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Abstract 9 

In this article, a new reliability analysis algorithm is proposed to calculate the probability density 10 

function of the bearing capacity of the foundation resting on rock mass. Despite common 11 

approaches used by other investigators, four parameters with uncertainties have been adopted in 12 

this study as random variables, including GSI index, strength of intact rock (ci), intact rock 13 

constant (mi), and rock mass disturbance factor (D). In the extended Subset Simulation (SS) 14 

proposed in this study, the samples at the first stage are produced using the Monte Carlo 15 

Simulation (MCS), while at the next levels, a Markov chain based on the Metropolis-Hastings 16 

algorithm is applied to each subset. Finally, statistical parameters of the PDF of bearing capacity 17 

are discussed. The results obtained showed that (A) The SS method converges with a much 18 

smaller number of samples than those given by the MCS method; (B) Parameters UCS and GSI 19 

have the greatest effect on the bearing capacity; (C) As the coefficient of variation of the input 20 

variables increases, the value of the reliability index decreases and therefore the probability of 21 

system failure increases.; (D) When the negative coefficient of correlation is used, a decrease in 22 

the variation of bearing capacity is observed. 23 

Keywords: Bearing capacity; Rock mass; Reliability Analysis; Monte Carlo simulation; Subset 24 

simulation. 25 
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1. Introduction 29 

Load-bearing capacity is one of the most significant requirements for the safe and reliable 30 

performance of foundations. Safe and reliable design of foundations is the most critical part of 31 

structural design. Compared to soils, rocks have generally more compressive strength and, hence, 32 

foundations founded on rocks have more bearing capacity. However, the load of large structures, 33 

such as dams, skyscrapers, or bridge piers, induced on foundations resting on rock masses may 34 

be problematic. As a result, in designing the foundations resting on the rocks, all the structural 35 

features of rock the mass and environmental conditions should be attentively taken into account. 36 

Usually more conservative design is reached by using safety factors [1]. In general, designing the 37 

foundation of structures founded on rock mass is not an easy task and, in real cases, requires 38 

preliminary field investigations and detailed office work. These include drilling boreholes, 39 

excavation of exploratory tunnels in the rock beneath the foundation, performing laboratory rock 40 

strength tests, as well as an accurate analysis of the induced and acting loads on the foundation. 41 

Insufficient studies at this stage and inaccuracy in the evaluation of the design parameters for the 42 

foundation design may lead to catastrophic consequences. When deterministic approaches are 43 

used to design the foundations, the resulting safety factor plays a significant role in the project 44 

cost, which may not be in favor of the project owners. In such situations, reliability methods are 45 

considered as an alternative to deterministic methods, as their use leads to a more realistic 46 

design, especially about the uncertainty of the design parameters. 47 

Different methods have been proposed to calculate ultimate bearing capacity or limit state of 48 

rock mass by use of a deterministic approach. Serrano et al and Galindo et al offered the research 49 

on the ultimate bearing capacity of the rock masses according to the modified Hoek-Brown (H-50 

B) and the modified Mohr-Coulomb failure criterion [2-4]. Mansouri et al studied the ultimate 51 
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bearing capacity of rock mass below rectangular and square foundations using three-dimensional 52 

finite element analysis [5]. Galindo & Millan offered a method for computing the bearing 53 

capacity of shallow foundations on anisotropic rock masses using the H-B failure criterion [6]. In 54 

the present study, the situation of a shallow foundation located on the rock masses was 55 

investigated by probabilistic methods. The probabilistic methods provide the possibility of 56 

considering the uncertainties of input parameters on the system response. Most of the previous 57 

probabilistic studies focused on the condition of foundations located on soil layers, including 58 

reliability analysis of foundations located on undrained soils [7-8], mechanism of failure of soil-59 

based foundations [9-10], reliability analysis of bearing capacity of piled raft foundations [11-60 

12], and reliability analysis of the ultimate dynamic bearing capacity of foundations [13-14]. 61 

A review of previous studies shows that limited research has been done on the analysis of 62 

foundation on rock mass by use of probabilistic methods. For example, Millan et al investigated 63 

the use of Artificial Neural Networks (ANN) to predict the bearing capacity of foundation 64 

located on rock mass [15]. In their study, the bearing capacity was predicted with the general 65 

shear failure assumption using the FLAC numerical code of practice based on the H-B criterion. 66 

