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Abstract

In this article, a new reliability analysis algorithm is proposed to calculate the probability density
function of the bearing capacity of the foundation resting on rock mass. Despite common
approaches used by other investigators, four parameters with uncertainties have been adopted in
this study as random variables, including GSI index, strength of intact rock (oci), intact rock
constant (m;), and rock mass disturbance factor (D). In the extended Subset Simulation (SS)
proposed in this study, the samples at the first stage are produced using the Monte Carlo
Simulation (MCS), while at the next levels, a Markov chain based on the Metropolis-Hastings
algorithm is applied to each subset. Finally, statistical parameters of the PDF of bearing capacity
are discussed. The results obtained showed that (A) The SS method converges with a much
smaller number of samples than those given by the MCS method; (B) Parameters UCS and GSI
have the greatest effect on the bearing capacity; (C) As the coefficient of variation of the input
variables increases, the value of the reliability index decreases and therefore the probability of
system failure increases.; (D) When the negative coefficient of correlation is used, a decrease in

the variation of bearing capacity is observed.

Keywords: Bearing capacity; Rock mass; Reliability Analysis; Monte Carlo simulation; Subset

simulation.
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1. Introduction

Load-bearing capacity is one of the most significant requirements for the safe and reliable
performance of foundations. Safe and reliable design of foundations is the most critical part of
structural design. Compared to soils, rocks have generally more compressive strength and, hence,
foundations founded on rocks have more bearing capacity. However, the load of large structures,
such as dams, skyscrapers, or bridge piers, induced on foundations resting on rock masses may
be problematic. As a result, in designing the foundations resting on the rocks, all the structural
features of rock the mass and environmental conditions should be attentively taken into account.
Usually more conservative design is reached by using safety factors [1]. In general, designing the
foundation of structures founded on rock mass is not an easy task and, in real cases, requires
preliminary field investigations and detailed office work. These include drilling boreholes,
excavation of exploratory tunnels in the rock beneath the foundation, performing laboratory rock
strength tests, as well as an accurate analysis of the induced and acting loads on the foundation.
Insufficient studies at this stage and inaccuracy in the evaluation of the design parameters for the
foundation design may lead to catastrophic consequences. When deterministic approaches are
used to design the foundations, the resulting safety factor plays a significant role in the project
cost, which may not be in favor of the project owners. In such situations, reliability methods are
considered as an alternative to deterministic methods, as their use leads to a more realistic

design, especially about the uncertainty of the design parameters.

Different methods have been proposed to calculate ultimate bearing capacity or limit state of
rock mass by use of a deterministic approach. Serrano et al and Galindo et al offered the research
on the ultimate bearing capacity of the rock masses according to the modified Hoek-Brown (H-

B) and the modified Mohr-Coulomb failure criterion [2-4]. Mansouri et al studied the ultimate
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bearing capacity of rock mass below rectangular and square foundations using three-dimensional
finite element analysis [5]. Galindo & Millan offered a method for computing the bearing
capacity of shallow foundations on anisotropic rock masses using the H-B failure criterion [6]. In
the present study, the situation of a shallow foundation located on the rock masses was
investigated by probabilistic methods. The probabilistic methods provide the possibility of
considering the uncertainties of input parameters on the system response. Most of the previous
probabilistic studies focused on the condition of foundations located on soil layers, including
reliability analysis of foundations located on undrained soils [7-8], mechanism of failure of soil-
based foundations [9-10], reliability analysis of bearing capacity of piled raft foundations [11-

12], and reliability analysis of the ultimate dynamic bearing capacity of foundations [13-14].

A review of previous studies shows that limited research has been done on the analysis of
foundation on rock mass by use of probabilistic methods. For example, Millan et al investigated
the use of Artificial Neural Networks (ANN) to predict the bearing capacity of foundation
located on rock mass [15]. In their study, the bearing capacity was predicted with the general
shear failure assumption using the FLAC numerical code of practice based on the H-B criterion.
Predictions of the ANN model agreed well with those obtained from numerical analysis. Albitar
& Soubra considered the geological strength index and the compressive strength parameters
(GSI, oti) as random [16-17]. Their probabilistic method was based on optimized MCS using the
chaos expansion. Their study focused on the correlation distance between parameters, which
showed the greater sensitivity of the o at high correlations and the lower sensitivity of the GSI
of the rock at low correlations. Basha & Moghal studied the allowable bearing capacity of
foundation on the jointed rock mass using the probabilistic method [18]. In their study, the Bell

equation was used for calculating bearing capacity. In addition, joint orientation, material
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cohesion, joint spacing, and shear strength (friction angle of joints and rock mass) were selected
as random variables. A design algorithm based on the reliability index was proposed. Zawaki et
al predicted the oci of rock masses using statistical methods [19]. They measured the strength
parameters of rock by testing 50 samples of rock taken from 11 different regions in the Czech
Republic. They also determined a suitable probability distribution on the frequency histogram of

each parameter and proposed a new relationship to appraise the o of rock masses.

