
1

A two-stage heuristic algorithm for dynamic seru scheduling

problems with resource constraints

Yiran Xiang1, Zhe Zhang1*, Xiaoling Song1, Xue Gong1, Yong Yin2

1School of Economics and Management, Nanjing University of Science and Technology, Nanjing,

210094, P. R. China

2Graduate School of Business, Doshisha University, Karasuma-Imadegawa, Kamigyo-ku, Kyoto,

602-8580, Japan

*Corresponding author: email: zhangzhe@njust.edu.cn (Zhe Zhang); tel:+86-13451933538

Abstract. Originating from the Japanese electronics assembly industry, the seru production

mode offers high efficiency, flexibility, and rapid responsiveness in manufacturing. This paper

addresses the unspecified dynamic seru scheduling problem with resource constraints (UDSS-R),

where resource usage must not exceed the available total at any given time. The UDSS-R problem

is formulated as a mixed-integer linear programming (MILP) model aimed at minimizing the

makespan. A two-stage heuristic algorithm is proposed subsequently: the first stage addresses the

regular seru scheduling problem (without resource constraints) by assigning jobs to serus, and the

second stage uses a dynamic programming algorithm based on the 0-1 knapsack problem to

finalize the schedule. Computational experiments demonstrate the practicality and effectiveness of

the proposed MILP model and the two-stage heuristic algorithm in solving the UDSS-R problem.

Keywords: scheduling; seru production; dynamic; resource constraint; heuristic algorithm

1. Introduction

With the widespread application of emerging information technology and artificial intelligence,

manufacturing systems need to be highly flexible and efficient to respond quickly to volatile

market changes (Lin et al., 2022 [1]). It has brought significant challenges to the manufacturing

industry, particularly high-tech sectors such as electronics (Frank et al., 2019 [2]; Senkul &

Toroslu, 2005 [3]). In this case, Japanese companies like Sony and Canon have developed a

Japanese-style cellular manufacturing, known as seru (the Japanese pronunciation of cell)

production, distinguishing it from traditional cellular manufacturing (Liu et al., 2010 [4]).

Seru is an assembly unit consisting of one or several workers, movable workstations, and cheap,

light equipment (Kaku et al., 2009 [5]). Seru production system (SPS) comprises several serus,

and each seru within SPS can be quickly constructed, modified, disassembled and rebuilt,

allowing the SPS to respond rapidly to unexpected changes (Jiang et al., 2022 [6]; Ren et al., 2024

[7]). SPS includes three seru types: divisional seru, rotating seru, and yatai (Luo et al., 2017 [8];

Jiang et al., 2021 [9]). When the conveyor assembly line is reconfigured, the first seru type

formed is the divisional seru, where production tasks are distributed among several workers in the

unit, with each worker performing a certain number of tasks. In the rotating seru, although there

are several workers in the unit, each worker operates all the production tasks from start to finish,

rotating within the seru. In yatai, one worker handles all the production tasks entirely from start to

mailto:zhangzhe@njust.edu.cn

2

finish (Ying & Tsai, 2017 [10]; Yu & Tang, 2018 [11]), respectively, see Fig. 1.

In practice, SPS can quickly produce, assemble, and transport small to medium batches of

customized products, ensuring efficiency, flexibility, and responsiveness. Many enterprises have

achieved significant benefits after implementing SPS. Yin et al. (2017) [12] provided detailed data

on the benefits of implementing SPS in Canon and Sony, and conducted an empirical analysis of

the flexibility and quality of the SPS. SPS has also been adopted in Europe, South Korea, China

and other countries (Liu et al., 2022 [13]). Other benefits of SPS include reduced production time,

setup time, labor hours, work-in-process inventory and finished product inventory (Sengupta &

Jacobs, 2004 [14]). Although seru production has achieved great success in practice, research on

seru production still has a long way to go due to its relatively short history. Nevertheless, SPS has

garnered increasing attention from researchers and practitioners because of its high flexibility and

efficiency. Seru is gradually becoming an alternative to lean systems approaches and has been

regarded as the “next generation of lean” in recent years (Liu et al., 2015 [15]). It attracted several

well-known scholars to conduct a series of valuable studies (Roth et al., 2016 [16]; Treville et al.,

2017 [17]). In SPS, the just-in-time organization system (JIT-OS) is key to achieving high

performance (Stecke et al., 2012 [18]; Yin et al., 2018 [19]). JIT-OS involves three

decision-making stages: seru formation, seru loading and seru scheduling. The first two stages

focus on preparing materials and equipment for production, while seru scheduling involves

detailed job processing plans (such as job sequencing, worker assignment, resource allocation, etc.)

in each seru (Luo et al., 2021 [20]).

This paper will investigate the seru scheduling problem. Specifically, we consider the

scheduling problem in SPS (SPS-s) with an additional consideration: each job in a seru requires a

specific resource, such as workers, tools, or fixtures. We refer to this problem as the unspecified

dynamic seru production system scheduling problem with resource constraints (UDSS-R). This

study focuses on UDSS-R with worker resource constraints, assuming all assignable workers are

multi-skilled and capable of handling all types of operations. The term "unspecified" indicates

there is no pre-fixed job-seru assignment, while "dynamic" means the worker-to-seru assignments

can change over time. UDSS-R involves scheduling a set of jobs to multiple serus, where each job

requires a certain number of workers, and the total number of workers in the SPS is fixed. The

problem constraints require that the number of workers utilized at any time does not exceed the

total available.

Among the various objectives in scheduling problems, the minimization of the makespan

(denoted by
maxC), which is the maximum job completion time, is the most commonly studied.

This paper aims to minimize the makespan for UDSS-R by designing a two-stage heuristic

algorithm. A dynamic programming algorithm based on the 0-1 knapsack problem is proposed to

solve the UDSS-R problem of worker assignment. Assuming that processing a job in a seru

requires a certain number of multi-skilled workers, the number of required workers varies

depending on the job and the seru assigned to it. This approach makes the problem more realistic

and better suited to guide actual production practices.

The rest of the paper is structured as follows: Section 2 outlines the literature related to the

problem studied. Section 3 formally introduces the issues discussed in this paper. Section 4

introduces the complete mathematical model of UDSS-R. In Section 5, a two-stage heuristic

3

algorithm is designed. Section 6 performs computational tests on the proposed algorithm. Finally,

in Section 7, the research conclusions and future research directions are given.

2. Literature review

The existing research on SPS mainly focuses on seru formation, seru loading, and seru scheduling

(Zhang et al., 2022a [21]). Through the formation of seru, the appropriate SPS is configured, and

then, through the loading and scheduling of the seru, the job will be assigned to seru to execute

the production plan (Zhang et al., 2024 [22]). For seru formation, Liu et al. (2014) [23] provided

practitioners with a general framework and several basic principles that should be followed when

implementing seru production from a practical perspective. Yu et al. (2014) [24] revealed

mathematical characteristics of seru, such as solution space, combinatorial complexity and

non-convex properties. Scholars have conducted research on line-seru conversion such as Shao et

al., 2016 [25]; Yu et al., 2017 [26]. For seru loading, Wang et al. (2020) [27] considered the seru

loading problem of order acceptance and designed a genetic algorithm with matrix crossover.

Zhang et al. (2022a) [21] solved the seru loading problem with downward substitution and

random product demand and yields. For seru scheduling, Wang et al. (2022) [28] focused on the

order acceptance and scheduling problem, considering lot-spitting with outsourcing decisions

simultaneously in SPS. Zhang et al. (2022b) [29] designed a column generation-based exact

solution method for seru scheduling problems, and Zhang et al. (2022c) [30] provided a

logic-based Benders decomposition method for the seru scheduling problem with

sequence-dependent setup time and DeJong’s learning effect. Considering DeJong’s learning

effect and job splitting, Zhang et al. (2022d) [31] constructed a nonlinear integer programming

model for the seru scheduling problem and designed a branch-and-bound algorithm for

small-sized problems while a local search-based hybrid genetic algorithm for large-sized problems.