Predictions of the ANN model agreed well with those obtained from numerical analysis. Albitar 67 

& Soubra considered the geological strength index and the compressive strength parameters 68 

(GSI, ci) as random [16-17]. Their probabilistic method was based on optimized MCS using the 69 

chaos expansion. Their study focused on the correlation distance between parameters, which 70 

showed the greater sensitivity of the ci at high correlations and the lower sensitivity of the GSI 71 

of the rock at low correlations. Basha & Moghal studied the allowable bearing capacity of 72 

foundation on the jointed rock mass using the probabilistic method [18]. In their study, the Bell 73 

equation was used for calculating bearing capacity. In addition, joint orientation, material 74 
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cohesion, joint spacing, and shear strength (friction angle of joints and rock mass) were selected 75 

as random variables. A design algorithm based on the reliability index was proposed. Zawaki et 76 

al predicted the ci of rock masses using statistical methods [19]. They measured the strength 77 

parameters of rock by testing 50 samples of rock taken from 11 different regions in the Czech 78 

Republic. They also determined a suitable probability distribution on the frequency histogram of 79 

each parameter and proposed a new relationship to appraise the ci of rock masses. 80 

As investigated in previous studies, in most of the probabilistic studies performed on rock mass 81 

using the H-B failure criterion, two parameters (GSI & ci) were chosen as random variables. In 82 

the extended method offered in this study, the parameters of disturbance factor (D) and constant 83 

of intact rock (mi) are also considered as random variables to enhance the precision and 84 

performance. The MCS method is an ordinary technique and is capable of estimating the failure 85 

probability of the problems regardless of their complexity and with reasonable accuracy. 86 

However, this method suffers drawbacks including: a) it is usually used as a basis to evaluate the 87 

Probability Density Function (PDF) of the failure probability of the system, however, it may not 88 

be efficient in some particular problems and hence, it may lose its generality. Because of this, the 89 

MCS method may need to be significantly optimized. b) To achieve a suitable accuracy, the 90 

MCS method usually needs large number of simulations which leads to a very time-consuming 91 

process. c) The application of the MCS method becomes cumbersome, or even formidable, when 92 

the fundamental equations and the system response do not follow linear relations. d) Despite 93 

simplicity and applicability, the MCS method has proved to be inefficient in evaluating small 94 

probabilities [20-21]. To overcome the inefficiency of the MCS method in calculating small 95 

failure probabilities, several advanced simulation methods have been developed, including 96 
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Subset Simulation, Spherical Subset Simulation, Line Sampling, Asymptotic Sampling, and 97 

other methods. 98 

In this paper, reliability analysis of the bearing capacity of the foundations on the rock masses is 99 

presented by use of the Subset Simulation (SS). This method is used when the probability of 100  

failure is very small or when subjects are very complex because the computation time is 101  

acceptable [22]. SS is well suited for quantitative analysis of systems experiencing functional 102  

failures, which are identified based on one or more safety variables. SS requires much fewer 103  

samples to reach a given accuracy than does the MCS method. It can efficiently calculate the 104  

probabilities of rare events in reliability problems with complex system features and a high 105  

number of uncertain or random variables in failure events In this method, the problem is turned 106  

into a sequence of problems with conditional failure probabilities. The failure probability of the 107  

main and target problems will be equal to the multiplication (product) of these conditional 108  

probabilities [23]. On the other hand, the SS method is very efficient and can analyze systems 109  

with a large number of random variables or with small failure probabilities. SS, therefore,  is a 110  

method that is found to have efficiency, stability, and capability in the reliability analysis of 111  

complex and nonlinear problems. Hence, the method is adopted here for the base of the analysis 112  

while enhancement and optimizations are considered. 113  

This study includes the following sections: First, the idea of MCS and the SS method is 114  

explained. This is followed by a presentation of the modified H-B failure criterion, which is 115  

applied to calculate the bearing capacity of the rock mass. The reliability analysis algorithm to 116  

compute the bearing capacity PDF is offered. Convergence of the bearing capacity results 117  

achieved from MCS and proposed SS methods is compared. Statistical parameters related to the 118  
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bearing capacity PDF are presented. Discussion of the results is presented and continued 119  

