIONS 

Table 1. Range of values for different parameters. 

Table 2. Maximum response of the SDOF system for different values of decay coefficient. 

Table 3. Maximum response of the SDOF system on varying the mass of machine and 

foundation block. 

Table 4. Maximum response on varying the peak pulse load magnitude. 

Table 5. Maximum response: variation in stiffness. 

Table 6. Maximum response on varying frequency ratio. 

Table 7. Maximum response on varying the damping ratio. 
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FIGURE CAPTIONS 

Fig. 1. Pulse loading variation with time for decay coefficients. 

Fig. 2. Resistance-displacement relationship of an EPP-SDOF system. 

Fig. 3. Two cases of analysis 

Fig. 4. Validation with work of Gantes and Pnevmatikos (2004). 

Fig. 5. Response of the SDOF system to the various time constant values: Case 1. 

Fig. 6. Response of the SDOF system to the various time constant values: Case 2. 

Fig. 7. Influence of decay coefficient on the response of the SDOF system. 

Fig. 8. Response of the SDOF system for variation in mass. 

Fig. 9. Response of the SDOF system for variation in peak pulse magnitude. 

Fig. 10. Response of the SDOF system for different values of stiffness. 

Fig. 11. Response of the SDOF system for different values of the frequency ratio. 

Fig. 12. Response of the SDOF system for different values of damping ratios. 
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Table 1. Range of values for different parameters. 

Parameter Range of Values 

Mass of machine and 

foundation block (m) 

220-180 tonnes [8] 

Peak pulse load magnitude 

(Fo) 

1100-900 kN [27] 

Damping ratio (ζ) 25-0 % [55] 

Stiffness (k) 810-100 kN/mm [8] 

Frequency ratio (fr) 1.6-0.5 [56] 

Maximum resistance (Rm) 40 kN [57] 

Decay coefficient (b) 3-0 [33, 39] 

Time constant () 100-10 s [47] 
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Table 2. Maximum response of the SDOF system for different values of decay coefficient. 

Decay coefficient, 

b 

Maximum Displacement (mm) 

Case 1 Case 2 

First peak xm 

as obtained 

from the first 

plastic stage 

Second peak 

xm
’ after the 

rebounding 

stage 

First peak xm 

as obtained 

from the first 

plastic stage 

Second peak 

xm
' after the 

rebounding 

stage 

0 0.337 - 1.054 - 

0.8 0.082 -0.236 0.291 -0.556 

1 0.086 -0.029 0.300 0.091 

2 0.115 - 0.354 - 

3 0.094 - 0.278 - 
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Table 3. Maximum response of the SDOF system on varying the mass of machine and 

foundation block. 

Mass of machine 

and foundation 

block, m (t) 

Maximum Displacement (mm) 

Case 1 Case 2 

First peak xm as 

obtained from 

the first plastic 

stage 

Second peak 

xm
’ after the 

rebounding 

stage 

First peak xm 

as obtained 

from the first 

plastic stage 

Second peak 

xm
’ after the 

rebounding 

stage 

180 0.088 -0.223 0.319 -0.583 

200 0.082 -0.236 0.291 -0.556 

220 0.072 -0.248 0.260 -0.527 
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Table 4. Maximum response on varying the peak pulse load magnitude. 

Peak magnitude of pulse 

load, Fo (kN) 

Maximum Displacement (mm) 

Case 1 Case 2 

First peak xm 

as obtained 

from the first 

plastic stage 

Second peak 

xm
’ after the 

rebounding 

stage 

First peak xm 

as obtained 

from the first 

plastic stage 

Second 

peak xm
’ 

after the 

rebounding 

stage 

900 0.074 -0.188 0.258 -0.494 

1000 0.082 -0.236 0.291 -0.556 

1100 0.09 -0.268 0.325 -0.611 
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Table 5. Maximum response: variation in stiffness. 

Stiffness, k (kN/mm) Maximum Displacement (mm) 

Case 1 Case 2 

First peak xm 

as obtained 

from the first 

plastic stage 

Second peak 

xm
’ after the 

rebounding 

stage 

First peak xm 

as obtained 

from the first 

plastic stage 

Second peak 

xm
’ after the 

rebounding 

stage 

100 0.108 -0.661 0.370 -2.046 

200 0.085 -0.531 0.332 -1.401 

810 0.082 -0.236 0.291 -0.556 
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Table 6. Maximum response on varying frequency ratio. 

Frequency ratio, fr Maximum Displacement (mm) 

Case 1 Case 2 

First peak xm 

as obtained 

from the first 

plastic stage 

Second peak 

xm
’ after the 

rebounding 

stage 

First peak xm 

as obtained 

from the first 

plastic stage 

Second peak 

xm
’ after the 

rebounding 

stage 

0.5 0.082 -0.236 0.291 -0.556 

0.7 0.083 -0.246 0.292 -0.573 

1.6 0.078 -0.231 0.284 -0.530 
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Table 7. Maximum response on varying the damping ratio. 

Damping ratio, ζ (%) Maximum Displacement (mm) 

Case 1 Case 2 

First peak xm as 

obtained from 

the first plastic 

stage 

Second peak 

xm
’ after the 

rebounding 

stage 

First peak xm 

as obtained 

from the first 

plastic stage 

Second peak 

xm
’ after the 

rebounding 

stage 

0 0.087 -0.268 0.322 -0.739 

5 0.082 -0.236 0.291 -0.556 

10 0.079 -0.185 0.267 -0.419 

15 0.075 -0.174 0.247 -0.340 

20 0.072 -0.144 0.230 -0.288 

25 0.069 -0.122 0.215 -0.252 
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Fig. 1. Pulse loading variation with time for decay coefficients. 
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Fig. 2. Resistance-displacement relationship of an EPP-SDOF system. 
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(a) Case 1 

 

(b) Case 2 

Fig. 3. Two cases of analysis 
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Fig. 4. Validation with work of Gantes and Pnevmatikos [39]. 
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(a) τ = 10 s 

 

(b) τ = 40 s 

 

(c) τ = 100 s 

Fig. 5. Response of the SDOF system to the various time constant values: Case 1. 
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(a) τ = 10 s 

 

(b) τ = 40 s 

 

(c) τ = 100 s 

 

Fig. 6. Response of the SDOF system to the various time constant values: Case 2. 
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Fig. 7. Influence of decay coefficient on the response of the SDOF system. 
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Fig. 8. Response of the SDOF system for variation in mass. 
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Fig. 9. Response of the SDOF system for variation in peak pulse magnitude 
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Fig. 10. Response of the SDOF system for different values of stiffness 
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Fig. 11. Response of the SDOF system for different values of the frequency ratio. 
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Fig. 12. Response of the SDOF system for different values of damping ratios. 
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