Li et al. (2024) [32] investigated the application of dynamic NSGA-II and multi-population search

to handle alterations in production schedules caused by various dynamic events. Based on the

literature, many factors affect the optimal results of SPS-s, such as setup time, arrival date, batch

segmentation, assignment of multi-skilled workers, and the learning effect (Zhang et al., 2023

[33]; Li et al., 2023 [34]). However, most studies on SPS-s in the scientific literature have not

considered seru production system scheduling with resource constraints. In a practical

manufacturing environment, the resources in SPS are limited, highlighting the gap between

academic research and the actual needs of the production sector. In this paper, we will study the

seru scheduling problem considering resource constraints.

Generally, there are two types scheduling problems under resource constraints: static and

dynamic (Abbaszadeh et al. (2021) [35]). In the static type, resource allocation is fixed throughout

the scheduling process (Daniels et al., 1996 [36], Hasannia-Kolagar et al. (2023) [37]), while in

the dynamic type, resources can be assigned and reassigned according to job allocation (Edis &

Oguz, 2012 [38]). In the existing literature, the resource allocation of SPS is typically static,

meaning that resource allocation to seru is given and fixed for the entire time range, and few

studies on seru scheduling have considered dynamic scheduling in SPS under resource constraints.

Fortunately, since SPS is a typical parallel production system, unrelated parallel machine

scheduling (uPMS) problems provide us inspirations. Fanjul-Peyro et al. (2017) [39] proposed

4

mathematical models and meta-heuristics for uPMS problems with additional resource constraints.

Yunusoglu and Topaloglu (2022) [40] proposed two branching strategy constraint programming

(CP) models to reduce computation time. Villa et al. (2018) [41] studied uPMS problems with one

scarce additional resource and proposed two heuristic strategies. Fleszar and Hindi (2018) [42]

proposed a two-stage heuristic algorithm for uPMS problems with a renewable resource constraint,

where the job is first assigned to the machine and then the CP model is used to schedule the jobs

on the machine. Yepes-Borrero et al. (2020) [43] designed three meta-heuristic algorithms to solve

uPMS problems with setup time and additional resources. Yepes-Borrero et al. (2021) [44]

proposed a Pareto frontier search algorithm based on iterative greedy method to solve the

bi-objective uPMS problems with setup time and additional resources.

In this paper, we will study the UDSS-R problem, which has been largely overlooked in

existing literature. We introduce dynamic scheduling considerations in seru production systems

under resource constraints. The research aims to bridge the gap between academic studies and

practical needs in SPS environments. By exploring dynamic scheduling, this study seeks to

enhance current methodologies of seru scheduling problems and provide guidance for practical

production in SPS.

3. Problem description

In this paper, the SPS-s problem involves a set of n jobs, where each job can be processed by m

serus starting at time 0, without preemption. The processing time ijp of job j depends on the seru

i that schedule it. Let ijx be a binary variable, indicating whether job j is assigned to seru i, and

maxC be the makespan. The following linear programming model can be formulated to solve the

SPS-s problem.

 maxmin C (1)

 1,ij

i

x j  (2)

 C ,ij ij max

j

p x i  (3)

  0,1ijx  (4)

where constraints (2) ensure that each job is assigned to only one seru, constraints (3) ensure that

the makespan is at least as large as the total time occupied by each seru, and constraints (4) ensure

that the assigned variable is binary. To illustrate what UDSS-R is and the necessity of considering

resource constraints, a lower bound

1

LB ij ij ij max

i jmax

w p x C
W

  (5)

is added to the SPS-s model (Grigoriev et al., 2005 [45], Nasiri and Hamid, 2020 [46]), which can be

strengthened by adding an aggregate resource constraint, based on calculating the minimum total

5

resource requirement and dividing it by the resource availability. Specifically, in this paper, w

represents worker resources, and assume that all assignable workers are multi-skilled and capable of

handling all types of operations. The following example demonstrates the differences between

SPS-s and UDSS-R.

Example 1. Consider an instance of UDSS-R with a worker resource constraint, where m=3 serus,

n=6 jobs, and a maximum of 5maxW  workers can be allocated. The specific processing data is

shown in Table 1.

Use the established SPS-s model to assign jobs to serus, arbitrarily sort the jobs in each seru,

and get the solution of 11maxC  in Fig. 2a. However, this solution is infeasible: between time 0

and time 1, and between time 4 and time 7, the total number of workers used is too high,

exceeding the worker resource constraints. By keeping the job-seru allocation unchanged, the

feasible solution shown in Fig. 2b can be obtained by introducing idle time, with 13maxC  ,

which satisfies the worker resource constraints in SPS, but the makespan is increased to 13 units,

and two serus have idle time. The optimal UDSS-R solution is shown in Fig. 2c, with 12maxC  ,

it can be observed that worker resources are better utilized and idle time is reduced.

Through the analysis of Example 1, it is evident that the SPS-s problem is different from the

UDSS-R problem. The UDSS-R problem is much more complicated because the job-seru

assignment and the start and completion time of each job must be determined. Its solution not only

needs to assign jobs to serus but also needs to ensure that worker resources are not over-utilized at

any time when scheduling jobs in the seru. Additionally, sometimes due to a shortage of workers,

a seru may not be able to process the next job, resulting in idle time.

In the UDSS-R, the resources could be workers, tools, fixtures etc. In fact, worker resource

constraints are a very important issue in the production process (Nembhard & Bentefouet, 2014

[47]; Su et al., 2021 [48]). Yılmaz (2020) [49] pointed out that the worker resource in an SPS is

critical for adapting to changes in demand. Without loss of generality, we consider the UDSS-R

with worker resource constraints, and assume that all assignable workers are completely

multi-skilled, meaning all workers can handle all types of operations. In this paper, the seru in SPS

is regarded as a black box, and the proposed model and methods are applicable to all seru types.

The UDSS-R problem in this paper consists of finding the best allocation of n jobs to m serus,

while determining the best order for each seru to satisfy the worker resource constraints at any

time, the objective is to minimize the makespan.

4. Mathematical model

In this section, a mixed-integer linear programming (MILP) model for solving the UDSS-R

problem is constructed, where processing each job in each seru requires a certain number of

workers, and the total number of worker resources in the entire SPS is limited. Assume that all

jobs can be processed in all serus, and a job cannot be interrupted once it is being processed in a

seru. The processing time and the number of workers required for each job in each seru are known

and are related to both the job and the seru. The solution to UDSS-R includes the set of jobs that

should be processed in each seru, the order of the jobs representing the processing sequence in the

6

seru, and the start and end times of each job. Due to worker resource constraints, idle time may be

necessary to obtain a feasible solution.

4.1 Notations

For convenience, following notations are introduced.

Indices

1,2,...,i m Index for serus

1,2,...,j n Index for jobs

1,2,..., maxt T Index for time

Parameters

ijp processing time of job j in seru i

ijw number of workers required to process job j in seru i

maxW total number of worker resources in SPS

Decision Variables

maxC makespan

ijtX binary variable takes value 1 if job j is assigned to seru i and completes its processing at

time t, and zero otherwise. Note that this variable only exists for ijt p .

4.2 Mathematical formulation

The objective of the UDSS-R problem considered in this paper is to minimize the makespan, we

have:

 maxmin C (6)

Determine the makespan:

 ,
ij

ijt max

i t p

tX C j


  (7)

Make sure that each job can only be assigned to one seru, so:

 1,
ij

ijt

i t p

X j


  (8)

7

Ensure that each seru does not process more than one job at any time, thus:

  , ,..., 1

1, ,

ij ij

ijs

j s max t p t p

X i t
  

   (9)

Ensure that the workers used at any time do not exceed the total number of worker resource maxW in

SPS, so:

  , ,..., 1

W ,

ij ij

ij ijs max

i j s max t p t p

w X t
  

   (10)

where

  X 0,1 , , ,ijt i j t  (11)

To sum up, the MILP model for the UDSS-R problem can be presented as:

(MILP) maxminC

  

  

 

, ,..., 1

, ,..., 1

,

1,

1, ,. .