throughout the paper. 120  

 121  

2. Bearing capacity of rock mass 122  

Probabilistic analysis of engineering problems, especially reliability analysis, appears rational 123  

when compared with conventional deterministic approaches. In deterministic analysis, 124  

parameters are considered certain without scattering and error. Then, the design parameters are 125  

calculated, followed by applying a safety factor. A large safety factor may not necessarily imply 126  

the safety of a structure, especially when the input parameters are indeterminate and scattered in 127  

their distribution. In these cases, reliability analysis is preferred to reach a rational engineering 128  

design value. Predicting the possibility of common fractures in rock provides a better 129  

understanding of the overall long-term state of the rock mass. Due to the complexities and 130  

limitations, theoretical criteria are not preferred to predict rock mass behavior and strength. 131  

Instead, experimental failure criteria are generally applied in rock engineering practices. These 132  

criteria are expressed in both linear and non-linear equations relating the principal stresses while 133  

failure is expressed based on some experimental or regressed constants. 134  

2.1. Hoek-Brown failure criterion 135  

     The strength behavior of the rocks is commonly indicated by a failure criterion. The Hoek–136  

Brown criterion is utilized by engineers in practice to estimate the strength of rock masses, being 137  

one of the limited non-linear criteria. Hoek-Brown failure criterion was first presented in 1980 138  

and has been extended to many versions, all of which are non-linear. Initially, Hoek and Brown 139  

suggested a relation between principal stresses at failure in rock as follows [24]: 140  
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2 0.5

1 3 3( * * )ci cim                                 (1)    141  

     In the above relationship, 1 and3 represent the principal stress at failure, respectively, while 142  

ci represents the uniaxial compressive strength of intact rock. The parameter m is a material 143  

constant of the rock and is obtained by statistical analysis, especially the regression approach, on 144  

the available uniaxial and triaxial test results performed on a variety of rock types. Hoek and 145  

Brown recommend that at least 5 pairs of 1 and 3 values of triaxial test results should be used 146  

to achieve a reliable regression analysis. 147  

     As mentioned previously, the H-B failure criterion has been improved since its initial 148  

introduction in 1980, and several updated and expanded versions of the criterion have been 149  

introduced. For example, the Hoek-Brown (1992) relationship is as follows: 150  

2 0.5

1 3 3( * * * )ci cim s                            (2) 151  

100
*expi

RMR
m m

a

 
  

 
                           (3) 152  

100
exp

RMR
s

b

 
  

 
                                      (4) 153  

Parameter s, in equation (2), has been introduced to account for the structural characteristics of 154  

the rock masses, especially concerning the extent and pattern of jointing in a rock mass. 155  

Parameter m in equation (1), also has been modified and reintroduced based on the type and 156  

general class of the rock mass which relies on the RMR (Rock Mass Rating) classification 157  

offered by Bieniawski [1]. This classification system evaluates the rock mass quality based on a 158  

summation of 6 parameters with a maximum of 100 (full mark) for an ideal rock to a minimum 159  

value of 0 for extremely weak or crushed rock masses. In equations (2-4), the maximum value of 160  
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s=1.0 is assigned for an ideally intact rock (no jointing) while the minimum value of s=0.0 is set 161  

for completely a crushed rock. Practically s=1.0 is equivalent to RMR=100 in the Bieniawski 162  

classification. Further, the theoretical value of RMR=0 leads minimum value for m and s in 163  

equations (3-4). Parameter mi is an experimentally determined constant for various types of rock 164  

and RMR=100, the parameter m reaches its maximum value of mi (i.e. m=mi if RMR=100). For 165  

intact rock, parameters “a” and “b” in equations (3-4) are introduced for adjustment of the 166  

strength in various rocks such that for intact rock a=28 and b=9 while for jointed rock a=14 and 167  

b=6 is best adapted. 168  

 169  

2.2. Modified Hoek-Brown Failure Criterion 170  

The most applicable version of the failure criterion suggested by Hoek and Brown (2002) is 171  

defined as follows [25]: 172  

3
1 3

a

ci b

ci

m s
 

     
 

                         (5) 173  

100
*exp

28 14
b i

GSI
m m

D

 
  

 
                           (6) 174  

100
exp

9 3

GSI
s

D

 
  

