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Abstract. Originating from the Japanese electronics assembly industry, the seru production 

mode offers high efficiency, flexibility, and rapid responsiveness in manufacturing. This paper 

addresses the unspecified dynamic seru scheduling problem with resource constraints (UDSS-R), 

where resource usage must not exceed the available total at any given time. The UDSS-R problem 

is formulated as a mixed-integer linear programming (MILP) model aimed at minimizing the 

makespan. A two-stage heuristic algorithm is proposed subsequently: the first stage addresses the 

regular seru scheduling problem (without resource constraints) by assigning jobs to serus, and the 

second stage uses a dynamic programming algorithm based on the 0-1 knapsack problem to 

finalize the schedule. Computational experiments demonstrate the practicality and effectiveness of 

the proposed MILP model and the two-stage heuristic algorithm in solving the UDSS-R problem. 
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1. Introduction 

With the widespread application of emerging information technology and artificial intelligence, 

manufacturing systems need to be highly flexible and efficient to respond quickly to volatile 

market changes (Lin et al., 2022 [1]). It has brought significant challenges to the manufacturing 

industry, particularly high-tech sectors such as electronics (Frank et al., 2019 [2]; Senkul & 

Toroslu, 2005 [3]). In this case, Japanese companies like Sony and Canon have developed a 

Japanese-style cellular manufacturing, known as seru (the Japanese pronunciation of cell) 

production, distinguishing it from traditional cellular manufacturing (Liu et al., 2010 [4]). 

Seru is an assembly unit consisting of one or several workers, movable workstations, and cheap, 

light equipment (Kaku et al., 2009 [5]). Seru production system (SPS) comprises several serus, 

and each seru within SPS can be quickly constructed, modified, disassembled and rebuilt, 

allowing the SPS to respond rapidly to unexpected changes (Jiang et al., 2022 [6]; Ren et al., 2024 

[7]). SPS includes three seru types: divisional seru, rotating seru, and yatai (Luo et al., 2017 [8]; 

Jiang et al., 2021 [9]). When the conveyor assembly line is reconfigured, the first seru type 

formed is the divisional seru, where production tasks are distributed among several workers in the 

unit, with each worker performing a certain number of tasks. In the rotating seru, although there 

are several workers in the unit, each worker operates all the production tasks from start to finish, 

rotating within the seru. In yatai, one worker handles all the production tasks entirely from start to 
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finish (Ying & Tsai, 2017 [10]; Yu & Tang, 2018 [11]), respectively, see Fig. 1. 

In practice, SPS can quickly produce, assemble, and transport small to medium batches of 

customized products, ensuring efficiency, flexibility, and responsiveness. Many enterprises have 

achieved significant benefits after implementing SPS. Yin et al. (2017) [12] provided detailed data 

on the benefits of implementing SPS in Canon and Sony, and conducted an empirical analysis of 

the flexibility and quality of the SPS. SPS has also been adopted in Europe, South Korea, China 

and other countries (Liu et al., 2022 [13]). Other benefits of SPS include reduced production time, 

setup time, labor hours, work-in-process inventory and finished product inventory (Sengupta & 

Jacobs, 2004 [14]). Although seru production has achieved great success in practice, research on 

seru production still has a long way to go due to its relatively short history. Nevertheless, SPS has 

garnered increasing attention from researchers and practitioners because of its high flexibility and 

efficiency. Seru is gradually becoming an alternative to lean systems approaches and has been 

regarded as the “next generation of lean” in recent years (Liu et al., 2015 [15]). It attracted several 

well-known scholars to conduct a series of valuable studies (Roth et al., 2016 [16]; Treville et al., 

2017 [17]). In SPS, the just-in-time organization system (JIT-OS) is key to achieving high 

performance (Stecke et al., 2012 [18]; Yin et al., 2018 [19]). JIT-OS involves three 

decision-making stages: seru formation, seru loading and seru scheduling. The first two stages 

focus on preparing materials and equipment for production, while seru scheduling involves 

detailed job processing plans (such as job sequencing, worker assignment, resource allocation, etc.) 

in each seru (Luo et al., 2021 [20]). 

This paper will investigate the seru scheduling problem. Specifically, we consider the 

scheduling problem in SPS (SPS-s) with an additional consideration: each job in a seru requires a 

specific resource, such as workers, tools, or fixtures. We refer to this problem as the unspecified 

dynamic seru production system scheduling problem with resource constraints (UDSS-R). This 

study focuses on UDSS-R with worker resource constraints, assuming all assignable workers are 

multi-skilled and capable of handling all types of operations. The term "unspecified" indicates 

there is no pre-fixed job-seru assignment, while "dynamic" means the worker-to-seru assignments 

can change over time. UDSS-R involves scheduling a set of jobs to multiple serus, where each job 

requires a certain number of workers, and the total number of workers in the SPS is fixed. The 

problem constraints require that the number of workers utilized at any time does not exceed the 

total available. 

Among the various objectives in scheduling problems, the minimization of the makespan 

(denoted by 
maxC ), which is the maximum job completion time, is the most commonly studied. 

This paper aims to minimize the makespan for UDSS-R by designing a two-stage heuristic 

algorithm. A dynamic programming algorithm based on the 0-1 knapsack problem is proposed to 

solve the UDSS-R problem of worker assignment. Assuming that processing a job in a seru 

requires a certain number of multi-skilled workers, the number of required workers varies 

depending on the job and the seru assigned to it. This approach makes the problem more realistic 

and better suited to guide actual production practices. 