As investigated in previous studies, in most of the probabilistic studies performed on rock mass
using the H-B failure criterion, two parameters (GSI & oci) were chosen as random variables. In
the extended method offered in this study, the parameters of disturbance factor (D) and constant
of intact rock (m;) are also considered as random variables to enhance the precision and
performance. The MCS method is an ordinary technique and is capable of estimating the failure

probability of the problems regardless of their complexity and with reasonable accuracy.

However, this method suffers drawbacks including: a) it is usually used as a basis to evaluate the
Probability Density Function (PDF) of the failure probability of the system, however, it may not
be efficient in some particular problems and hence, it may lose its generality. Because of this, the
MCS method may need to be significantly optimized. b) To achieve a suitable accuracy, the
MCS method usually needs large number of simulations which leads to a very time-consuming
process. ¢) The application of the MCS method becomes cumbersome, or even formidable, when
the fundamental equations and the system response do not follow linear relations. d) Despite
simplicity and applicability, the MCS method has proved to be inefficient in evaluating small
probabilities [20-21]. To overcome the inefficiency of the MCS method in calculating small

failure probabilities, several advanced simulation methods have been developed, including
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Subset Simulation, Spherical Subset Simulation, Line Sampling, Asymptotic Sampling, and

other methods.

In this paper, reliability analysis of the bearing capacity of the foundations on the rock masses is
presented by use of the Subset Simulation (SS). This method is used when the probability of
failure is very small or when subjects are very complex because the computation time is
acceptable [22]. SS is well suited for quantitative analysis of systems experiencing functional
failures, which are identified based on one or more safety variables. SS requires much fewer
samples to reach a given accuracy than does the MCS method. It can efficiently calculate the
probabilities of rare events in reliability problems with complex system features and a high
number of uncertain or random variables in failure events In this method, the problem is turned
into a sequence of problems with conditional failure probabilities. The failure probability of the
main and target problems will be equal to the multiplication (product) of these conditional
probabilities [23]. On the other hand, the SS method is very efficient and can analyze systems
with a large number of random variables or with small failure probabilities. SS, therefore, is a
method that is found to have efficiency, stability, and capability in the reliability analysis of
complex and nonlinear problems. Hence, the method is adopted here for the base of the analysis

while enhancement and optimizations are considered.

This study includes the following sections: First, the idea of MCS and the SS method is
explained. This is followed by a presentation of the modified H-B failure criterion, which is
applied to calculate the bearing capacity of the rock mass. The reliability analysis algorithm to
compute the bearing capacity PDF is offered. Convergence of the bearing capacity results

achieved from MCS and proposed SS methods is compared. Statistical parameters related to the
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bearing capacity PDF are presented. Discussion of the results is presented and continued

throughout the paper.

2. Bearing capacity of rock mass

Probabilistic analysis of engineering problems, especially reliability analysis, appears rational
when compared with conventional deterministic approaches. In deterministic analysis,
parameters are considered certain without scattering and error. Then, the design parameters are
calculated, followed by applying a safety factor. A large safety factor may not necessarily imply
the safety of a structure, especially when the input parameters are indeterminate and scattered in
their distribution. In these cases, reliability analysis is preferred to reach a rational engineering
design value. Predicting the possibility of common fractures in rock provides a better
understanding of the overall long-term state of the rock mass. Due to the complexities and
limitations, theoretical criteria are not preferred to predict rock mass behavior and strength.
Instead, experimental failure criteria are generally applied in rock engineering practices. These
criteria are expressed in both linear and non-linear equations relating the principal stresses while

failure is expressed based on some experimental or regressed constants.

2.1. Hoek-Brown failure criterion

The strength behavior of the rocks is commonly indicated by a failure criterion. The Hoek—
Brown criterion is utilized by engineers in practice to estimate the strength of rock masses, being
one of the limited non-linear criteria. Hoek-Brown failure criterion was first presented in 1980
and has been extended to many versions, all of which are non-linear. Initially, Hoek and Brown

suggested a relation between principal stresses at failure in rock as follows [24]:
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In the above relationship, o1 andos represent the principal stress at failure, respectively, while
oci represents the uniaxial compressive strength of intact rock. The parameter m is a material
constant of the rock and is obtained by statistical analysis, especially the regression approach, on
the available uniaxial and triaxial test results performed on a variety of rock types. Hoek and
Brown recommend that at least 5 pairs of o1 and o3 values of triaxial test results should be used

to achieve a reliable regression analysis.

As mentioned previously, the H-B failure criterion has been improved since its initial
introduction in 1980, and several updated and expanded versions of the criterion have been

introduced. For example, the Hoek-Brown (1992) relationship is as follows:

o, -0, =(M*c,*c +S*G§i)0‘5 (2

m=m *exp(wj ®)
a
s=exp[RMRb_100j @

Parameter s, in equation (2), has been introduced to account for the structural characteristics of
the rock masses, especially concerning the extent and pattern of jointing in a rock mass.
Parameter m in equation (1), also has been modified and reintroduced based on the type and
general class of the rock mass which relies on the RMR (Rock Mass Rating) classification
offered by Bieniawski [1]. This classification system evaluates the rock mass quality based on a
summation of 6 parameters with a maximum of 100 (full mark) for an ideal rock to a minimum
value of 0 for extremely weak or crushed rock masses. In equations (2-4), the maximum value of

7
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s=1.0 is assigned for an ideally intact rock (no jointing) while the minimum value of s=0.0 is set
for completely a crushed rock. Practically s=1.0 is equivalent to RMR=100 in the Bieniawski
classification. Further, the theoretical value of RMR=0 leads minimum value for m and s in
equations (3-4). Parameter m; is an experimentally determined constant for various types of rock
and RMR=100, the parameter m reaches its maximum value of m; (i.e. m=m; if RMR=100). For
intact rock, parameters “a” and “b” in equations (3-4) are introduced for adjustment of the
strength in various rocks such that for intact rock a=28 and b=9 while for jointed rock a=14 and

b=6 is best adapted.