W ,

X 0,1 , , ,

ij

ij

ij ij

ij ij

ijt max

i t p

ijt

i t p

ijs

j s max t p t p

ij ijs max

i j s max t p t p

ijt

tX C j

X j

X i ts t

w X t

i j t





  

  

  



 

  



 


  





 

 

 (12)

5. Two-stage heuristic algorithm for UDSS-R

5.1 Solution procedure

Solving the UDSS-R problem requires determining the assignment of jobs under worker resource

constraints, scheduling the sequence of jobs in each seru according to these constraints, and

obtaining the start and end times of each job. Due to the strong NP-hard nature of the seru

scheduling problem (Yu & Tang, 2019 [50]), the proposed MILP model cannot solve large-scale

problems. To obtain a feasible solution within an acceptable time frame, a two-stage heuristic

algorithm integrating dynamic programming (DP) technology is designed. The two-stage heuristic

algorithm proposed in this paper first uses the MILP model to solve the SPS-s problem for

assigning jobs to serus, and then performs scheduling using the DP algorithm based on the 0-1

knapsack problem. The two-stage heuristic algorithm for UDSS-R is shown as follows. The flow

chart of the whole algorithm is shown in Fig. 3.

Step 1: Use the MILP model used to solve the SPS-s problem for assigning jobs to serus.

8

Step 2: Execute scheduling using the DP algorithm based on the 0-1 knapsack problem.

5.2 The first stage

In the first stage, job-seru assignment can be completed very rapidly using the CPLEX solver.

Through the CPLEX solver, we obtain the optimal solution to the SPS-s problem, denoted as *S .

This solution assigns jobs to serus, and *S at this point is a 0-1 matrix representing the job-seru

assignment relationship. If job j is allocated to seru i, it is 1; otherwise, it is 0. After that, the final

allocation matrix of job-seru can be obtained, which is composed of the job matrix, the processing

time matrix, and the needed workers matrix, as shown in matrix form in Fig. 4. Each column of

the matrix represents a time stage, and each row represents the job sequence number assigned to a

seru, the corresponding processing time, and the number of workers required. Its pseudo code is

shown in Algorithm 1, where j_original is the job matrix, p_original and w_original are the

corresponding processing time and needed workers matrix.

Algorithm 1: Stage 1. Job-seru assignment

Input: m, n,
maxW , Matrix: _j original , _p original , _w original

Output: Matrix: _j start , _p start , _w start , distr

1 Initialization  *S  ,  _j o ,  _p o ,  _w o ,  jobcount 

2 *S ← Use the CPLEX solver to solve the SPS-s problem

3 *_ .* _j o S j original

4 *_ .* _p o S p original

5 *_ .* _w o S w original

6 for i←1 to m do // Calculate the maximum number of jobs in seru in SPS

7     *,: * ,:jobcount i sum S i

8 end

9  jobcountmax max jobcount

10 _ (,)j start zeros m jobcountmax

11 _ (,)p start zeros m jobcountmax

12 _ (,)w start zeros m jobcountmax

13 for i←1 to m do

14 _j start ← Put the jobs assigned to seru i into the _j start matrix in order

15 _p start ← The processing time matrix corresponds to the _j start matrix

16 _w start ← The needed worker matrix corresponds to the _j start matrix

17 end

18  _ ; _ ; _distr j start p start w start
; Generate a matrix for storing job-seru assignment

result.

Taking Example 1 as an example, j_original, p_original, and w_original are as follows:

9

1 2 3 4 5 6

_ 1 2 3 4 5 6

1 2 3 4 5 6

j original

 
 

  
 
 

8 8 5 7 8 7

_ 8 4 9 7 3 7

1 9 10 9 6 2

p original

 
 

  
 
 

1 3 2 2 2 1

_ 1 1 2 2 1 1

3 3 1 2 2 1

w original

 
 

  
 
 

5.3 The second stage

In the second stage, the jobs in each seru are scheduled according to the constraints on the total

number of worker resources in SPS, following these steps.

Step 1: Fix
11job in seru 1 at Time stage 1, set the processing time

11p of
11job to the value

T, and the jobs in the rest of the serus move right one time stage. At this time, consider which jobs

in (1)seru i i  should be scheduled to Time stage 1. Think of Time stage 1 as a knapsack and use

the 0-1 knapsack algorithm to complete the scheduling of Time stage 1, the jobs scheduled into

Time stage 1 are recorded as 1; otherwise, they are recorded as 0. The scheduling of Time stage 1

is then completed. The application of the 0-1 knapsack algorithm is shown in Fig. 5.

Knapsack parameter setting: The knapsack load is the number of workers that can be allocated,

calculated as
11last maxW W w  at this time stage. The goods are the jobs with the longest

processing time in each seru which meet the processing time constraint ijp T  and the worker

resource constraint
ij lastw W 

. The weight is the number of workers required for each job, and the

value is the processing time of each job. The goal is to maximize the total value of the jobs put in

the knapsack. The pseudo code of the 0-1 knapsack algorithm is shown in Algorithm 2.

Algorithm 2: Define function
* *) (, , lastknapsack P W W

Input:
* *, , lastP W W

Output:
_job putin

1 Initialization  f  ,  _job putin

2 *)(n length W

3 for j ← 1 to lastW do

10

4 if
*)(W n j , then

5 (,)f n j ←
*)(P n

6 else

7 (,)f n j ← 0

8 end

9 end

10 for i ← 1n to 1 do

11 for j ← 1 to
lastW do

12 if *)(j W i , then

13 (,)f i j ←
(1,)f i j

14 else

15 (,)f i j ←
       * *1, , 1,max f i j f i j W i P i   

16 end

17 end

18 end

19
lastj W

20 for i ← 1 to 1n do

21 if (,) (1,)f i j f i j  , then

22
_ () 0job putin i 

23 else

24 _ () 1job putin i 

25 *)(j j W i 

26 end

27 end

28 if (,) 0f n j  , then

29
_ () 0job putin n 

30 else

31
_ () 1job putin n 

32 end

33 end

Step 2: Remove the scheduled Time stage 1 from the distr matrix and record it in the fea

matrix.

Step 3: Repeat Steps 1 and 2 until all jobs in seru 1 are scheduled. If all jobs in SPS are

scheduled at this time, go to Step 7; otherwise, go to Step 4.

Step 4: Set the processing time of the job with the longest processing time in Time stage 1 of

the distr matrix to the value T, and move the jobs in the rest of the serus one time stage to the right.

Treat Time stage 1 as a knapsack, and use the 0-1 knapsack algorithm to complete the scheduling

of Time stage 1, using the same method as in Step 1.

11

Step 5: Remove the scheduled Time stage from the distr matrix and record it in the fea matrix.

Step 6: Repeat Steps 4 and 5 until all jobs are scheduled.

Step 7: Improve the fea matrix. If there is an idle seru in a certain time stage and the remaining

worker resources of this time stage 0lastW  , then filter the jobs behind the Time stage in this idle

seru. Find the job with the largest number of workers that satisfies the time constraint ijp T 

and the worker resource constraint ij lastw W  , and schedule this job into this Time stage. Note

that the remaining worker resources
lastW should be updated after the job is placed. Repeat the

above process until all the time stages are improved.

Step 8: Remove the columns of the Time stages without job scheduling from the fea matrix to

obtain the final result matrix.

The pseudo code for the key steps is shown in Algorithm 3.