The rest of the paper is structured as follows: Section 2 outlines the literature related to the 

problem studied. Section 3 formally introduces the issues discussed in this paper. Section 4 

introduces the complete mathematical model of UDSS-R. In Section 5, a two-stage heuristic 



3 
 

algorithm is designed. Section 6 performs computational tests on the proposed algorithm. Finally, 

in Section 7, the research conclusions and future research directions are given. 

2. Literature review 

The existing research on SPS mainly focuses on seru formation, seru loading, and seru scheduling 

(Zhang et al., 2022a [21]). Through the formation of seru, the appropriate SPS is configured, and 

then, through the loading and scheduling of the seru, the job will be assigned to seru to execute 

the production plan (Zhang et al., 2024 [22]). For seru formation, Liu et al. (2014) [23] provided 

practitioners with a general framework and several basic principles that should be followed when 

implementing seru production from a practical perspective. Yu et al. (2014) [24] revealed 

mathematical characteristics of seru, such as solution space, combinatorial complexity and 

non-convex properties. Scholars have conducted research on line-seru conversion such as Shao et 

al., 2016 [25]; Yu et al., 2017 [26]. For seru loading, Wang et al. (2020) [27] considered the seru 

loading problem of order acceptance and designed a genetic algorithm with matrix crossover. 

Zhang et al. (2022a) [21] solved the seru loading problem with downward substitution and 

random product demand and yields. For seru scheduling, Wang et al. (2022) [28] focused on the 

order acceptance and scheduling problem, considering lot-spitting with outsourcing decisions 

simultaneously in SPS. Zhang et al. (2022b) [29] designed a column generation-based exact 

solution method for seru scheduling problems, and Zhang et al. (2022c) [30] provided a 

logic-based Benders decomposition method for the seru scheduling problem with 

sequence-dependent setup time and DeJong’s learning effect. Considering DeJong’s learning 

effect and job splitting, Zhang et al. (2022d) [31] constructed a nonlinear integer programming 

model for the seru scheduling problem and designed a branch-and-bound algorithm for 

small-sized problems while a local search-based hybrid genetic algorithm for large-sized problems. 

Li et al. (2024) [32] investigated the application of dynamic NSGA-II and multi-population search 

to handle alterations in production schedules caused by various dynamic events. Based on the 

literature, many factors affect the optimal results of SPS-s, such as setup time, arrival date, batch 

segmentation, assignment of multi-skilled workers, and the learning effect (Zhang et al., 2023 

[33]; Li et al., 2023 [34]). However, most studies on SPS-s in the scientific literature have not 

considered seru production system scheduling with resource constraints. In a practical 

manufacturing environment, the resources in SPS are limited, highlighting the gap between 

academic research and the actual needs of the production sector. In this paper, we will study the 

seru scheduling problem considering resource constraints. 

Generally, there are two types scheduling problems under resource constraints: static and 

dynamic (Abbaszadeh et al. (2021) [35]). In the static type, resource allocation is fixed throughout 

the scheduling process (Daniels et al., 1996 [36], Hasannia-Kolagar et al. (2023) [37]), while in 

the dynamic type, resources can be assigned and reassigned according to job allocation (Edis & 

Oguz, 2012 [38]). In the existing literature, the resource allocation of SPS is typically static, 

meaning that resource allocation to seru is given and fixed for the entire time range, and few 

studies on seru scheduling have considered dynamic scheduling in SPS under resource constraints. 

Fortunately, since SPS is a typical parallel production system, unrelated parallel machine 

scheduling (uPMS) problems provide us inspirations. Fanjul-Peyro et al. (2017) [39] proposed 
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mathematical models and meta-heuristics for uPMS problems with additional resource constraints. 

Yunusoglu and Topaloglu (2022) [40] proposed two branching strategy constraint programming 

(CP) models to reduce computation time. Villa et al. (2018) [41] studied uPMS problems with one 

scarce additional resource and proposed two heuristic strategies. Fleszar and Hindi (2018) [42] 

proposed a two-stage heuristic algorithm for uPMS problems with a renewable resource constraint, 

where the job is first assigned to the machine and then the CP model is used to schedule the jobs 

on the machine. Yepes-Borrero et al. (2020) [43] designed three meta-heuristic algorithms to solve 

uPMS problems with setup time and additional resources. Yepes-Borrero et al. (2021) [44] 

proposed a Pareto frontier search algorithm based on iterative greedy method to solve the 

bi-objective uPMS problems with setup time and additional resources. 

In this paper, we will study the UDSS-R problem, which has been largely overlooked in 

existing literature. We introduce dynamic scheduling considerations in seru production systems 

under resource constraints. The research aims to bridge the gap between academic studies and 

practical needs in SPS environments. By exploring dynamic scheduling, this study seeks to 

enhance current methodologies of seru scheduling problems and provide guidance for practical 

production in SPS. 