2.2. Modified Hoek-Brown Failure Criterion

The most applicable version of the failure criterion suggested by Hoek and Brown (2002) is
defined as follows [25]:

0, =0,+0, [mb3+s] (5)
cyci
GSI -100
m, =m. *exp| ————— 6
v p(28—14Dj ©
GSI -100

S =exp| —— 7
p( X ] ™

1 -GSI -20
a= 0.5+6(exp(?j — exp(TD (8)

In the above equations, o generally is obtained by uniaxial loading of cylindrical samples

(cores) taken from the intact part of the rock mass under study.
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The GSI value determines the rock mass quality. It is dependent on the structure of rock mass
and the surface condition of joints. The use of GSI needs a good comprehension of the
engineering aspects and the geological features of rock mass. As shown in the above relations,

values of mp and s also depend on the GSI value of rock masses.

The D (rock mass disturbance coefficient) in equations (6-7) also has values from 0 to 1 and is
determined experimentally. A value of zero is used for intact and undisturbed rock masses while
a limit value of one is applied for completely disturbed rock masses. The D coefficient depends
on the weathering and the damage caused by disturbing explosions close to or in the rock mass.

The parameter (a) in equations (5-8) ranges practically from 0.5 to 0.65.

Among the versions of the H-B failure criterion, the modified version of Hoek-Brown (2002)
seems to be more extensible and complete than the previous versions because it applies to all

types of rocks. Therefore, the modified version (2002) is used in this study.

3. Subset Simulation method

3.1.The Monte Carlo Simulation Method

Simulation methods refer to any numerical method for creating system conditions in a real and
natural state. The most common simulation technique is the MCS method, an effective method
for statistical analysis of uncertainties in engineering problems [26]. The results of this method

are very similar to the real solutions. Implementation of this method includes the following steps:

Step 1: Choose an appropriate deterministic analysis solution method;

Step 2: Choose the input parameters for the probabilistic model and quantify their variations;



Step 3: Generate random samples for each parameter selected from the PDF or data related to

those parameters;

Step 4: Solve the problem using the deterministic analysis methods by the parameters selected to

calculate the performance function;

Step 5: Continue the operation and repeat the last two steps till a sufficient number of
simulations are reached, then, using the output values, the PDF and the failure probability are

determined.

In the MCS method, n values are first produced for each random parameter in the response
equation. The response equation is then solved for each generated random number and, finally, n
values for the system response equation are obtained, which may be applied to obtain statistical

information about the response of the system.

A system failure probability can also be calculated by use of the MCS method. For this target,
failure limits must be specified in advance. Then, the MCS method is carried out for each data
sample and it is checked whether failure occurs or not. The probability of failure is estimated by

dividing the number of samples with failure by the total number of samples.

Using the concept of the MCS method, the probability of failure is easily obtained from the
following equation:

1 &
=21 (X) ©

t i=l

The total number of limit conditions analyzed is represented by Nt. The function I(X) indicates
whether a simulated point is in the region of failure or not and is determined according to the
following relationship:

10
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According to Equation (9), the number of N; sets of independent design variables is obtained
based on their distribution function. Then the failure function or the limit function is calculated

for them. Eventually, the estimated failure probability is computed as follows:

P, =t (11)

where Nt indicates the number of failures in the system.

In the bearing capacity analysis using the MCS, the best probability density function for each
input random variable is obtained. In the current study, a log-normal probability distribution
function is considered for the random variables, since such a distribution provides only positive
values. The PDF related to the lognormal probability distribution is obtained from the following

equation:

ool (204

f(x)= odin

(12)

That x is a random variable and x and o represent the mean and standard deviation of random
variables. Initially, the desired number of data points is generated for random values from the
PDF of each parameter. A similar process is repeated several times for each random variable at

each level, based on the obtained probability densities, the result values are obtained [27].

3.2. Subset Simulation method

11
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As pointed out in previous sections, one of the disadvantages of the MCS method is that it is
relatively time-consuming. To resolve the issue, the subset simulation (SS) is adopted in the

present study.

The advantages and disadvantages of the SS method need to be carefully studied to come up with
a better approach. One of the simulation methods that provides acceptable results in terms of
computational time is the SS method suggested by Au and Beck [22]. This method is highly
effective for high-dimensional problems and issues with a very small probability of failure. The
SS method has been used in recent years to analyze various structural and geotechnical problems
[28-35]. Therefore, this method is utilized in this research to assess the reliability of the bearing
capacity of the foundation on rock mass. The main aim of the SS method is to convert the subject
into a series of smaller problems with conditional failure probabilities so that the failure

probability of the main problem is equal to the product of these conditional probabilities [22].