 
                                       (7) 175  

1 20
0.5 exp exp

6 15 3

GSI
a

      
      

    
           (8) 176  

     In the above equations, ci generally is obtained by uniaxial loading of cylindrical samples 177  

(cores) taken from the intact part of the rock mass under study. 178  
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     The GSI value determines the rock mass quality. It is dependent on the structure of rock mass 179  

and the surface condition of joints. The use of GSI needs a good comprehension of the 180  

engineering aspects and the geological features of rock mass. As shown in the above relations, 181  

values of mb and s also depend on the GSI value of rock masses.  182  

   The D (rock mass disturbance coefficient) in equations (6-7) also has values from 0 to 1 and is 183  

determined experimentally. A value of zero is used for intact and undisturbed rock masses while 184  

a limit value of one is applied for completely disturbed rock masses. The D coefficient depends 185  

on the weathering and the damage caused by disturbing explosions close to or in the rock mass. 186  

The parameter (a) in equations (5-8) ranges practically from 0.5 to 0.65. 187  

   Among the versions of the H-B failure criterion, the modified version of Hoek-Brown (2002) 188  

seems to be more extensible and complete than the previous versions because it applies to all 189  

types of rocks. Therefore, the modified version (2002) is used in this study. 190  

3. Subset Simulation method 191  

3.1.The Monte Carlo Simulation Method 192  

Simulation methods refer to any numerical method for creating system conditions in a real and 193  

natural state. The most common simulation technique is the MCS method, an effective method 194  

for statistical analysis of uncertainties in engineering problems [26]. The results of this method 195  

are very similar to the real solutions. Implementation of this method includes the following steps: 196  

Step 1: Choose an appropriate deterministic analysis solution method; 197  

Step 2: Choose the input parameters for the probabilistic model and quantify their variations; 198  
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Step 3: Generate random samples for each parameter selected from the PDF or data related to 199  

those parameters; 200  

Step 4: Solve the problem using the deterministic analysis methods by the parameters selected to 201  

calculate the performance function; 202  

Step 5: Continue the operation and repeat the last two steps till a sufficient number of 203  

simulations are reached, then, using the output values, the PDF and the failure probability are 204  

determined. 205  

In the MCS method, n values are first produced for each random parameter in the response 206  

equation. The response equation is then solved for each generated random number and, finally, n 207  

values for the system response equation are obtained, which may be applied to obtain statistical 208  

information about the response of the system. 209  

A system failure probability can also be calculated by use of the MCS method. For this target, 210  

failure limits must be specified in advance. Then, the MCS method is carried out for each data 211  

sample and it is checked whether failure occurs or not. The probability of failure is estimated by 212  

dividing the number of samples with failure by the total number of samples. 213  

Using the concept of the MCS method, the probability of failure is easily obtained from the 214  

following equation: 215  

 
1

1

1
N

f

it

p I X
N 

                      (9) 216  

The total number of limit conditions analyzed is represented by Nt. The function I(X) indicates 217  

whether a simulated point is in the region of failure or not and is determined according to the 218  

following relationship: 219  
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 
 

 

1   if   g 0

0   if   g 0

X
I X

X

  
  

  

             (10) 220  

According to Equation (9), the number of Nt sets of independent design variables is obtained 221  

based on their distribution function. Then the failure function or the limit function is calculated 222  

for them. Eventually, the estimated failure probability is computed as follows: 223  

f
f

t

N
P

N
                                   (11) 224  

where Nf indicates the number of failures in the system. 225  

In the bearing capacity analysis using the MCS, the best probability density function for each 226  

input random variable is obtained. In the current study, a log-normal probability distribution 227  

function is considered for the random variables, since such a distribution provides only positive 228  

values. The PDF related to the lognormal probability distribution is obtained from the following 229  

equation: 230  

 

 
2

exp 0.5

* 2

Ln x

f x
x 

  
   
   


                     (12) 231  

That x is a random variable and  and  represent the mean and standard deviation of random 232  

variables. Initially, the desired number of data points is generated for random values from the 233  

PDF of each parameter. A similar process is repeated several times for each random variable at 234  

each level, based on the obtained probability densities, the result values are obtained [27]. 235  