3. Problem description 

In this paper, the SPS-s problem involves a set of n jobs, where each job can be processed by m 

serus starting at time 0, without preemption. The processing time ijp  of job j depends on the seru 

i that schedule it. Let ijx  be a binary variable, indicating whether job j is assigned to seru i, and 

maxC  be the makespan. The following linear programming model can be formulated to solve the 

SPS-s problem. 

   maxmin C  (1) 

 1,ij

i

x j   (2) 

 C ,ij ij max

j

p x i   (3) 

  0,1ijx   (4) 

where constraints (2) ensure that each job is assigned to only one seru, constraints (3) ensure that 

the makespan is at least as large as the total time occupied by each seru, and constraints (4) ensure 

that the assigned variable is binary. To illustrate what UDSS-R is and the necessity of considering 

resource constraints, a lower bound 

 
1

LB ij ij ij max

i jmax

w p x C
W

   (5) 

is added to the SPS-s model (Grigoriev et al., 2005 [45], Nasiri and Hamid, 2020 [46]), which can be 

strengthened by adding an aggregate resource constraint, based on calculating the minimum total 



5 
 

resource requirement and dividing it by the resource availability. Specifically, in this paper, w  

represents worker resources, and assume that all assignable workers are multi-skilled and capable of 

handling all types of operations. The following example demonstrates the differences between 

SPS-s and UDSS-R. 

Example 1. Consider an instance of UDSS-R with a worker resource constraint, where m=3 serus, 

n=6 jobs, and a maximum of 5maxW   workers can be allocated. The specific processing data is 

shown in Table 1. 

Use the established SPS-s model to assign jobs to serus, arbitrarily sort the jobs in each seru, 

and get the solution of 11maxC   in Fig. 2a. However, this solution is infeasible: between time 0 

and time 1, and between time 4 and time 7, the total number of workers used is too high, 

exceeding the worker resource constraints. By keeping the job-seru allocation unchanged, the 

feasible solution shown in Fig. 2b can be obtained by introducing idle time, with 13maxC  , 

which satisfies the worker resource constraints in SPS, but the makespan is increased to 13 units, 

and two serus have idle time. The optimal UDSS-R solution is shown in Fig. 2c, with 12maxC  , 

it can be observed that worker resources are better utilized and idle time is reduced. 

Through the analysis of Example 1, it is evident that the SPS-s problem is different from the 

UDSS-R problem. The UDSS-R problem is much more complicated because the job-seru 

assignment and the start and completion time of each job must be determined. Its solution not only 

needs to assign jobs to serus but also needs to ensure that worker resources are not over-utilized at 

any time when scheduling jobs in the seru. Additionally, sometimes due to a shortage of workers, 

a seru may not be able to process the next job, resulting in idle time. 

In the UDSS-R, the resources could be workers, tools, fixtures etc. In fact, worker resource 

constraints are a very important issue in the production process (Nembhard & Bentefouet, 2014 

[47]; Su et al., 2021 [48]). Yılmaz (2020) [49] pointed out that the worker resource in an SPS is 

critical for adapting to changes in demand. Without loss of generality, we consider the UDSS-R 

with worker resource constraints, and assume that all assignable workers are completely 

multi-skilled, meaning all workers can handle all types of operations. In this paper, the seru in SPS 

is regarded as a black box, and the proposed model and methods are applicable to all seru types. 

The UDSS-R problem in this paper consists of finding the best allocation of n jobs to m serus, 

while determining the best order for each seru to satisfy the worker resource constraints at any 

time, the objective is to minimize the makespan. 

4. Mathematical model 

In this section, a mixed-integer linear programming (MILP) model for solving the UDSS-R 

problem is constructed, where processing each job in each seru requires a certain number of 

workers, and the total number of worker resources in the entire SPS is limited. Assume that all 

jobs can be processed in all serus, and a job cannot be interrupted once it is being processed in a 

seru. The processing time and the number of workers required for each job in each seru are known 

and are related to both the job and the seru. The solution to UDSS-R includes the set of jobs that 

should be processed in each seru, the order of the jobs representing the processing sequence in the 



6 
 

seru, and the start and end times of each job. Due to worker resource constraints, idle time may be 

necessary to obtain a feasible solution.  

4.1 Notations 

For convenience, following notations are introduced. 

Indices 

1,2,...,i m  Index for serus 

1,2,...,j n  Index for jobs 

1,2,..., maxt T  Index for time 

Parameters 

ijp  processing time of job j in seru i 

ijw  number of workers required to process job j in seru i 

maxW  total number of worker resources in SPS 

Decision Variables 

maxC  makespan 

ijtX  binary variable takes value 1 if job j is assigned to seru i and completes its processing at 

time t, and zero otherwise. Note that this variable only exists for ijt p . 

4.2 Mathematical formulation 

The objective of the UDSS-R problem considered in this paper is to minimize the makespan, we 

have: 

    maxmin C  (6) 

Determine the makespan: 

 ,
ij

ijt max

i t p

tX C j


   (7) 

Make sure that each job can only be assigned to one seru, so: 

 1,
ij

ijt

i t p

X j


   (8) 
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Ensure that each seru does not process more than one job at any time, thus: 

 

  , ,..., 1

1, ,

ij ij

ijs

j s max t p t p

X i t
  

    (9) 

Ensure that the workers used at any time do not exceed the total number of worker resource maxW  in 

SPS, so: 

 

  , ,..., 1

W ,

ij ij

ij ijs max

i j s max t p t p

w X t
  

    (10) 

where 

  X 0,1 , , ,ijt i j t   (11) 

To sum up, the MILP model for the UDSS-R problem can be presented as: 

(MILP)   maxminC  

 
  

  

 

, ,..., 1

, ,..., 1

,

1,

1, ,. .