Algorithm 3: Stage 2. Seru scheduling

Input: m, n,
maxW , Matrix: distr

Output: Matrix:
fea

Step 1-3

1 Initialization   fea

2 nn ←Number of jobs in seru 1

3 for j ← 1 to nn do

4  _ 1: ,:j start distr m

5  _ 1: 2* ,:p start distr m m 

6  _ 2* 1:3* ,:w start distr m m 

7 Fix
11job in seru 1 at Time stage 1, and the jobs in the rest of the serus move right one

time stage.

8 T ← set the processing time
11p of

11job to the value T,

9
lastW ← 11maxW w

10
*J  Select at most one job j from each (1)seru i i  , which satisfies

ijp T  ,
ij lastw W 

, and the processing time ijp  is the longest

11
* * P J corresponding processing time set

12

12 * * W J corresponding needed workers set

13 if the number of *J is 1, then

14
fea

 ← schedule this job directly into Time stage 1 corresponding to the seru

15 if *J is empty set, then

16
fea

 ←
fea

17 else

18
  * *()_ , , lastjob putin knapsack P W W

 // 0-1 knapsack algorithm

19
fea

 ← Schedule the job in _job putin into Time stage 1 corresponding to the

seru

20 end

21 Remove the scheduled Time stage 1 from the distr matrix

22 end

Step 4-6

23 while 0mm  do

24 mm ← The number of unscheduled products in SPS

25 T ← The maximum processing time
i jp  

 in the first column of the distr matrix

corresponds to the job
j

26 The jobs in the rest of the serus move right one time stage

27
lastW ←

max i jW w  

28 *J ← Select at most one job j from each ()seru i i i  , which satisfies ijp T  ,

wij lastW 
, and the processing time

ijp 
 is the longest

29
* *P J corresponding processing time set

30 * *W J corresponding needed workers set

31 if the number of *J is 1, then

32
fea

 ← schedule this job directly into Time stage 1 corresponding to the seru

33 if *J is empty set, then

34
fea

 ←
fea

35 else

36   * *()_ , , lastjob putin knapsack P W W ; //0-1 knapsack algorithm

13

37 fea ← Schedule the job in _job putin into Time stage 1 corresponding to the

seru

38 end

39 Remove the scheduled Time stage 1 from the distr matrix

40 end

The result matrix, fea matrix, is the final solution to the UDSS-R problem. It contains three

sub-matrices: the job matrix, the processing time matrix, and the needed workers matrix. The job

matrix represents the job-seru assignment and the job sequence within each seru, the processing

time matrix indicates that the start time of each job j is the start time TIME of the Time stage

where the job is located, and the end time is ijTIME p .

6. Computational experiments

In this section, we conduct computational experiments and test different-sized instances to

evaluate the performance of the proposed MILP model and the two-stage heuristic algorithm in

solving the UDSS-R problem. All instances are randomly generated, and the results are discussed.

The SPS-s model is solved by CPLEX to obtain the optimal solution. The generation of instances

and the algorithm for solving the UDSS-R problem proposed in this paper are implemented in

MATLAB. Both CPLEX and MATLAB software run on a personal computer equipped with an

Inter (R) Core (TM) i7-10710U CPU at 1.10GHz and 16 GB of main memory.

6.1 Data setting

For the instances of the UDSS-R problem, we choose the combination of the total number of serus

(m) and the number of jobs (n) to reflect the scale of the experiment. Since the distribution of the

number of workers required is  1,9U , with 1minw  and 9maxw  , we calculate the total

number of workers (w) / 2 5max max minW m w m     in SPS. The other parameters of the

UDSS-R problem are completely random within a given range. The parameters in Table 2 are used

to generate the test instances set.  ,U a b
 is the uniform distribution of random integers between

a and b (including both extremes), which is the most commonly used distribution for generating

scheduling problem instances. There are a total of 4 test instances, denoted by n m , 15 1000

is considered small-size, 30 2000 and 60 5000 are considered medium-size, 100 10000 is

deemed large-size. All instances are repeated 50 times, so the total number of instances to be

tested is 200.

14

6.2 Experimental results and analysis

In order to evaluate the performance of the proposed model and the two-stage heuristic

algorithm, we use CPU time and relative percentage deviation (RPD) as numerical indicators.

Appendix Table 1 records the total CPU time of all instances, while Appendix Table 2 records the

CPU time used by the dynamic programming algorithm based on the 0-1 knapsack problem

(CPU_KG) in the second stage. Appendix Table 3 records the RPD of all instances. The point-line

diagram for the RPD of all instances is shown in Fig. 6. The RPD of each tested instance is

measured as follow:

100%solMethod LB
RPD

LB


 

Where
solMethod is the solution obtained by the tested algorithm, and LB is a hypothetical lower

bound, which is the optimal solution makespan of the SPS-s problem. In our instances, this may

be an unattainable value.

Since 50 tests are performed on instances of different sizes, Table 3 summarizes the test results

for different instance sizes.

It can be seen from Fig. 6 and Table 3 that for different-sized instances, the solution obtained

using the two-stage heuristic algorithm is stable, and the RPD is stable within an acceptable range.

The total CPU time for all instances is within a satisfactory range, even for large-size instances of

100 10000 , the longest total CPU time is only 540.4948s. Additionally, the comparison between

the total CPU time and the CPU_KG time shows that most of the CPU time is consumed in the

CPLEX solver of the first stage, while the second stage seru scheduling can almost be ignored,

with the longest time being only 16.4867s. Therefore, it can be concluded that the solution

obtained using the two-stage heuristic algorithm is always satisfactory. In the actual production

scheduling process, the two-stage heuristic algorithm we propose is a good choice for managers,

because it can obtain a feasible solution to the UDSS-R problem within an acceptable time, and

the solution is satisfactory. If we consider both the quality and efficiency of the solution, the

two-stage heuristic algorithm proposed in this paper can be regarded as a good algorithm with

good performance.

7. Conclusion

With the objective of minimizing the makespan, this paper studies the unspecified dynamic seru

production system scheduling problem with resource constraints (UDSS-R), which requires that

the number of workers used at any time does not exceed the total number of workers in the SPS.

The models for the scheduling problem in SPS (SPS-s) and UDSS-R are presented in turn,

followed by a two-stage heuristic algorithm. Computational experiments are conducted on

different-sized instances, and the results show that for different-sized UDSS-R problems, the

proposed two-stage heuristic algorithm performs well. It can find a good solution for all-sized

instances of the proposed problem in a short CPU time.

15

Future research will focus on applying the proposed models and the two-stage heuristic

algorithm to solve more seru scheduling problems. We will also attempt to use the exact methods

of meta-heuristics to solve small-scale seru scheduling problems. Additionally, other practical

factors apart from resource constraints, such as setup time, job-splitting, and learning effects,

should also be considered.

Compliance with Ethical Standards

Funding: This research was supported by the Natural Science Foundation of China under the

Grant No. 72472073. We would like to give our great appreciation to all the reviewers and editors

who contributed this research.

Conflict of Interest: All authors declare that they have no conflict of interest.

Ethical approval: This article does not contain any studies with human participants or animals

performed by any of the authors.

References

[1] Lin, Q., Zhao, Q. and Lev, B. “Influenza vaccine supply chain coordination under

uncertain supply and demand”, European Journal of Operational Research, 297(3), pp.

930-948 (2022). https://doi.org/10.1016/j.ejor.2021.05.025.

[2] Frank, A., Dalenogare, L. and Ayala, N. “Industry 4.0 technologies: Implementation

patterns in manufacturing companies”, International Journal of Production Economics,

210, pp. 15-26 (2019). https://doi.org/10.1016/j.ijpe.2019.01.004.

[3] Senkul, P. and Toroslu, I. “An architecture for workflow scheduling under resource

allocation constraints”, Information Systems, 30(5), pp. 399-422 (2005).