 236  

3.2. Subset Simulation method 237  
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As pointed out in previous sections, one of the disadvantages of the MCS method is that it is 238  

relatively time-consuming. To resolve the issue, the subset simulation (SS) is adopted in the 239  

present study. 240  

The advantages and disadvantages of the SS method need to be carefully studied to come up with 241  

a better approach. One of the simulation methods that provides acceptable results in terms of 242  

computational time is the SS method suggested by Au and Beck [22]. This method is highly 243  

effective for high-dimensional problems and issues with a very small probability of failure. The 244  

SS method has been used in recent years to analyze various structural and geotechnical problems 245  

[28-35]. Therefore, this method is utilized in this research to assess the reliability of the bearing 246  

capacity of the foundation on rock mass. The main aim of the SS method is to convert the subject 247  

into a series of smaller problems with conditional failure probabilities so that the failure 248  

probability of the main problem is equal to the product of these conditional probabilities [22]. 249  

 250  

3.2.1 Fundamental of subset simulation 251  

Based on the event of failure     : 0 ,F X g x g x   is the function of the random variables 252  

 1 2, ,..., nX x x x . The PDF of X is determined by  xf X . It is assumed that 253  

1 2 ... 0mb b b     as a decreasing series of values of the threshold of a failure event 254  

  :k kF X g x b   1,2,...,k m has been given as depicted in figure (1). Then, the 255  

following relationship is established between the failure limits of the thresholds [23]: 256  

1 2 ... mF F F                            (13) 257  

1

k

k i iF F                                    (14) 258  
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   The failure probability may be noted as follows, according to the description of conditional 259  

probability in the probability theory: 260  

         
1

1 1 1 11
...

m

f m m m i ii
P P F P F F P F P F P F F



  
               (15) 261  

Equation (15) presents that the probability of failure is the result of multiplying the conditional 262  

probability series   1 2,3,...,i iP F F i m   and  1P F . The main purpose of SS is to calculate 263  

the probability of failure by measuring the conditional probabilities. By determining  1 1P F P  264  

and  1i i iP P F F    2,3,...,i m , the failure probability in equation (15) is written as follows: 265  

1

m

f ii
P P


                                         (16) 266  

By choosing the correct value of the intermediate failure events, the conditional probability in 267  

equation (16) will be large enough to be estimated by the simulation. Thus, the subject of 268  

calculating the probability of a small failure in the main problem is changed by a series of 269  

conditional probabilities with higher frequencies in the conditional probability space. In equation 270  

(16), P1 can be estimated by the MCS method [23]: 271  

 1

1

1

1 1
1

1 N

F kk
P I X

N 
 
                                (17) 272  

Where    1
1,2,...,kx k N  are the independent samples with the same distribution obtained from 273  

the PDF of  xf X . The term 
1

(1)

F kI x    is also an indicator function such that 
 1

1kx F  then 274  

 

1

1
1F kI x  

 
 and otherwise  

1

1
0F kI x  

 
. In the same way, the conditional probability 275  
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 2,3,...,iP i m  in equation (15) may be measured by generating a sample of the conditional 276  

probability density function        
11 1/

ix i i Fx f x P F q x F I
   : 277  

   
1

1
2,3,...,

i

i

N i

i F kk
i

P I x i m
N 

  
                (18) 278  

As    1,2,..., ; 2,3,...,
i

k ix k N i m   are independent conditional samples with the same 279  

distribution, taken from the probability density function  1iq x F  . Also,  

i

i

F kI x 
 

 is a function 280  

that indicates such that when 
 i

k ix F  then  
1

i

i

F kI x  
 

, otherwise  
0

i

i

F kI x  
 

. 281  

In the SS method, the first-stage samples are produced using the MCS method, while in the next 282  

levels, a Markov chain based on the Metropolis-Hastings algorithm will be applied to each 283  

subset. The Markov Chain Monte Carlo algorithm shown in Figure (2) generates samples with a 284  

distribution   1 2,3,...,iq x F i m  , which is very convenient for calculating conditional 285  

probabilities. Therefore, the SS simulation is performed according to the following steps: 286  