W ,

X 0,1 , , ,

ij

ij

ij ij

ij ij

ijt max

i t p

ijt

i t p

ijs

j s max t p t p

ij ijs max

i j s max t p t p

ijt

tX C j

X j

X i ts t

w X t

i j t





  

  

  



 

  



 


  





 

 

 (12) 

5. Two-stage heuristic algorithm for UDSS-R 

5.1 Solution procedure 

Solving the UDSS-R problem requires determining the assignment of jobs under worker resource 

constraints, scheduling the sequence of jobs in each seru according to these constraints, and 

obtaining the start and end times of each job. Due to the strong NP-hard nature of the seru 

scheduling problem (Yu & Tang, 2019 [50]), the proposed MILP model cannot solve large-scale 

problems. To obtain a feasible solution within an acceptable time frame, a two-stage heuristic 

algorithm integrating dynamic programming (DP) technology is designed. The two-stage heuristic 

algorithm proposed in this paper first uses the MILP model to solve the SPS-s problem for 

assigning jobs to serus, and then performs scheduling using the DP algorithm based on the 0-1 

knapsack problem. The two-stage heuristic algorithm for UDSS-R is shown as follows. The flow 

chart of the whole algorithm is shown in Fig. 3. 

Step 1: Use the MILP model used to solve the SPS-s problem for assigning jobs to serus. 
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Step 2: Execute scheduling using the DP algorithm based on the 0-1 knapsack problem. 

5.2 The first stage 

In the first stage, job-seru assignment can be completed very rapidly using the CPLEX solver. 

Through the CPLEX solver, we obtain the optimal solution to the SPS-s problem, denoted as *S . 

This solution assigns jobs to serus, and *S  at this point is a 0-1 matrix representing the job-seru 

assignment relationship. If job j is allocated to seru i, it is 1; otherwise, it is 0. After that, the final 

allocation matrix of job-seru can be obtained, which is composed of the job matrix, the processing 

time matrix, and the needed workers matrix, as shown in matrix form in Fig. 4. Each column of 

the matrix represents a time stage, and each row represents the job sequence number assigned to a 

seru, the corresponding processing time, and the number of workers required. Its pseudo code is 

shown in Algorithm 1, where j_original is the job matrix, p_original and w_original are the 

corresponding processing time and needed workers matrix. 

Algorithm 1: Stage 1. Job-seru assignment 

Input: m, n, 
maxW , Matrix:   _j original , _p original , _w original  

Output: Matrix: _j start , _p start , _w start , distr  

1 Initialization  *S  ,  _j o ,  _p o ,  _w o ,  jobcount   

2 *S  ← Use the CPLEX solver to solve the SPS-s problem 

3 *_ .* _j o S j original  

4 *_ .* _p o S p original  

5 *_ .* _w o S w original  

6 for i←1 to m do   // Calculate the maximum number of jobs in seru in SPS 

7        *,: * ,:jobcount i sum S i  

8 end 

9  jobcountmax max jobcount  

10 _ ( , )j start zeros m jobcountmax  

11 _ ( , )p start zeros m jobcountmax  

12 _ ( , )w start zeros m jobcountmax  

13 for i←1 to m do 

14    _j start  ← Put the jobs assigned to seru i into the _j start  matrix in order 

15    _p start ← The processing time matrix corresponds to the _j start  matrix 

16    _w start  ←  The needed worker matrix corresponds to the _j start  matrix 

17 end 

18  _ ; _ ; _distr j start p start w start
; Generate a matrix for storing job-seru assignment 

result. 

 

Taking Example 1 as an example, j_original, p_original, and w_original are as follows: 
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1 2 3 4 5 6

_ 1 2 3 4 5 6

1 2 3 4 5 6

j original

 
 

  
 
 

 

8 8 5 7 8 7

_ 8 4 9 7 3 7

1 9 10 9 6 2

p original

 
 

  
 
 

 

1 3 2 2 2 1

_ 1 1 2 2 1 1

3 3 1 2 2 1

w original

 
 

  
 
 

 

5.3 The second stage 

In the second stage, the jobs in each seru are scheduled according to the constraints on the total 

number of worker resources in SPS, following these steps. 

Step 1: Fix 
11job  in seru 1 at Time stage 1, set the processing time 

11p  of 
11job  to the value 

T, and the jobs in the rest of the serus move right one time stage. At this time, consider which jobs 

in   ( 1)seru i i   should be scheduled to Time stage 1. Think of Time stage 1 as a knapsack and use 

the 0-1 knapsack algorithm to complete the scheduling of Time stage 1, the jobs scheduled into 

Time stage 1 are recorded as 1; otherwise, they are recorded as 0. The scheduling of Time stage 1 

is then completed. The application of the 0-1 knapsack algorithm is shown in Fig. 5. 

Knapsack parameter setting: The knapsack load is the number of workers that can be allocated, 

calculated as 
11last maxW W w   at this time stage. The goods are the jobs with the longest 

processing time in each seru which meet the processing time constraint ijp T   and the worker 

resource constraint 
ij lastw W 

. The weight is the number of workers required for each job, and the 

value is the processing time of each job. The goal is to maximize the total value of the jobs put in 

the knapsack. The pseudo code of the 0-1 knapsack algorithm is shown in Algorithm 2. 