[4] Liu, C., Lian, J., Yin, Y., et al. “Seru Seisan-an innovation of the production management

Mode in Japan”, Asian Journal of Technology Innovation, 18(2), pp. 89-113 (2010).

https://doi.org/10.1080/19761597.2010.9668694.

[5] Kaku, I., Gong, J., Tang, J., et al. “Modeling and numerical analysis of line-cell conversion

problems”, International Journal of Production Research, 47(8), pp. 2055-2078 (2009).

https://doi.org/10.1080/00207540802275889.

[6] Jiang, Y., Zhang, Z., Song, X., et al. “Scheduling controllable processing time jobs in seru

production system with resource allocation”, Journal of the Operational Research Society,

73(11), pp. 2551-2571 (2022). https://doi.org/10.1080/01605682.2021. 1999182.

[7] Ren, Y., Tang, J., Yu, Y., et al. “A two-stage stochastic programming model and parallel

Master-Slave adaptive GA for flexible seru system formation”, International Journal of

Production Research, 62(4), pp. 1144-1161 (2024). https://doi.org/

10.1080/00207543.2023. 2177087.

[8] Luo, L., Zhang, Z. and Yin, Y. “Modelling and numerical analysis of seru loading problem

under uncertainty”, European Journal of Industrial Engineering, 11(2), pp. 185-204 (2017).

https://doi.org/10.1504/EJIE.2017.083255.

[9] Jiang, Y., Zhang, Z., Gong, X., et al. “An exact solution method for solving seru

scheduling problems with past-sequence-dependent setup time and learning effect”,

Computers & Industrial Engineering, 158, pp. 107354 (2021). https://doi.org/10.1016/

j.cie.2021.107 354.

https://doi.org/10.1016/j.ejor.2021.05.025
https://doi.org/10.1016/j.ijpe.2019.01.004
https://doi.org/10.1080/19761597.2010.9668694
https://doi.org/10.1080/00207540802275889
https://doi.org/10.1080/01605682.2021.%201999182
https://doi.org/%2010.1080/00207543.2023.%202177087
https://doi.org/%2010.1080/00207543.2023.%202177087
https://doi.org/10.1504/EJIE.2017.083255
https://doi.org/10.1016/%20j.cie.2021.107%20354
https://doi.org/10.1016/%20j.cie.2021.107%20354

16

[10] Ying, K. and Tsai, Y. “Minimising total cost for training and assigning multiskilled workers

in seru production systems”, International Journal of Production Research, 55(10), pp.

2978-2989 (2017). https://doi.org/10.1080/00207543.2016.1277594.

[11] Yu, Y. and Tang, J. “Seru production mode”, Science Press. (2018). (in Chinese)

[12] Yin, Y., Stecke, K., Swink, M., et al. “Lessons from seru production on manufacturing

competitively in a high cost environment”, Journal of Operations Management, 49, pp.

67-76 (2017). https://doi.org/10.1016/j.jom.2017.01.003.

[13] Liu, C., Li, Z., Tang, J., et al. “How SERU production system improves manufacturing

flexibility and firm performance: an empirical study in China”, Annals of Operations

Research, 316, pp. 529-554 (2022). https://doi.org/10.1007/s10479-020-03 850-y.

[14] Sengupta, K. and Jacobs, F. “Impact of work teams: a comparison study of assembly cells

and assembly line for a variety of operating environments”, International Journal of

Production Research, 42(19), pp. 4173-4193 (2004). https://doi.org/10.1080/

0020754041000 1720421.

[15] Liu, C., Dang, F., Li, W., et al. “Production planning of multi-stage multi-option seru

production systems with sustainable measures”, Journal of Cleaner Production, 105, pp.

285-299 (2015). https://doi.org/10.1016/j.jclepro.2014.03.033.

[16] Roth, A., Singhal, J., Singhal, K., et al. “Knowledge creation and dissemination in

operations and supply chain management”, Production and Operations Management,

25(9), pp. 1473-1488 (2016). https://doi.org/10.1111/poms.12590.

[17] Treville, S., Ketokivi, M. and Singhal, V. “Competitive manufacturing in a high-cost

environment: Introduction to the special issue”, Journal of Operations Management, 49(1),

pp. 1-5 (2017). https://doi.org/10.1016/10.1016/j.jom.2017.02.001.

[18] Stecke, K., Yin, Y., Kaku, I., et al. “Seru: the organizational extension of JIT for a

super-talent factory”, International Journal of Strategic Decision Sciences, 3(1), pp.

106-119 (2012). http://doi.org/10.4018/jsds.2012010104.

[19] Yin, Y., Stecke, K. and Li, D. “The evolution of production systems from Industry 2.0

through Industry 4.0”, International Journal of Production Research, 56(1-2), pp. 848-861

(2018). https://doi.org/10.1080/00207543.2017.1403664.

[20] Luo, L., Zhang, Z. and Yin, Y. “Simulated annealing and genetic algorithm based method

for a bi-level seru loading problem with worker assignment in seru production systems”,

Journal of Industrial & Management Optimization, 17(2), pp. 779-803 (2021). https://doi.

org/779.10.3934/jimo.2019134.

[21] Zhang, Z., Wang, L., Song, X., et al. “Improved genetic-simulated annealing algorithm for

seru loading problem with downward substitution under stochastic environment”, Journal

of the Operational Research Society, 73(8), pp. 1800-1811 (2022). https://doi.org/10.

1080/01605682.2021.1939172.

[22] Zhang, Z., Song, X., Gong, X., et al. “Coordinated seru scheduling and distribution

operation problems with DeJong’s learning effects”, European Journal of Operational

Research, 313(3), pp. 452-464 (2024). https://doi.org/10.1016/j.ejor.2023. 08.022.

[23] Liu, C., Stecke, K., Lian, J., et al. “An implementation framework for seru production”,

International Transactions in Operational Research, 21(1), pp. 1-19 (2014).

https://doi.org/10.1111/itor.12014.

[24] Yu, Y., Tang, J., Gong, J., et al. “Mathematical analysis and solutions for multi-objective

https://doi.org/10.1080/00207543.2016.1277594
https://doi.org/10.1016/j.jom.2017.01.003
https://doi.org/10.1080/%200020754041000%201720421
https://doi.org/10.1080/%200020754041000%201720421
https://doi.org/10.1016/j.jclepro.2014.03.033
https://doi.org/10.1111/poms.12590
https://doi.org/10.1016/10.1016/j.jom.2017.02.001
http://doi.org/10.4018/jsds.2012010104
https://doi.org/10.1080/00207543.2017.1403664
https://doi.org/10.1016/j.jom.2017.01.003
https://doi.org/10.1016/j.jom.2017.01.003
https://doi.org/10.%201080/01605682.2021.1939172
https://doi.org/10.%201080/01605682.2021.1939172
https://doi.org/10.1016/j.ejor.2023.%2008.022
https://doi.org/10.1111/itor.12014

17

line-cell conversion problem”, European Journal of Operational Research, 236(2), pp.

774-786 (2014). https://doi.org/10.1016/j.ejor.2014.01.029.

[25] Shao, L., Zhang, Z. and Yin, Y. “A bi-objective combination optimisation model for

line-seru conversion based on queuing theory”, International Journal of Manufacturing

Research, 11(4), pp. 322-338 (2016). https://doi.org/10.1504/IJMR.2016.082821.

[26] Yu, Y., Sun, W., Tang, J., et al. “Line-seru conversion towards reducing worker (s) without

increasing makespan: models, exact and meta-heuristic solutions”, International Journal of

Production Research, 55(10), pp. 2990-3007 (2017). https://doi.org/10.1080/00207543.

2017.1284359.

[27] Wang, Y., Zhang, Z. and Yin, Y. “Workload-based order acceptance in seru production

system”, International Journal of Manufacturing Research, 15(3), pp. 234-251 (2020).

https://doi.org/10.1504/IJMR.2020.108197.