1) Generate N1 independent samples with the same distribution    1

11,2,...,kx k N  from 287  

the PDF  xf X  using the MCS method for i = 1. 288  

2) Determine values of response    1

11,2,...,kg x k N . The  0 1p N th  value from the 289  

descending list N1 is selected as the first value of the intermediate threshold (b1). Also, p0 290  

is considered a predefined value for conditional probability values, such as p0=0.1, where 291  

p0N1 must be an integer value. Then   1 1:F X g X b   defines the first intermediate 292  

failure event. Therefore, the failure probability  1 1P P F  is estimated as 1 0P p . 293  
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3) At this stage, starting from these p0Ni-1 conditional samples that sit in Fi-1 for the ith level 294  

 2,3,...,i m , the Markov chain is performed to produce  0 1i iN p N   the remaining 295  

samples obey the PDF  1iq x F  . 296  

4) Estimate the values of corresponding response    1,2,...,
i

k ig x k N . The intermediate 297  

threshold value bi is selected as the value of (p0Ni)th in the descending list of Ni response 298  

values. Afterward, the next intermediate failure event is determined as 299  

  :i iF X g X b  . The conditional failure probability  1i i iP P F F    may be 300  

calculated by 0iP p  and the probability of failure P(Fi-1) is evaluated as 301  

 
1

1 1

i

i jj
P F P



 
 . 302  

5) Continue Repeating step(3) and step (4) till the value of mth threshold bm is equal to or 303  

less than 0. Then, it is assumed that bm=0 and the failure probability level of the target 304  

(final)    mP F P F  is achieved. The probability of conditional failure 305  

 1m m mP P F F    may be calculated as /m f mP N N  where Nf is equal to the number of 306  

samples located in the final failure zone F=Fm. The probability of final failure 307  

   f mP P F P F   may be calculated as follows: 308  

 1

0

m f
f

m

N
P P

N


                                    (19) 309  

4. Ultimate Bearing Capacity 310  

A literature study shows that investigations on the ultimate bearing capacity of rock mass are 311  

few. Serrano et al proposed a method for predicting the ultimate bearing capacity of a strip 312  
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footing on a weightless rock mass with or without a surface surcharge. The ultimate bearing 313  

capacity qu, as proposed by Serrano et al. using the Hoek–Brown criterion is defined as [2] : 314  

 u n nq N                               (20) 315  

where ζn and βn are constants for the rock mass which depend on mb, a, s and σci according to 316  
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m A
   317  


𝑛

 is known as the toughness of the rock mass while 𝛽𝑛 is known as the strength modulus. 𝑁𝛽 is 318  

a function of the normalized external load on the boundary adjacent to the footing. If there is no 319  

surcharge on the surface boundary, then 𝑁𝛽 can be determined using the method outlined by 320  

Serrano and Olalla [2]. The parameters s, a, and mb are commonly obtained from equations (6-8). 321  

The ultimate bearing capacity obtained from deterministic equation (20) using parameters in the 322  

table (1) is (1.4944 MPa). This is used as a limit state value (failure mode) for calculating the 323  

failure probability. If the results of the reliability analysis of bearing capacity are less than this 324  

value, it will cause failure otherwise safety is considered. 325  

  326  

5. Simulation results 327  

As mentioned earlier simulation methods refer to any numerical approach for creating system 328  

conditions in a real and natural state. The results of these methods are very similar to the real 329  

solutions. In the previous sections, the adoption of the reliability method and failure criterion 330  

were described. In the modified H-B failure criterion (2002) used in this study, all the affective 331  

parameters are assumed random variables. The determination of the ci of rocks can be affected 332  
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by systematic or human error and therefore uncertainty will govern the values resulting from 333  

tests performed on rock samples. The parameters (GSI, D, mi, ci) of the modified H-B failure 334  

criterion are assumed as random variables. The factors (s), (mb), and (a) also are dependent on 335  

the GSI, mi, and D values, as shown in equations (5 to 8). Therefore, they are neither random nor 336  

constant, but for each sample, when the values of GSI, mi, and D change, the values of (s), (mb), 337  

and (a) also change. It is also assumed that the foundations are placed on the surface of the rock 338  

masses without overloading. For investigating the dependence between the parameters ci and 339  

GSI, the coefficient of correlation is determined between them. The statistical parameters related 340  

to random variables introduced above were adopted from ref. [36] and presented in table (1). 341  