3.2.1 Fundamental of subset simulation

Based on the event of failure F ={X :g(x)<0},g(x) is the function of the random variables
X =(Xy,X,.X, ). The PDF of X is determined by f, (X ). It is assumed that
b, >b,>..>b, =0 as a decreasing series of values of the threshold of a failure event
Fo={X 1g(x)<b,} (k =12..,m)has been given as depicted in figure (1). Then, the

following relationship is established between the failure limits of the thresholds [23]:

FoF>.oF, (13)
Fo= li<:1 F (14)

12
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The failure probability may be noted as follows, according to the description of conditional

probability in the probability theory:

P =P(F)=P(FlF )P (F)=-=P(R)[T,P(F.F) @5
Equation (15) presents that the probability of failure is the result of multiplying the conditional
probability series P (Fi \Fi_l)(i =2,3,...,m) and P (F,). The main purpose of SS is to calculate
the probability of failure by measuring the conditional probabilities. By determining P (F,)=P,

and P, =P (Fi |Fi _1) (i =2,3,...,m), the failure probability in equation (15) is written as follows:

P =T1.P (16)

By choosing the correct value of the intermediate failure events, the conditional probability in
equation (16) will be large enough to be estimated by the simulation. Thus, the subject of
calculating the probability of a small failure in the main problem is changed by a series of
conditional probabilities with higher frequencies in the conditional probability space. In equation

(16), P1 can be estimated by the MCS method [23]:
1 N,
P :N_12k:1IF1 [X él)] (17)

Where xS) (k =12,..,N ) are the independent samples with the same distribution obtained from

the PDF of f, (X ). The term I [xél)] is also an indicator function such that x " e F, then

e [xﬁl)}:l and otherwise I [xf)]:o. In the same way, the conditional probability

13
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P. (i =2,3,...,m) in equation (15) may be measured by generating a sample of the conditional

probability density function [x |f, (x )/P (F_,)q (x F 71) =l

1 i i) (s
P Zte [} =23..m) a9y
As x(k =12,.,N;;i =2,3,..,m) are independent conditional samples with the same

distribution, taken from the probability density function g (x |Fi _1) . Also, I [qu is a function

that indicates such that when x| e F, then I [x,ﬁ”]:l, otherwise I [xf)]:o.

In the SS method, the first-stage samples are produced using the MCS method, while in the next
levels, a Markov chain based on the Metropolis-Hastings algorithm will be applied to each

subset. The Markov Chain Monte Carlo algorithm shown in Figure (2) generates samples with a
distribution q (x \Fifl)(i =2,3,...,m), which is very convenient for calculating conditional

probabilities. Therefore, the SS simulation is performed according to the following steps:

1) Generate N1 independent samples with the same distribution xﬁl)(k :1,2,...,N1) from

the PDF f, (X ) using the MCS method for i = 1.

2) Determine values of responseg(xﬁl))(k =1,2,...,N1). The (pONl)th value from the

descending list Nz is selected as the first value of the intermediate threshold (b1). Also, po

is considered a predefined value for conditional probability values, such as po=0.1, where

poN1 must be an integer value. Then F, ={X :g (X )<b,} defines the first intermediate

failure event. Therefore, the failure probability P, =P (F,) is estimated as P, = p,.

14
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At this stage, starting from these poNi.1 conditional samples that sit in Fi.1 for the ith level

(i =2,3,...,m), the Markov chain is performed to produce (N; —p,N,_,) the remaining
samples obey the PDF g (x |Fi 71).

Estimate the values of corresponding response g (x S))(k =12,..,N, ) . The intermediate

threshold value bj is selected as the value of (poNi)th in the descending list of N; response

values. Afterward, the next intermediate failure event is determined as
F ={X :g(X)<b;}. The conditional failure probability P, =P(Fi\FH) may be
calculated by P, =p, and the probability of failure P(Fii) is evaluated as

P (Fi—l) :Hi:lpj '

Continue Repeating step(3) and step (4) till the value of my threshold bm is equal to or

less than 0. Then, it is assumed that bm=0 and the failure probability level of the target

(final) P(F)=P(F,) is achieved. The probability of conditional failure

P,=P (Fm \Fm_l) may be calculated as P, =N; /N where Nt is equal to the number of

samples located in the final failure zone F=Fmn. The probability of final failure

P, =P (F)=P(F,) may be calculated as follows:

m-) N
Pf :PO( l)XN—f

m

(19)

4. Ultimate Bearing Capacity

A literature study shows that investigations on the ultimate bearing capacity of rock mass are

few. Serrano et al proposed a method for predicting the ultimate bearing capacity of a strip

15
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footing on a weightless rock mass with or without a surface surcharge. The ultimate bearing

capacity qu, as proposed by Serrano et al. using the Hoek—Brown criterion is defined as [2] :
a,=5,(N,~<) (20)

where ¢» and S, are constants for the rock mass which depend on my, a, s and oci according to

=y
m, (1-a S
ﬂn :Ano-ci ' An = M ) é’n =
25 mbAn

¢, is known as the toughness of the rock mass while g, is known as the strength modulus. Ny is
a function of the normalized external load on the boundary adjacent to the footing. If there is no
surcharge on the surface boundary, then Nz can be determined using the method outlined by
Serrano and Olalla [2]. The parameters s, a, and mp are commonly obtained from equations (6-8).
The ultimate bearing capacity obtained from deterministic equation (20) using parameters in the
table (1) is (1.4944 MPa). This is used as a limit state value (failure mode) for calculating the
failure probability. If the results of the reliability analysis of bearing capacity are less than this

value, it will cause failure otherwise safety is considered.