Algorithm 2: Define function 
* * ) ( , , lastknapsack P W W  

Input: 
* *, , lastP W W  

Output: 
_job putin

 

1 Initialization  f  ,  _job putin
 

2 *)(n length W  

3 for j ← 1 to lastW  do 
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4    if 
* )(W n j , then 

5      ( , )f n j  ← 
* )(P n   

6    else 

7      ( , )f n j  ← 0 

8    end 

9 end 

10 for i ← 1n  to 1 do 

11    for j ← 1 to 
lastW  do 

12       if * )(j W i , then 

13         ( , )f i j  ← 
( 1, )f i j

 

14       else 

15         ( , )f i j  ← 
       * *1, , 1,max f i j f i j W i P i   

 

16       end 

17    end 

18 end 

19 
lastj W  

20 for i ← 1 to 1n  do 

21    if ( , ) ( 1, )f i j f i j  , then 

22      
_ ( ) 0job putin i 

 

23    else 

24      _ ( ) 1job putin i   

25      * )(j j W i   

26    end 

27 end 

28 if ( , ) 0f n j  , then 

29    
_ ( ) 0job putin n 

 

30    else 

31      
_ ( ) 1job putin n 

 

32    end 

33 end 

Step 2: Remove the scheduled Time stage 1 from the distr matrix and record it in the fea 

matrix. 

Step 3: Repeat Steps 1 and 2 until all jobs in seru 1 are scheduled. If all jobs in SPS are 

scheduled at this time, go to Step 7; otherwise, go to Step 4. 

Step 4: Set the processing time of the job with the longest processing time in Time stage 1 of 

the distr matrix to the value T, and move the jobs in the rest of the serus one time stage to the right. 

Treat Time stage 1 as a knapsack, and use the 0-1 knapsack algorithm to complete the scheduling 

of Time stage 1, using the same method as in Step 1. 
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Step 5: Remove the scheduled Time stage from the distr matrix and record it in the fea matrix. 

Step 6: Repeat Steps 4 and 5 until all jobs are scheduled. 

Step 7: Improve the fea matrix. If there is an idle seru in a certain time stage and the remaining 

worker resources of this time stage 0lastW  , then filter the jobs behind the Time stage in this idle 

seru. Find the job with the largest number of workers that satisfies the time constraint ijp T   

and the worker resource constraint ij lastw W  , and schedule this job into this Time stage. Note 

that the remaining worker resources 
lastW  should be updated after the job is placed. Repeat the 

above process until all the time stages are improved. 

Step 8: Remove the columns of the Time stages without job scheduling from the fea matrix to 

obtain the final result matrix. 

The pseudo code for the key steps is shown in Algorithm 3. 

Algorithm 3: Stage 2. Seru scheduling 

Input: m, n, 
maxW , Matrix: distr  

Output: Matrix: 
fea

 

Step 1-3 

1 Initialization   fea
 

2 nn ←Number of jobs in seru 1 

3 for j ← 1 to nn  do 

4     _ 1: ,:j start distr m  

5     _ 1: 2* ,:p start distr m m   

6     _ 2* 1:3* ,:w start distr m m   

7    Fix 
11job  in seru 1 at Time stage 1, and the jobs in the rest of the serus move right one 

time stage. 

8    T  ← set the processing time 
11p  of 

11job  to the value T, 

9    
lastW  ← 11maxW w  

10    
*J     Select at most one job j  from each    ( 1)seru i i  , which satisfies 

ijp T  ,
ij lastw W 

, and the processing time ijp   is the longest 

11    
* *   P J  corresponding processing time set 
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12    * *   W J  corresponding needed workers set 

13    if the number of *J  is 1, then 

14      
fea

 ← schedule this job directly into Time stage 1 corresponding to the seru 

15    if *J  is empty set, then 

16      
fea

 ← 
fea

 

17    else 

18      
  * *( )_ , , lastjob putin knapsack P W W

 // 0-1 knapsack algorithm 

19      
fea

 ← Schedule the job in _job putin  into Time stage 1 corresponding to the 

seru  

20    end 

21    Remove the scheduled Time stage 1 from the distr  matrix 

22 end 

Step 4-6 

23 while 0mm   do 

24    mm  ← The number of unscheduled products in SPS 

25    T  ← The maximum processing time 
i jp  

 in the first column of the distr  matrix 

corresponds to the job 
j

 

26    The jobs in the rest of the serus move right one time stage 

27    
lastW  ← 

max i jW w  
  

28    *J  ← Select at most one job j  from each    ( )seru i i i  , which satisfies ijp T  , 

wij lastW 
, and the processing time 

ijp 
 is the longest 

29    
* *P J  corresponding processing time set 

30    * *W J  corresponding needed workers set 

31    if the number of *J  is 1, then 

32      
fea

 ← schedule this job directly into Time stage 1 corresponding to the seru  

33    if *J  is empty set, then 

34      
fea

 ← 
fea

 

35    else 

36        * *( )_ , , lastjob putin knapsack P W W ; //0-1 knapsack algorithm 
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37      fea  ← Schedule the job in _job putin  into Time stage 1 corresponding to the 

seru 

38    end 

39    Remove the scheduled Time stage 1 from the distr  matrix 

40 end 

The result matrix, fea matrix, is the final solution to the UDSS-R problem. It contains three 

sub-matrices: the job matrix, the processing time matrix, and the needed workers matrix. The job 

matrix represents the job-seru assignment and the job sequence within each seru, the processing 

time matrix indicates that the start time of each job j is the start time TIME of the Time stage 

where the job is located, and the end time is ijTIME p . 