 342  

5.1. Effect of coefficient of variation of variables on bearing capacity 343  

The Coefficient Of Variation (COV) represents the scattering rate per unit mean value. The 344  

lower the coefficient of variation, the less scattered the data. This value is dimensionless, making 345  

it appropriate for comparing statistical data with different units. In this section, an investigation 346  

is applied to check the effect of the COV of input variables on bearing capacity. Keeping the 347  

COV of the three random variables constant, the coefficient of variation of the fourth variable is 348  

achieved by gradually a 25% and 50% decrease and increase, respectively. The effect of such 349  

variation is then investigated using SS on the system's probability density function. Finally, a 350  

random variable with the greatest effect on the response system is reached. In this paper, to study 351  

the behavior of a system, in addition to the PDF format of the bearing capacity, the parameters of 352  

reliability index (β), system failure probability (Pf), factor of safety (Fs), and statistical 353  

parameters related to system output, including standard deviation (σ), mean (μ), kurtosis (κ) and 354  
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skewness (δ) were used. The output results are shown in tables (2) to (5). In addition, Figures 355  

(3a) to (3d) present the PDF diagrams of bearing capacity resulting from the change in the COV 356  

of random variables. 357  

As displayed in diagrams (3a) to (3d), it can be seen that the parameter (ci) has the greatest 358  

effect on system response (bearing capacity). This is because the diagram (3a) is more scattered 359  

and more spread out than other diagrams. Indeed, in equation (20) the bearing capacity value has 360  

a direct relationship with ci and any change in ci directly affects the bearing capacity, Since ci 361  

is a prime factor of the compressive strength of rock mass, the higher the ci, the higher is 362  

bearing capacity for rock mass, provided that all other parameters are assumed to remain 363  

unchanged. According to the PDF diagram resulting from the changes in the COV of ci, the 364  

scatter of the response of bearing capacity is larger than that of other variables. Another effective 365  

variable is the GSI (Geological Strength Index), with a great effect on the scatter of the system 366  

response. This is because the parameter GSI describes the structural quality of the rock mass and 367  

depends on its structure and its joint surface condition. The other two variables, mi, and D, have 368  

less effect on the system response.  369  

These results help practicing and engineering professionals make decisions based on the 370  

importance of the impact of variables on design features. As a result, a safe structural design can 371  

be achieved considering uncertainty in design parameters and engineering experience. It is also 372  

observed that as the coefficient of variation decreases, the PDF diagram becomes more compact, 373  

which means the bearing capacity output is less variable and can provide high reliability. 374  

 375  
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The statistical parameters related to the output results of bearing capacity presented in Tables (2) 376  

to (5) are explained. The results clearly show that by increasing the COV of the input variables, 377  

the standard deviation of the bearing capacity also increases, indicating a greater scatter of the 378  

outputs. Skewness also indicates the degree of asymmetry of the probability distribution. As can 379  

be seen in the diagrams from Figures (3a) to (3d), the skewness of the outputs is positive and the 380  

skewness also increases as the COV of the input variables increases, meaning that the PDF 381  

becomes more asymmetrical. This is more evident in the diagrams of figures (3a) and (3b) 382  

related to ci and GSI. Kurtosis describes the degree to which a probability distribution is peaked 383  

or flat. In this study, by increasing the COV of the input variables, the kurtosis of the output 384  

decreases, meaning that the bearing capacity PDF becomes wider and moves away from the 385  

normal state. furthermore, the coefficient of variation represents the rate of scattering per unit of 386  

average and is a dimensionless value. In the current research, increasing the coefficient of 387  

variation of the input variables leads to an increment in the COV of bearing capacity. This 388  

implies a direct relation between these two coefficients of variation. 389  

The reliability index classically refers to the ratio between the mean of a performance function 390  

and its standard deviation. Evaluation of such an index is straightforward if the density function 391  

of the bearing capacity probability is predefined by any method. However, due to the complexity 392  

of the performance function, it is often challenging to calculate the statistical properties of the 393  

PDF, such as the standard deviation and the mean. The purpose of the simulation method is to 394  

calculate these parameters using numerical analysis techniques. The larger the reliability index, 395  

the greater the safety of the design. The reliability index is described as the inverse of the COV 396  

and may be used to assess the probability of failure. In this study, it was found that increasing the 397  