5. Simulation results

As mentioned earlier simulation methods refer to any numerical approach for creating system
conditions in a real and natural state. The results of these methods are very similar to the real
solutions. In the previous sections, the adoption of the reliability method and failure criterion
were described. In the modified H-B failure criterion (2002) used in this study, all the affective

parameters are assumed random variables. The determination of the oci of rocks can be affected

16
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by systematic or human error and therefore uncertainty will govern the values resulting from
tests performed on rock samples. The parameters (GSI, D, mi, o:i) of the modified H-B failure
criterion are assumed as random variables. The factors (s), (mp), and (a) also are dependent on
the GSI, mj, and D values, as shown in equations (5 to 8). Therefore, they are neither random nor
constant, but for each sample, when the values of GSI, mj, and D change, the values of (s), (mb),
and (a) also change. It is also assumed that the foundations are placed on the surface of the rock
masses without overloading. For investigating the dependence between the parameters o and
GSI, the coefficient of correlation is determined between them. The statistical parameters related

to random variables introduced above were adopted from ref. [36] and presented in table (1).

5.1. Effect of coefficient of variation of variables on bearing capacity

The Coefficient Of Variation (COV) represents the scattering rate per unit mean value. The
lower the coefficient of variation, the less scattered the data. This value is dimensionless, making
it appropriate for comparing statistical data with different units. In this section, an investigation
is applied to check the effect of the COV of input variables on bearing capacity. Keeping the
COV of the three random variables constant, the coefficient of variation of the fourth variable is
achieved by gradually a 25% and 50% decrease and increase, respectively. The effect of such
variation is then investigated using SS on the system's probability density function. Finally, a
random variable with the greatest effect on the response system is reached. In this paper, to study
the behavior of a system, in addition to the PDF format of the bearing capacity, the parameters of
reliability index (f), system failure probability (Pf), factor of safety (Fs), and statistical

parameters related to system output, including standard deviation (¢), mean (u), kurtosis (x) and

17
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skewness (o) were used. The output results are shown in tables (2) to (5). In addition, Figures
(3a) to (3d) present the PDF diagrams of bearing capacity resulting from the change in the COV

of random variables.

As displayed in diagrams (3a) to (3d), it can be seen that the parameter (oci) has the greatest
effect on system response (bearing capacity). This is because the diagram (3a) is more scattered
and more spread out than other diagrams. Indeed, in equation (20) the bearing capacity value has
a direct relationship with oz and any change in o directly affects the bearing capacity, Since o
is a prime factor of the compressive strength of rock mass, the higher the o the higher is
bearing capacity for rock mass, provided that all other parameters are assumed to remain
unchanged. According to the PDF diagram resulting from the changes in the COV of o, the
scatter of the response of bearing capacity is larger than that of other variables. Another effective
variable is the GSI (Geological Strength Index), with a great effect on the scatter of the system
response. This is because the parameter GSI describes the structural quality of the rock mass and
depends on its structure and its joint surface condition. The other two variables, m;, and D, have

less effect on the system response.

These results help practicing and engineering professionals make decisions based on the
importance of the impact of variables on design features. As a result, a safe structural design can
be achieved considering uncertainty in design parameters and engineering experience. It is also
observed that as the coefficient of variation decreases, the PDF diagram becomes more compact,

which means the bearing capacity output is less variable and can provide high reliability.
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The statistical parameters related to the output results of bearing capacity presented in Tables (2)
to (5) are explained. The results clearly show that by increasing the COV of the input variables,
the standard deviation of the bearing capacity also increases, indicating a greater scatter of the
outputs. Skewness also indicates the degree of asymmetry of the probability distribution. As can
be seen in the diagrams from Figures (3a) to (3d), the skewness of the outputs is positive and the
skewness also increases as the COV of the input variables increases, meaning that the PDF
becomes more asymmetrical. This is more evident in the diagrams of figures (3a) and (3b)
related to oci and GSI. Kurtosis describes the degree to which a probability distribution is peaked
or flat. In this study, by increasing the COV of the input variables, the kurtosis of the output
decreases, meaning that the bearing capacity PDF becomes wider and moves away from the
normal state. furthermore, the coefficient of variation represents the rate of scattering per unit of
average and is a dimensionless value. In the current research, increasing the coefficient of
variation of the input variables leads to an increment in the COV of bearing capacity. This

implies a direct relation between these two coefficients of variation.