[28] Wang, L., Zhang, Z. and Yin, Y. “Order acceptance and scheduling problem with

outsourcing in seru production system considering lot-spitting”, European Journal of

Industrial Engineering, 16(1), pp. 91-116 (2022). https://doi.org/10.1504/EJIE.2022.

119371.

[29] Zhang, Z., Gong, X., Song, X., et al. “A column generation-based exact solution method

for seru scheduling problems”, Omega, 108, pp. 102581 (2022). https://doi.org/10.1016/

j.omega.2021.102581.

[30] Zhang, Z., Song, X., Huang, H., et al. “Logic-based Benders decomposition method for the

seru scheduling problem with sequence-dependent setup time and DeJong’s learning

effect”, European Journal of Operational Research, 297, pp. 866-877 (2022). https://

doi.org/10.1016/j.ejor.2021.06.017.

[31] Zhang, Z., Song, X., Huang, H., et al. “Scheduling problem in seru production system

considering DeJong’s learning effect and job splitting”, Annals of Operations Research,

312, pp. 1119-1141 (2022). https://doi.org/10.1007/s10479-021- 04515-0.

[32] Li, X., Zhang, Z., Sun, W., et al. “Parallel dynamic NSGA-II with multi-population search

for rescheduling of seru production considering schedule changes under different dynamic

events”, Expert Systems with Applications, 238, pp. 121993 (2024). https://doi.org/

10.1016/j.eswa.2023.121993.

[33] Zhang, Z., Song, X., Gong, X., et al. “An effective heuristic based on 3-opt strategy for

seru scheduling problems with learning effect”, International Journal of Production

Research, 61(6), pp. 1938-1954 (2023). https://doi.org/10.1080/00207543. 2022. 2054744.

[34] Li, X., Yu, Y., Sun, W., et al. “Reducing tardy batches by seru production: Model, exact

solution, cooperative coevolution solution, and insights”, Computers & Operations

Research, 160, pp. 106048 (2023). https://doi.org/ 10.1016/j.cor.2022.106048.

[35] Abbaszadeh, N., Asadi-Gangraj, E. and Emami, S. “Flexible flow shop scheduling problem

to minimize makespan with renewable resources”, Scientia Iranica, 28(3), pp. 1853-1870

(2021). https://doi.org/10.24200/SCI.2019.53600.3325.

[36] Daniels, R., Hoopes, B. and Mazzola, J. “Scheduling parallel manufacturing cells with

resource flexibility”, Management Science, 42(9), pp. 1260-1276 (1996). https://doi.org/

10.1287/ mnsc.42.9.1260.

[37] Hasannia-Kolagar, S., Asadi-Gangraj, E., Paydar, M., et al. “Robust bi-objective operating

rooms scheduling problem regarding the shared resources”, Scientia Iranica, 30(6), pp.

https://doi.org/10.1016/j.ejor.2014.01.029
https://doi.org/10.1504/IJMR.2016.082821
https://doi.org/10.1080/00207543.%202017.1284359
https://doi.org/10.1080/00207543.%202017.1284359
https://doi.org/10.1504/IJMR.2020.108197
https://doi.org/10.1504/EJIE.2022.%20119371
https://doi.org/10.1504/EJIE.2022.%20119371
https://doi.org/10.1016/j.omega.2021.102581
https://doi.org/10.1016/j.omega.2021.102581
https://doi.org/10.1016/j.ejor.2021.06.017
https://doi.org/10.1016/j.ejor.2021.06.017
https://doi.org/10.1007/s10479-021-%2004515-0
https://doi.org/10.1080/00207543.%202022.%202054744
https://doi.org/%2010.1287/
https://doi.org/%2010.1287/

18

2203-2221 (2023). https://doi.org/10.24200/SCI.2021.57603.5321.

[38] Edis, E. and Oguz, C. “Parallel machine scheduling with flexible resources”, Computers &

Industrial Engineering, 63(2), pp. 433-447 (2012). https://doi.org/10.1016/j.cie.2012.

03.018.

[39] Fanjul-Peyro, L., Perea, F. and Ruiz, R. “Models and matheuristics for the unrelated

parallel machine scheduling problem with additional resources”, European Journal of

Operational Research, 260(2), pp. 482-493 (2017). https://doi.org/10.1016/j.ejor.

2017.01.002.

[40] Yunusoglu, P. and Topaloglu, S. “Constraint programming approach for

multi-resource-constrained unrelated parallel machine scheduling problem with

sequence-dependent setup times”, International Journal of Production Research, 60(7), pp.

2212-2229 (2022). https://doi.org/10.1080/00207543.2021.1885068.

[41] Villa, F., Vallada, E. and Fanjul-Peyro, L. “Heuristic algorithms for the unrelated parallel

machine scheduling problem with one scarce additional resource”, Expert Systems with

Applications, 93, pp. 28-38 (2018). https://doi.org/10.1016/j.eswa.2017.09.054.

[42] Fleszar, K. and Hindi, K. “Algorithms for the unrelated parallel machine scheduling

problem with a resource constraint”, European Journal of Operational Research, 271(3),

pp. 839-848 (2018). https://doi.org/10.1016/j.ejor.2018.05.056.

[43] Yepes-Borrero, J., Villa, F., Perea, F., et al. “GRASP algorithm for the unrelated parallel

machine scheduling problem with setup times and additional resources”, Expert Systems

with Applications, 141, pp. 112959 (2020). https://doi.org/ 10.1016/j.eswa.2019.112959.

[44] Yepes-Borrero, J., Perea, F., Ruiz, R., et al. “Bi-objective parallel machine scheduling with

additional resources during setups”, European Journal of Operational Research, 292(2),

pp. 443-455 (2021). https://doi.org/10.1016/j.ejor.2020.10.052.

[45] Grigoriev, A., Sviridenko, M. and Uetz, M. “Integer Programming and Combinatorial

Optimization (IPCO 2005)”, In M. Jünger, & V. Kaibel (Eds.), Lecture Notes in Computer

Science 3509, pp. 182-195 (2005).

[46] Nasiri, M. and Hamid, M. “The stage shop scheduling problem: lower bound and

metaheuristic”, Scientia Iranica, 27(2), pp. 862-879 (2020). https://doi.org/10.24200/SCI.

2018.5199. 1146.

[47] Nembhard, D. and Bentefouet, F. “Selection policies for a multifunctional workforce”,

International Journal of Production Research, 52(16), pp. 4785-4802 (2014).

https://doi.org/10.1080/ 00207543.2014.887231.

[48] Su, B., Xie, N. and Yang, Y. “Hybrid genetic algorithm based on bin packing strategy for

the unrelated parallel workgroup scheduling problem”, Journal of Intelligent

Manufacturing, 32, pp. 957-969 (2021). https://doi.org/10.1007/s10845-020-01597-8.

[49] Yılmaz, Ö. F. “Operational strategies for seru production system: a bi-objective

optimisation model and solution methods”, International Journal of Production Research,

58(11), pp. 3195-3219 (2020). https://doi.org/10.1080/00207543.2019.1669841.

[50] Yu, Y. and Tang, J. “Review of seru production”, Frontiers of Engineering Management,

6(2), 183-192 (2019). https://doi.org/10.1007/s42524-019-0028-1.