6. Computational experiments 

In this section, we conduct computational experiments and test different-sized instances to 

evaluate the performance of the proposed MILP model and the two-stage heuristic algorithm in 

solving the UDSS-R problem. All instances are randomly generated, and the results are discussed. 

The SPS-s model is solved by CPLEX to obtain the optimal solution. The generation of instances 

and the algorithm for solving the UDSS-R problem proposed in this paper are implemented in 

MATLAB. Both CPLEX and MATLAB software run on a personal computer equipped with an 

Inter (R) Core (TM) i7-10710U CPU at 1.10GHz and 16 GB of main memory. 

6.1 Data setting 

For the instances of the UDSS-R problem, we choose the combination of the total number of serus 

(m) and the number of jobs (n) to reflect the scale of the experiment. Since the distribution of the 

number of workers required is  1,9U , with 1minw   and 9maxw  , we calculate the total 

number of workers (w ) / 2 5max max minW m w m      in SPS. The other parameters of the 

UDSS-R problem are completely random within a given range. The parameters in Table 2 are used 

to generate the test instances set.  ,U a b
 is the uniform distribution of random integers between 

a and b (including both extremes), which is the most commonly used distribution for generating 

scheduling problem instances. There are a total of 4 test instances, denoted by n m , 15 1000  

is considered small-size, 30 2000  and 60 5000  are considered medium-size, 100 10000  is 

deemed large-size. All instances are repeated 50 times, so the total number of instances to be 

tested is 200. 
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6.2 Experimental results and analysis 

In order to evaluate the performance of the proposed model and the two-stage heuristic 

algorithm, we use CPU time and relative percentage deviation (RPD) as numerical indicators. 

Appendix Table 1 records the total CPU time of all instances, while Appendix Table 2 records the 

CPU time used by the dynamic programming algorithm based on the 0-1 knapsack problem 

(CPU_KG) in the second stage. Appendix Table 3 records the RPD of all instances. The point-line 

diagram for the RPD of all instances is shown in Fig. 6. The RPD of each tested instance is 

measured as follow: 

100%solMethod LB
RPD

LB


   

Where 
solMethod  is the solution obtained by the tested algorithm, and LB is a hypothetical lower 

bound, which is the optimal solution makespan of the SPS-s problem. In our instances, this may 

be an unattainable value. 

Since 50 tests are performed on instances of different sizes, Table 3 summarizes the test results 

for different instance sizes. 

It can be seen from Fig. 6 and Table 3 that for different-sized instances, the solution obtained 

using the two-stage heuristic algorithm is stable, and the RPD is stable within an acceptable range. 

The total CPU time for all instances is within a satisfactory range, even for large-size instances of 

100 10000 , the longest total CPU time is only 540.4948s. Additionally, the comparison between 

the total CPU time and the CPU_KG time shows that most of the CPU time is consumed in the 

CPLEX solver of the first stage, while the second stage seru scheduling can almost be ignored, 

with the longest time being only 16.4867s. Therefore, it can be concluded that the solution 

obtained using the two-stage heuristic algorithm is always satisfactory. In the actual production 

scheduling process, the two-stage heuristic algorithm we propose is a good choice for managers, 

because it can obtain a feasible solution to the UDSS-R problem within an acceptable time, and 

the solution is satisfactory. If we consider both the quality and efficiency of the solution, the 

two-stage heuristic algorithm proposed in this paper can be regarded as a good algorithm with 

good performance. 

7. Conclusion 

With the objective of minimizing the makespan, this paper studies the unspecified dynamic seru 

production system scheduling problem with resource constraints (UDSS-R), which requires that 

the number of workers used at any time does not exceed the total number of workers in the SPS. 

The models for the scheduling problem in SPS (SPS-s) and UDSS-R are presented in turn, 

followed by a two-stage heuristic algorithm. Computational experiments are conducted on 

different-sized instances, and the results show that for different-sized UDSS-R problems, the 

proposed two-stage heuristic algorithm performs well. It can find a good solution for all-sized 

instances of the proposed problem in a short CPU time. 



15 
 

Future research will focus on applying the proposed models and the two-stage heuristic 

algorithm to solve more seru scheduling problems. We will also attempt to use the exact methods 

of meta-heuristics to solve small-scale seru scheduling problems. Additionally, other practical 

factors apart from resource constraints, such as setup time, job-splitting, and learning effects, 

should also be considered. 
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all jobs in seru 1 are scheduled？

all jobs are scheduled?

Remove the scheduled Time stage 1 from the matrix and record 
it in the result matrix.