The reliability index classically refers to the ratio between the mean of a performance function
and its standard deviation. Evaluation of such an index is straightforward if the density function
of the bearing capacity probability is predefined by any method. However, due to the complexity
of the performance function, it is often challenging to calculate the statistical properties of the
PDF, such as the standard deviation and the mean. The purpose of the simulation method is to
calculate these parameters using numerical analysis techniques. The larger the reliability index,
the greater the safety of the design. The reliability index is described as the inverse of the COV
and may be used to assess the probability of failure. In this study, it was found that increasing the

COV of the input variables leads to a decrease in the reliability index value, indicating a decrease
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in the safety of the system. There are always errors and uncertainties in implementation that
design engineers must take into account in designing structures. For this reason, the allowable
load values for the design must be such as to prevent unforeseen failures due to uncertainties,
thus using safety factors. In this study, it was found that as the COV of input variables increases,
the safety factor required for design also increases, which indicates a decrease in structural
safety. Failure probability shows the risk of system failure throughout its life cycle. Usually, this
parameter is used in probabilistic methods to test the stability or system failure. The findings

reveal that as the COV of input variables increases, the probability of failure also increases.

5.2.Effect of the correlation coefficient on bearing capacity

The correlation coefficient, used to determine the relationship between two quantitative
variables, is a number between +1 and -1 and is O if there is no relationship between the two
variables. The (+1) value expresses a complete direct relationship, and a (-1) value expresses a
perfect inverse relationship between the two variables. In the present research, an investigation is
performed on the impact of changing the correlation coefficient between the two variables,
including GSI and o of the rock mass, on a PDF diagram of bearing capacity, as displayed in
Figure (4). As shown, when the negative coefficient of correlation is used (when decreasing one
parameter will increase the other parameter), the PDF is less spread out, and the kurtosis index of
the diagram increases, which indicates a decrease in bearing capacity scatter. According to the
results displayed in Table (6), in this case, the standard deviation, mean value, and skewness of
the PDF diagram of bearing capacity decrease, leading to an increment in the reliability index of
bearing capacity. In a positive correlation case, when both parameters increase or decrease

together, there is a significant variation in the ultimate bearing capacity.
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5.3. Comparison with Monte Carlo simulation

In the present paper, the log-normal probability distribution is considered for random variables
because this distribution provides only positive values. Using MATLAB programming, the
calculation of the ultimate bearing capacity value generated from equation (20) is carried in the
order of 103, 10%, 10°, and 10° iterations, finally leading to the failure probability calculated from

equation (11).

The PDF diagrams of ultimate bearing capacity at 10° and 10° iterations are shown in Figure (5).
Table (7) also presents a comparison between SS and MCS methods. One of the most important
factors in the MCS is determining the number of iterations required to perform the calculations
using the deterministic equation. Comparing the results of the bearing capacity value achieved
from the MCS with various iterations, it is found that the bearing capacity value increases as the
number of iterations increases. Standard deviation values resulting from 10° up to 10° repetitions
have an increasing trend, which is reasonable due to the increase in the number of repetitions. A
review of the probability of failures achieved from the MCS shows that the higher the number of
repetitions, the lower the failure probability. Additionally, as the number of repetitions increases,
the rate of reduction in the probability of failure decreases. Therefore, it can be inferred that as
the number of repetitions increases, the results of the failure probability converge, and hence

more repetitions do not cause further reduction in the failure probability.

To show the effectiveness of the SS, the obtained results are compared with those given by the
classical MCS. For this purpose, the results of 10® MCS repetitions are calculated. These orders

of repetition are sufficient to achieve convergence to the bearing capacity results obtained from
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the SS. In Figures (6a) to (6d), comparative diagrams of statistical parameters of standard
deviation, mean, kurtosis and skewness related to the mean of ultimate bearing capacity versus
the number of MCS and SS methods are shown. The SS method is a suitable alternative to the
MCS because the SS method can reach the same results as the MCS with less computational
effort. In summary, the SS method discussed here is advantageous since it is faster (fewer
repetitions required) and demands less computational time when compared with the MCS

method.

5.4. Comparison with other studies

Table (8) shows the comparison between the results achieved by the suggested method and the
findings of previous studies. The suggested method was validated by comparison of its results
with those presented by Al-Bittar and Soubra, Mao et al and Merifield et al for different values
of the rock parameters [17,36,37]. The chosen disturbance factor value in this paper is (D=0). It
is important to note that the findings reported by Merifield et al represent the mean values
between the upper and lower bound solutions of the limit analysis theory [37]. Meanwhile, Mao
et al only offer an upper bound solution of the ultimate bearing capacity [36]. Table 8 shows that
the results of the ultimate bearing capacity obtained from the proposed model have suitable

agreement with those of other researchers.