Fig. 1 Three seru types

Fig. 2 Solutions of the instance from Example 1 obtained using three different methods

https://doi.org/10.1016/j.cie.2012.%2003.018
https://doi.org/10.1016/j.cie.2012.%2003.018
https://doi.org/10.1016/j.ejor.%202017.01.002
https://doi.org/10.1016/j.ejor.%202017.01.002
https://doi.org/10.1080/00207543.2021.1885068
https://doi.org/10.1016/j.eswa.2017.09.054
https://doi.org/10.1016/j.ejor.2018.05.056
https://doi.org/%2010.1016/j.eswa.2019.112959
https://doi.org/10.1016/j.ejor.2020.10.052
https://doi.org/10.24200/SCI
https://doi.org/10.1080/%2000207543.2014.887231
https://doi.org/10.1007/s10845-020-01597-8
https://doi.org/10.1080/00207543.2019.1669841
https://doi.org/10.1007/s42524-019-0028-1

19

Fig. 3 Flowchart of the heuristic algorithm

Fig. 4 Job-seru assignment result matrix

Fig. 5 The application of the 0-1 knapsack algorithm

Fig. 6 Point-line diagram for the RPD of all instances (Note: RPD: relative percentage deviation)

Table 1 Specific processing data of Example 1

Table 2 Parameter settings

Table 3 Results for the two-stage heuristic algorithm

Yatai

1

 IN

2

3 4 5

6

7

OUT

Divisional seru

1

 IN

2

3 4 5

6

7

OUT

Rotating seru

1

 IN

2

3 4 5

6

7

OUT

Fig. 1 Three seru types

3

5

6

2

4

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

seru 1

seru 2

seru 3

7

6

Wmax=5

4

3

2

1

0

1

11

11

12

12

3

2

6

4

5

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

seru 1

seru 2

seru 3

7

6

Wmax=5

4

3

2

1

0

1

11

11

1312

1312

2

1

3

4

5

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

seru 1

seru 2

seru 3

7

6

Wmax=5

4

3

2

1

0

6

11

11

a. Optimal SPS-s solution b. Fixing worker resource feasibility c. Optimal UDSS-R solution

Fig. 2 Solutions of the instance from Example 1 obtained using three different methods

20

START

Use the CPLEX solver to solve the SPS-s problem.

Stage 1: Job-seru assignment

Generate matrixs for storing job-seru assignment result.

Stage 2: Seru scheduling

Construct knapsack and execute the scheduling of Time stage 1.Step 1

Remove the scheduled Time stage 1 from the matrix and record
it in the result matrix.

Step 2

Set value T, construct knapsack and
execute the scheduling of Time stage 1

Step 4

all jobs in seru 1 are scheduled？

all jobs are scheduled?

Remove the scheduled Time stage 1 from the matrix and record
it in the result matrix.

Step 5

Yes

 Result matrix improved.Step 7

End

No

Fig. 3 Flowchart of the heuristic algorithm

seru 1

seru 2

seru i

seru m

seru 1

seru 2

seru i

seru m

seru 1

seru 2

seru i

seru m

job18

job28

jobm8

job17

job27

jobm7

job16

job26

jobm6

job15

job25

jobm5

job14

job24

jobm4

job13

job23

jobm3

job12

job22

jobm2

job11

job21

jobm1

p18

p28

pm8

p17

p27

pm7

p16

p26

pm6

p15

p25

pm5

p14

p24

pm4

p13

p23

pm3

p12

p22

pm2

p11

p21

pm1

w18

w28

wm8

w17

w27

wm7

w16

w26

wm6

w15

w25

wm5

w14

w24

wm4

w13

w23

wm3

w12

w22

wm2

w11

w21

wm1

Job matrix

Processing time matrix

Needed workers matrix

Time stage 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Time stage

Time stage

j_start =

p_start =

w_start =

21

Fig. 4 Job-seru assignment result matrix

seru 1

Pending assignment

Pending assignment

Pending assignment

Pending assignment

Pending assignment

Pending assignment

Pending assignment

seru 2

seru 3

seru 4

seru 5

seru 6

seru 7

seru i

seru m

Job assigned to this seru

T value set in Time stage

Selected job in seru 2

Selected job in seru 3

Selected job in seru 4

Selected job in seru 5

Selected job in seru 6

Selected job in seru 7

Selected job in seru m

Job that satisfies resource constraints and time constraints.
Each seru selects the job with the longest processing time.

Put or not?

Using the
 knapsack algorithm

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Fig. 5 The application of the 0-1 knapsack algorithm

Fig. 6 Point-line diagram for the RPD of all instances (Note: RPD: relative percentage

deviation)

Table 1 Specific processing data of Example 1

Processing time (ijp)

Needed workers (ijw)

job1 job2 job3 job4 job5 job6 job1 job2 job3 job4 job5 job6

Seru 1 8 8 5 7 8 7 1 3 2 2 2 1

Seru 2 8 4 9 7 3 7 1 1 2 2 1 1

Seru 3 1 9 10 9 6 2 3 3 1 2 2 1

Table 2 Parameter settings

Parameters Value

Instance size  n m  15 1000,30 2000,60 5000,100 10000   

Total number of worker resource in SPS maxW 5 m

5 15 25 35 4510 20 30 40 50
25

30

35

40

45

50

55

60

30

40

50

60

R
P

D
(%

)

instances

 15×1000 30×2000 60×5000 100×10000

22

The number of needed workers ijw  1,9U

Processing time ijp  1,100U

Table 3 Results for the two-stage heuristic algorithm

 Total CPU(s) CPU_KG(s) %RPD

Avg. Max. Avg. Max. %Avg. %Max.

15 1000 73.1189 305.1329 0.8978 1.2123 41.3959 48.9796

30 2000 52.4430 248.1956 1.0645 2.5690 44.8839 53.6885

60 5000 56.9517 127.6715 3.3342 6.6038 42.8100 54.4444

100 10000 244.3461 540.4948 12.3972 16.4867 38.8863 48.1013

Appendix

To evaluate the performance of the proposed model and the two-stage heuristic algorithm, we use

CPU time and RPD as numerical indicators. Appendix Table 1 records the total CPU time of all

instances, while Appendix Table 2 records the CPU time used by the dynamic programming

algorithm based on the 0-1 knapsack problem (CPU_KG) in the second stage. Appendix Table 3

records the RPD of all instances.