Step 5

Yes

 Result matrix improved.Step 7

End
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Fig. 3 Flowchart of the heuristic algorithm 
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Fig. 4 Job-seru assignment result matrix 
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Fig. 5 The application of the 0-1 knapsack algorithm 

 

Fig. 6 Point-line diagram for the RPD of all instances (Note: RPD: relative percentage 

deviation) 

 

Table 1 Specific processing data of Example 1 

 
Processing time ( ijp ) 

 
Needed workers ( ijw ) 

job1 job2 job3 job4 job5 job6  job1 job2 job3 job4 job5 job6 

Seru 1 8 8 5 7 8 7  1 3 2 2 2 1 

Seru 2 8 4 9 7 3 7  1 1 2 2 1 1 

Seru 3 1 9 10 9 6 2  3 3 1 2 2 1 

 

Table 2 Parameter settings 

Parameters Value 

Instance size  n m   15 1000,30 2000,60 5000,100 10000     

Total number of worker resource in SPS maxW   5 m  

5 15 25 35 4510 20 30 40 50
25

30

35

40

45

50

55

60

30

40

50

60

R
P

D
(%

)

instances

 15×1000  30×2000  60×5000  100×10000
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The number of needed workers ijw   1,9U  

Processing time ijp   1,100U  

 

 

Table 3 Results for the two-stage heuristic algorithm 

 Total CPU(s) CPU_KG(s) %RPD 

Avg. Max. Avg. Max. %Avg. %Max. 

15 1000  73.1189 305.1329 0.8978 1.2123 41.3959 48.9796 

30 2000  52.4430 248.1956 1.0645 2.5690 44.8839 53.6885 

60 5000  56.9517 127.6715 3.3342 6.6038 42.8100 54.4444 

100 10000  244.3461 540.4948 12.3972 16.4867 38.8863 48.1013 

 

 

Appendix 

To evaluate the performance of the proposed model and the two-stage heuristic algorithm, we use 

CPU time and RPD as numerical indicators. Appendix Table 1 records the total CPU time of all 

instances, while Appendix Table 2 records the CPU time used by the dynamic programming 

algorithm based on the 0-1 knapsack problem (CPU_KG) in the second stage. Appendix Table 3 

records the RPD of all instances. 

 

Appendix Table 1 The total CPU time of all instances 

The total CPU(s) 15 1000  30 2000  60 5000  100 10000  

1 13.8417 248.1956 65.0038 320.2405 

2 131.9131 188.1499 88.4853 198.2675 

3 83.5990 6.7252 127.6715 294.3986 

4 3.3038 68.9444 94.6163 269.3894 

5 48.8603 15.0665 56.4863 250.9665 

6 6.8248 7.1968 39.0973 173.8681 

7 86.4453 21.5987 48.7597 380.8670 

8 182.6751 6.7854 101.3479 179.3365 

9 207.9544 145.6615 37.4541 172.7532 

10 62.2109 9.6210 47.4538 166.4192 

11 80.5950 190.2099 40.0118 292.1425 

12 1.7444 7.0956 54.5607 173.4890 

13 43.0704 69.1671 54.4708 168.4344 

14 188.4842 13.0067 42.0859 183.4697 

15 186.1418 7.1294 80.9124 465.6384 

16 73.7543 21.9069 41.7465 163.6788 
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17 3.1982 65.4172 59.9047 183.5723 

18 10.5422 8.2745 85.1915 278.2500 

19 84.5589 138.8955 41.6287 174.7109 

20 305.1329 12.6111 39.7185 245.1181 

21 2.2152 11.4844 38.6620 168.1707 

22 2.8629 6.0919 49.3647 173.1665 

23 1.9980 5.8741 66.7426 255.1541 

24 4.5529 5.4729 39.2524 168.7271 

25 42.9606 6.1469 63.0676 255.7643 

26 178.8912 7.0275 66.9156 486.4341 

27 1.4672 145.9318 52.4537 151.1583 

28 38.4945 5.7967 42.6740 233.5171 

29 6.1048 210.4090 74.3087 356.3842 

30 7.0156 205.4529 53.5894 156.2845 

31 151.4237 7.9146 49.7545 370.2229 

32 26.6623 70.4493 38.5681 238.8048 

33 7.7575 11.5855 43.4678 161.1122 

34 6.7048 7.4945 42.5528 165.3905 

35 238.4856 22.0248 87.8063 202.1167 

36 235.0655 68.3435 42.2681 176.3662 

37 97.0622 8.0177 40.9624 237.1723 

38 2.1596 5.7967 42.2991 175.8877 

39 2.2516 123.3746 47.0583 540.4948 

40 108.4808 12.1214 52.6542 182.7442 

41 176.3049 9.0556 38.9373 277.3285 

42 8.9388 7.1615 39.3885 186.3085 

43 58.4912 6.4742 40.4500 297.3759 

44 8.7079 7.1568 48.3425 181.8830 

45 48.2535 6.7661 74.0564 222.1465 

46 43.6586 9.5055 40.7142 157.6290 

47 1.9544 156.2902 39.3746 156.3467 

48 32.8256 9.1016 41.3883 177.2117 

49 2.3530 4.5520 88.9406 170.7412 

50 74.9771 11.8619 44.2453 504.1030 

 

Appendix Table 2 The CPU_KG time of all instances 

CPU_KG(s) 15 1000  30 2000  60 5000  100 10000  

1 0.9817 0.9756 6.6038 14.1105 

2 0.8931 0.4199 4.7053 12.3475 

3 0.7390 0.9452 4.0115 12.3686 

4 0.6638 1.0544 4.2363 12.2994 

5 0.7134 1.2065 4.2063 13.1565 

6 0.7948 1.0868 2.8773 12.4481 

7 0.6753 0.9887 5.2297 12.6970 
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8 0.7551 1.1454 2.7679 12.8665 