6. Conclusions

In the common deterministic analysis of the bearing capacity of the foundation on rock mass, the

uncertainties in the rocks are neglected and therefore no idea of the probability of failure is
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reached. Therefore, practical values are obtained using safety factors which often leads to
overdesigned structures. This indicates the need to use reliable methods based on statistical
analysis of variations on affecting parameters and probabilistic analysis of the structure failures.
In this paper, the main purpose of the analysis performed is to quantify the uncertainty associated
with the bearing capacity of strip foundations placed on rock mass and determine the PDF of
bearing capacity. Despite the common approaches used by other investigators, four parameters of
the H-B failure criterion with uncertainties were adopted in this study as random variables,
including GSI index, strength of intact rock (oci), constant of intact rock (m;), and disturbance
factor (D) to increase precision and performance of the method. A new reliability analysis
algorithm was proposed to calculate the PDF of bearing capacity. In the SS method extended and
suggested in this study, the samples of the first stage were calculated using the MCS method,
while at later levels, the Markov chain based on the Metropolis-Hastings algorithm was applied
to each subset. Moreover, statistical parameters related to the PDF of bearing capacity were
presented and discussed. Therefore, both MCS and the proposed SS methods were adopted for
the probabilistic analysis. Discussing the results of statistical values of PDF of the bearing

capacity obtained from these simulations, the following conclusions were proposed:

1) A diagram of the PDF of bearing capacity resulting from changing the coefficient of
variation of variables shows that the uniaxial compressive strength parameter oci has the
greatest impact on the system response (bearing capacity). Another important affective
variable was the geological strength index GSI, which affects the scattering of system
response. The other two variables, mj, and D, have less effect on the system response.

2) With a reduction in the COV of variables, the PDF diagram of bearing capacity becomes

more compressed, meaning that the output results of the bearing capacity change less,
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and more reliability can be applied to them. It is also observed that with increasing COV
of input variables, the standard deviation of bearing capacity also increases, which
indicates more scattered outputs.

As can be seen in the output diagrams of figures (3a) to (3d), the skewness of the results
IS positive which increases with increasing the COV of the input variables. This means
that PDF becomes more asymmetric, which is more evident in the o and GSI diagrams
figures (3a) and (3b). Also, with an increment in the COV of the input variables, the
kurtosis of results decreases, meaning that the PDF diagram of bearing capacity becomes
wider and moves away from the normal state.

It should also be mentioned that by increasing the COV of the input variables, the
reliability index value decreases, and as a result, the failure probability of the system
increases. Also, the safety factor that is used for the design increases accordingly. This
further implies the safety reduction for structure.

By investigating the coefficient of correlation between the two variables, uniaxial
compressive strength and geological strength index of the rock mass, it was observed that
when a negative coefficient of correlation was used (when decreasing one parameter will
increase the other parameter), the kurtosis of the diagram increases, indicating a decrease
in variation of bearing capacity.

Comparing the results of current SS and MCS methods shows that the SS method
presents almost similar and precise results with a much smaller number of data samples
than those of MCS. Also, in the MCS method, if the number of repetitions reaches 10°

and 108 times, results converge to those given by the SS method.
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Figure captions :

Figure 1. A series of failure events in the SS method

Figure 2. Flowchart showing the implementation of Subset simulation-based reliability analysis for
bearing capacity

Figure 3. Effect of the COV of the input random variables on the PDF diagram of the ultimate bearing
capacity : (a) effect of cov(ai); (b) effect of cov(GSI); (c) effect of cov(m;); (d) effect of cov(D)

Figure 4. Effect of the correlation coefficient on PDF variation of the ultimate bearing capacity

Figure 5. PDF of ultimate bearing capacity at 10°& 10° iterations

Figure 6. Effect of the number of simulations on statistic parameters of ultimate bearing capacity :
(a) mean; (b) standard deviation; (c) skewness; (d) kurtosis

Table captions :

Table 1. Statistical parameters values of random variables [36]

Tables 2. Effect of the COV of o, on statistical parameters of bearing capacity
Tables 3. Effect of the COV of GSI on statistical parameters of bearing capacity
Tables 4. Effect of the COV of D on statistical parameters of bearing capacity
Tables 5. Effect of the COV of m; on statistical parameters of bearing capacity
Table 6. Results of variation of the coefficient of correlations between o and GSI

Table 7. Comparative results of Monte Carlo and Subsets Simulations

Table 8. Comparative results of g, (MPa) as given by the proposed method and previous studies (D=0)

X2

Figure 1. A series of failure events in the SS method
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Figure 3. Effect of the COV of the input random variables on the PDF diagram of the ultimate bearing
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Figure 6. Effect of the number of simulations on statistic parameters of ultimate bearing capacity :

(a) mean; (b) standard deviation; (c) skewness; (d) kurtosis
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Table 1. Statistical parameters values of random variables [36]

Variables Mean COV PDF
oci [MPa] 10 25  Log-normal

GSI 25 10  Log-normal
m; 8 12.5 Log-normal
D 0.3 10  Log-normal

190

141

14y

TaA

Tables 2. Effect of the COV of o,; on statistical parameters of bearing capacity

value of the COV of o

parameters —— > o 18.75% 25% 31.25% 37.5%
mean 150741 151014 1.50550 1.50763 150377
Stdev 0.38293 0.44201 0.50825 0.58920 0.66083
Skew 0.82210 0.92925 1.06488 1.24571 1.40944
Kurt 1.2887 1.56995 2.06502 2.84794 3.70555
cov 25.4034 29.2698 33.7594 39.081 43.9448