Appendix Table 1 The total CPU time of all instances

The total CPU(s) 15 1000 30 2000 60 5000 100 10000

1 13.8417 248.1956 65.0038 320.2405

2 131.9131 188.1499 88.4853 198.2675

3 83.5990 6.7252 127.6715 294.3986

4 3.3038 68.9444 94.6163 269.3894

5 48.8603 15.0665 56.4863 250.9665

6 6.8248 7.1968 39.0973 173.8681

7 86.4453 21.5987 48.7597 380.8670

8 182.6751 6.7854 101.3479 179.3365

9 207.9544 145.6615 37.4541 172.7532

10 62.2109 9.6210 47.4538 166.4192

11 80.5950 190.2099 40.0118 292.1425

12 1.7444 7.0956 54.5607 173.4890

13 43.0704 69.1671 54.4708 168.4344

14 188.4842 13.0067 42.0859 183.4697

15 186.1418 7.1294 80.9124 465.6384

16 73.7543 21.9069 41.7465 163.6788

23

17 3.1982 65.4172 59.9047 183.5723

18 10.5422 8.2745 85.1915 278.2500

19 84.5589 138.8955 41.6287 174.7109

20 305.1329 12.6111 39.7185 245.1181

21 2.2152 11.4844 38.6620 168.1707

22 2.8629 6.0919 49.3647 173.1665

23 1.9980 5.8741 66.7426 255.1541

24 4.5529 5.4729 39.2524 168.7271

25 42.9606 6.1469 63.0676 255.7643

26 178.8912 7.0275 66.9156 486.4341

27 1.4672 145.9318 52.4537 151.1583

28 38.4945 5.7967 42.6740 233.5171

29 6.1048 210.4090 74.3087 356.3842

30 7.0156 205.4529 53.5894 156.2845

31 151.4237 7.9146 49.7545 370.2229

32 26.6623 70.4493 38.5681 238.8048

33 7.7575 11.5855 43.4678 161.1122

34 6.7048 7.4945 42.5528 165.3905

35 238.4856 22.0248 87.8063 202.1167

36 235.0655 68.3435 42.2681 176.3662

37 97.0622 8.0177 40.9624 237.1723

38 2.1596 5.7967 42.2991 175.8877

39 2.2516 123.3746 47.0583 540.4948

40 108.4808 12.1214 52.6542 182.7442

41 176.3049 9.0556 38.9373 277.3285

42 8.9388 7.1615 39.3885 186.3085

43 58.4912 6.4742 40.4500 297.3759

44 8.7079 7.1568 48.3425 181.8830

45 48.2535 6.7661 74.0564 222.1465

46 43.6586 9.5055 40.7142 157.6290

47 1.9544 156.2902 39.3746 156.3467

48 32.8256 9.1016 41.3883 177.2117

49 2.3530 4.5520 88.9406 170.7412

50 74.9771 11.8619 44.2453 504.1030

Appendix Table 2 The CPU_KG time of all instances

CPU_KG(s) 15 1000 30 2000 60 5000 100 10000

1 0.9817 0.9756 6.6038 14.1105

2 0.8931 0.4199 4.7053 12.3475

3 0.7390 0.9452 4.0115 12.3686

4 0.6638 1.0544 4.2363 12.2994

5 0.7134 1.2065 4.2063 13.1565

6 0.7948 1.0868 2.8773 12.4481

7 0.6753 0.9887 5.2297 12.6970

24

8 0.7551 1.1454 2.7679 12.8665

9 0.7344 0.9915 2.7341 12.9832

10 0.6809 0.9910 2.7838 11.6392

11 0.7050 1.8799 2.8118 12.1125

12 0.6844 0.9256 2.7807 13.1590

13 0.8004 0.9771 2.7708 12.2344

14 0.7942 0.9467 2.7559 13.5497

15 0.7818 0.9094 2.7724 11.9784

16 1.0843 0.8569 2.8565 12.7888

17 0.7472 1.1072 2.8447 13.1223

18 0.8822 0.9445 2.8015 12.4200

19 0.7789 0.9155 2.8287 13.1609

20 0.8529 0.9511 2.8085 12.2281

21 0.7452 0.9244 2.8620 12.3107

22 0.7829 1.0419 2.8447 13.1365

23 0.8080 0.9541 2.8026 11.7941

24 0.9229 0.9719 3.0324 12.4471

25 0.9006 1.0669 3.5176 12.3843

26 0.8312 1.2575 3.2556 5.0241

27 0.8072 1.2418 2.8437 9.3883

28 0.9645 1.2467 2.9740 11.4571

29 0.9348 2.5690 2.8287 12.3342

30 0.9356 1.0029 4.4594 13.2645

31 0.9737 1.0046 3.4145 12.3029

32 1.2123 0.8893 2.7881 12.2548

33 0.9775 1.0355 3.8278 12.3122

34 0.8948 1.2345 3.1128 13.2305

35 1.1456 1.1948 3.6963 16.4867

36 1.1255 0.8435 3.6881 14.0862

37 1.0322 0.9977 3.5824 13.5623

38 1.0296 1.2467 3.5391 10.9677

39 1.0516 0.9046 3.5583 12.2248

40 1.0108 1.2114 2.8442 13.3642

41 1.0849 0.9456 2.9373 13.3785

42 0.6131 1.0015 3.0585 14.8685

43 1.0412 1.1342 2.8600 14.0959

44 1.0379 1.1068 2.7925 13.0230

45 1.0535 0.9961 3.1664 10.8765

46 1.0986 1.0155 3.3742 10.6290

47 1.0344 1.0702 3.5746 11.9367

48 1.0156 0.9716 3.0283 15.3817

49 1.0430 0.8920 3.9306 9.4012

50 1.0371 1.0319 4.3253 8.2630

25

Appendix Table 3 RPD of all instances

RPD (%) 15 1000 30 2000 60 5000 100 10000

1 36.7117 42.1875 33.8889 38.6076

2 42.1429 35.2227 50.0000 32.2785

3 46.6520 43.8735 40.7609 40.5063

4 33.5614 42.2925 44.5652 39.2405

5 41.8764 49.1936 42.8571 40.8805

6 35.3430 45.5253 45.6522 34.3949

7 41.4631 48.5714 36.2637 41.7722

8 43.6957 39.1129 43.9560 37.3418

9 40.8602 47.5807 47.8022 38.7500

10 46.5368 38.8000 42.5414 44.5860

11 37.8022 35.2227 45.6044 33.7580

12 36.0544 43.8735 34.4263 35.6688

13 39.3750 42.2925 46.4481 34.1772

14 41.8502 49.1936 38.1720 45.2830

15 48.6141 45.5253 41.7582 36.0760

16 43.5165 48.5714 43.4783 35.2564

17 36.5297 47.3896 41.1111 37.9747

18 40.7725 39.1129 42.5414 34.8101

19 40.5896 47.5807 45.1087 45.8599

20 41.8655 52.8455 41.1765 40.1274

21 43.3333 38.8000 39.4595 35.0319

22 41.5254 35.9184 40.1099 43.6709

23 37.2844 45.1738 54.4444 37.5796

24 39.8305 51.7928 40.3226 34.3949

25 42.5764 53.6885 47.5410 41.1392

26 45.3917 49.6000 52.7473 45.5696

27 46.6063 49.6000 46.9613 40.2516

28 47.2222 45.4918 44.5652 35.6688

29 40.8898 42.1875 35.5191 29.2994

30 41.6667 35.2227 34.2391 42.0382

31 40.5286 43.8735 48.9130 37.5796

32 35.3982 42.2925 40.1099 46.4968

33 35.7759 49.1936 42.8571 43.1250

34 37.7528 45.5253 43.0939 37.1069

35 40.1345 48.5714 46.7033 34.1772

36 32.6622 46.8000 52.7174 42.0382

37 42.1296 38.0000 36.9565 43.9490

38 44.3966 45.4918 39.5604 37.1069

39 45.0980 47.5807 45.1087 44.2308

40 41.5350 52.8455 42.2460 40.5063

41 40.6114 38.8000 46.9945 44.9367

42 45.9161 35.9184 40.0000 33.7580

26

43 48.9796 45.1738 53.8044 40.1274

44 43.2671 53.6885 38.4615 32.7044

45 43.7637 51.7928 39.5604 48.1013

46 42.2078 49.6000 49.4506 43.9490

47 47.2350 49.6000 44.5652 30.8176

48 45.9016 40.4762 33.3333 34.3949

49 37.0288 43.8017 31.7204 31.6456

50 37.3333 43.7247 40.3226 45.5696

Biography of author:

Yiran Xiang: Yiran Xiang is a Master candidate of School of Economics and

Management, Nanjing University of Science and Technology. Her research interest is

seru scheduling problem.

Zhe Zhang*: Zhe Zhang received her PhD from Sichuan University in December

2011. She is an Associate Professor of Nanjing University of Science and Technology.

Her current research interests are in the areas of seru production systems, production

scheduling, advanced manufacturing, and so on.

Xiaoling Song: Xiaoling Song received her PhD in Management Science and

Engineering, in 2016, and BS in Management Science, in 2012, from Sichuan

University, Sichuan, China. She is currently an Associate Professor with the

Department of Management Science and Engineering, School of Economics and

Management in Nanjing University of Science and Technology, Nanjing China. Her

research focuses on decision making, and multi-objective optimization.

Xue Gong: Xue Gong is an Associate Professor of Nanjing University of Science and

Technology. Her current research interests are in the areas of decision-making

optimization, transnational investment and so on.

Yong Yin: Yong Yin has graduated at Tohoku University in Japan. He is a Professor

of Graduate School of Business in Doshisha University. His current research interests

are in the areas of beyond lean, seru production systems, sustainable development,

production and operations management, and so on.