9 0.7344 0.9915 2.7341 12.9832 

10 0.6809 0.9910 2.7838 11.6392 

11 0.7050 1.8799 2.8118 12.1125 

12 0.6844 0.9256 2.7807 13.1590 

13 0.8004 0.9771 2.7708 12.2344 

14 0.7942 0.9467 2.7559 13.5497 

15 0.7818 0.9094 2.7724 11.9784 

16 1.0843 0.8569 2.8565 12.7888 

17 0.7472 1.1072 2.8447 13.1223 

18 0.8822 0.9445 2.8015 12.4200 

19 0.7789 0.9155 2.8287 13.1609 

20 0.8529 0.9511 2.8085 12.2281 

21 0.7452 0.9244 2.8620 12.3107 

22 0.7829 1.0419 2.8447 13.1365 

23 0.8080 0.9541 2.8026 11.7941 

24 0.9229 0.9719 3.0324 12.4471 

25 0.9006 1.0669 3.5176 12.3843 

26 0.8312 1.2575 3.2556 5.0241 

27 0.8072 1.2418 2.8437 9.3883 

28 0.9645 1.2467 2.9740 11.4571 

29 0.9348 2.5690 2.8287 12.3342 

30 0.9356 1.0029 4.4594 13.2645 

31 0.9737 1.0046 3.4145 12.3029 

32 1.2123 0.8893 2.7881 12.2548 

33 0.9775 1.0355 3.8278 12.3122 

34 0.8948 1.2345 3.1128 13.2305 

35 1.1456 1.1948 3.6963 16.4867 

36 1.1255 0.8435 3.6881 14.0862 

37 1.0322 0.9977 3.5824 13.5623 

38 1.0296 1.2467 3.5391 10.9677 

39 1.0516 0.9046 3.5583 12.2248 

40 1.0108 1.2114 2.8442 13.3642 

41 1.0849 0.9456 2.9373 13.3785 

42 0.6131 1.0015 3.0585 14.8685 

43 1.0412 1.1342 2.8600 14.0959 

44 1.0379 1.1068 2.7925 13.0230 

45 1.0535 0.9961 3.1664 10.8765 

46 1.0986 1.0155 3.3742 10.6290 

47 1.0344 1.0702 3.5746 11.9367 

48 1.0156 0.9716 3.0283 15.3817 

49 1.0430 0.8920 3.9306 9.4012 

50 1.0371 1.0319 4.3253 8.2630 
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Appendix Table 3 RPD of all instances 

RPD (%) 15 1000  30 2000  60 5000  100 10000  

1 36.7117  42.1875  33.8889  38.6076  

2 42.1429  35.2227  50.0000  32.2785  

3 46.6520  43.8735  40.7609  40.5063  

4 33.5614  42.2925  44.5652  39.2405  

5 41.8764  49.1936  42.8571  40.8805  

6 35.3430  45.5253  45.6522  34.3949  

7 41.4631  48.5714  36.2637  41.7722  

8 43.6957  39.1129  43.9560  37.3418  

9 40.8602  47.5807  47.8022  38.7500  

10 46.5368  38.8000  42.5414  44.5860  

11 37.8022  35.2227  45.6044  33.7580  

12 36.0544  43.8735  34.4263  35.6688  

13 39.3750  42.2925  46.4481  34.1772  

14 41.8502  49.1936  38.1720  45.2830  

15 48.6141  45.5253  41.7582  36.0760  

16 43.5165  48.5714  43.4783  35.2564  

17 36.5297  47.3896  41.1111  37.9747  

18 40.7725  39.1129  42.5414  34.8101  

19 40.5896  47.5807  45.1087  45.8599  

20 41.8655  52.8455  41.1765  40.1274  

21 43.3333  38.8000  39.4595  35.0319  

22 41.5254  35.9184  40.1099  43.6709  

23 37.2844  45.1738  54.4444  37.5796  

24 39.8305  51.7928  40.3226  34.3949  

25 42.5764  53.6885  47.5410  41.1392  

26 45.3917  49.6000  52.7473  45.5696  

27 46.6063  49.6000  46.9613  40.2516  

28 47.2222  45.4918  44.5652  35.6688  

29 40.8898  42.1875  35.5191  29.2994  

30 41.6667  35.2227  34.2391  42.0382  

31 40.5286  43.8735  48.9130  37.5796  

32 35.3982  42.2925  40.1099  46.4968  

33 35.7759  49.1936  42.8571  43.1250  

34 37.7528  45.5253  43.0939  37.1069  

35 40.1345  48.5714  46.7033  34.1772  

36 32.6622  46.8000  52.7174  42.0382  

37 42.1296  38.0000  36.9565  43.9490  

38 44.3966  45.4918  39.5604  37.1069  

39 45.0980  47.5807  45.1087  44.2308  

40 41.5350  52.8455  42.2460  40.5063  

41 40.6114  38.8000  46.9945  44.9367  

42 45.9161  35.9184  40.0000  33.7580  
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43 48.9796  45.1738  53.8044  40.1274  

44 43.2671  53.6885  38.4615  32.7044  

45 43.7637  51.7928  39.5604  48.1013  

46 42.2078  49.6000  49.4506  43.9490  

47 47.2350  49.6000  44.5652  30.8176  

48 45.9016  40.4762  33.3333  34.3949  

49 37.0288  43.8017  31.7204  31.6456  

50 37.3333  43.7247  40.3226  45.5696  
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