B 3.03649 3.41649 2.06214 2.55879 2.27558
FS 1.0128 1.0147 1.0116 1.0130 1.0104
P(SS) 0.00532 0.00538 0.00555 0.00561 0.00575

Tables 3. Effect of the COV of GSI on statistical parameters of bearing capacity

value of the COV of GSI

parameters 5% 7.5% 10% 12.5% 15%
mean 1.49056 1.50199 1.50547 1.51899 1.52959
Stdev 0.42207 0.45978 0.50806 0.56469 0.62025
Skew 0.30013 0.46227 0.62467 0.76540 0.87777
Kurt 0.23620 0.45756 0.71196 0.99006 1.31516
cov 28.3164 30.6114 33.7475 37.1752 40.5498

B 3.53152 3.26675 2.96319 2.68997 2.46610
FS 1.0015 1.0092 1.0128 1.0206 1.0277
P(SS) 0.00517 0.00518 0.00524 0.00528 0.00530
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Tables 4. Effect of the COV of D on statistical parameters of bearing capacity

parameters

value of the COV of D

5% 7.5% 10% 12.5% 15%
mean 1.50781 1.50661 1.50773 1.50951 1.51013
Stdev 0.50487 0.50394 0.50919 0.51698 0.51826
Skew 1.08669 1.06335 1.06843 1.09791 1.04747
Kurt 2.29784 2.01102 2.06196 2.23812 1.94653
Cov 33.4835 33.4489 33.7717 34.2484 34.3188
B 2.98655 2.98964 2.96106 2.91984 2.91386
FS 1.0131 1.0123 1.0131 1.0143 1.0147
P«(SS) 0.00550 0.00551 0.00552 0.00551 0.00548

Tables 5. Effect of the COV of m; on statistical parameters of bearing capacity

parameters

value of the COV of m;

6.25% 9.375% 12.5% 15.625% 18.75%

mean 1.50898 1.50676 1.50740 1.50383 1.50530
Stdev 0.50068 0.50708 0.50943 0.51148 0.51842
Skew 1.04331 1.07208 1.07935 1.05642 1.08485
Kurt 1.97126 2.04864 2.10298 1.94907 2.15942
Ccov 33.1802 33.6534 33.7955 34.0120 34.4400
B 3.01384 2.97147 2.95897 2.94014 2.90360
FS 1.0139 1.0124 1.0128 1.0105 1.0114
P«(SS) 0.00547 0.00553 0.00552 0.00555 0.00555

Table 6. Results of variation of the coefficient of correlations between o and GSI

parameters

value of correlation coefficient between o and GSI

-1 -0.75 -0.5 -0.25 0.00 0.25 05 0.75 1
mean 143472 1.45123 1.46932 1.48880 1.50407 1.52250 1.54795 1.56397 1.58021
Stdev 0.13225 0.26622 0.35890 0.43799 0.50631 0.57281 0.64291 0.70616 0.76435
Skew 0.32085 0.54489 0.73754 0.91968 1.05718 1.20324 1.36173 1.51782 1.58095
Kurt 0.24592 0.53912 0.95678 1.60825 1.99090 2.70541 3.43864 4.55541 4.45567
cov 0.21758 18.3446 24.426 29.419 33.6625 37.6227 41.533 45.1515 48.3702
B 10.8488 5.4512 4.0940 3.39917 2.97066 2.65797 2.40773 2.21476 2.06739
FS 0964 09751 0.9872 1.0003 1.0106 1.023 1.0401 1.0508 1.0618
P«(SS) 0.00675 0.0059 0.00569 0.00558 0.00552 0.00549 0.0054 0.00541 0.00541
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Table 7. Comparative results of Monte Carlo and Subsets Simulations

No. of Repetitions

statistical

parameters MCS method SS method

10° 10 10° 10° 3700

mean 1.4152 1.4353 1.4654 1.5047 1.5055
Stdev 0.4522 0.4713 0.4826 0.4963 0.5082
Skew 0.6563 0.7812 0.8509 0.9758 1.0648
Kurt 1.3055 1.5124 1.7050 1.9880 2.0650
cov 31.953 32.609 32.710 32.983 33.759

B 3.1296 3.0666 3.0572 3.0318 2.9621

FS 3.1161 2.6353 2.2741 1.0588 1.0161
P#(SS) 0.0510 0.0221 0.0106 0.0075 0.0055

Table 8. Comparative results of g, (MPa) as given by the proposed method and previous studies (D=0)

o mi FLAck ~ Mao Al Meriield, Proposed
GSI (MPa) (MPa) [17] Bittar,and  Lyamin, and method
Soubra [36] Sloan [37]
20 7.5 10 1.460 1.600 1.568 1.585
20 10 10 1.960 2.130 2.090 2.109
20 12,5 10 2.450 2.670 2.613 2.642
20 15 10 2.930 3.200 3.135 3.167
20 20 10 3.920 4.270 4.180 4.225
30 7.5 10 2.784 3.040 2.978 3.009
30 10 10 3.710 4.060 3.970 4.015
30 12,5 10 4.660 5.070 4.963 5.016
30 15 10 5.605 6.120 5.955 6.037
30 20 10 7.498 8.080 7.940 8.010
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