COV of the input variables leads to a decrease in the reliability index value, indicating a decrease 398  



20 
 

in the safety of the system. There are always errors and uncertainties in implementation that 399  

design engineers must take into account in designing structures. For this reason, the allowable 400  

load values for the design must be such as to prevent unforeseen failures due to uncertainties, 401  

thus using safety factors. In this study, it was found that as the COV of input variables increases, 402  

the safety factor required for design also increases, which indicates a decrease in structural 403  

safety. Failure probability shows the risk of system failure throughout its life cycle. Usually, this 404  

parameter is used in probabilistic methods to test the stability or system failure. The findings 405  

reveal that as the COV of input variables increases, the probability of failure also increases. 406  

 407  

5.2.Effect of the correlation coefficient on bearing capacity 408  

The correlation coefficient, used to determine the relationship between two quantitative 409  

variables, is a number between +1 and -1 and is 0 if there is no relationship between the two 410  

variables. The (+1) value expresses a complete direct relationship, and a (-1) value expresses a 411  

perfect inverse relationship between the two variables. In the present research, an investigation is 412  

performed on the impact of changing the correlation coefficient between the two variables, 413  

including GSI and ci of the rock mass, on a PDF diagram of bearing capacity, as displayed in 414  

Figure (4). As shown, when the negative coefficient of correlation is used (when decreasing one 415  

parameter will increase the other parameter), the PDF is less spread out, and the kurtosis index of 416  

the diagram increases, which indicates a decrease in bearing capacity scatter. According to the 417  

results displayed in Table (6), in this case, the standard deviation, mean value, and skewness of 418  

the PDF diagram of bearing capacity decrease, leading to an increment in the reliability index of 419  

bearing capacity. In a positive correlation case, when both parameters increase or decrease 420  

together, there is a significant variation in the ultimate bearing capacity. 421  
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 422  

5.3. Comparison with Monte Carlo simulation 423  

In the present paper, the log-normal probability distribution is considered for random variables 424  

because this distribution provides only positive values. Using MATLAB programming, the 425  

calculation of the ultimate bearing capacity value generated from equation (20) is carried in the 426  

order of 103, 104, 105, and 106 iterations, finally leading to the failure probability calculated from 427  

equation (11). 428  

The PDF diagrams of ultimate bearing capacity at 105 and 106 iterations are shown in Figure (5). 429  

Table (7) also presents a comparison between SS and MCS methods. One of the most important 430  

factors in the MCS is determining the number of iterations required to perform the calculations 431  

using the deterministic equation. Comparing the results of the bearing capacity value achieved 432  

from the MCS with various iterations, it is found that the bearing capacity value increases as the 433  

number of iterations increases. Standard deviation values resulting from 103 up to 106 repetitions 434  

have an increasing trend, which is reasonable due to the increase in the number of repetitions. A 435  

review of the probability of failures achieved from the MCS shows that the higher the number of 436  

repetitions, the lower the failure probability. Additionally, as the number of repetitions increases, 437  

the rate of reduction in the probability of failure decreases. Therefore, it can be inferred that as 438  

the number of repetitions increases, the results of the failure probability converge, and hence 439  

more repetitions do not cause further reduction in the failure probability. 440  

To show the effectiveness of the SS, the obtained results are compared with those given by the 441  

classical MCS. For this purpose, the results of 106 MCS repetitions are calculated. These orders 442  

of repetition are sufficient to achieve convergence to the bearing capacity results obtained from 443  
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the SS. In Figures (6a) to (6d), comparative diagrams of statistical parameters of standard 444  

deviation, mean, kurtosis and skewness related to the mean of ultimate bearing capacity versus 445  

the number of MCS and SS methods are shown. The SS method is a suitable alternative to the 446  

MCS because the SS method can reach the same results as the MCS with less computational 447  

effort. In summary, the SS method discussed here is advantageous since it is faster (fewer 448  

repetitions required) and demands less computational time when compared with the MCS 449  

method. 450  

 451  

5.4. Comparison with other studies 452  

   Table (8) shows the comparison between the results achieved by the suggested method and the 453  

findings of previous studies. The suggested method was validated by comparison of its results 454  

with those presented by Al-Bittar and Soubra, Mao et al and Merifield et al for different values 455  

of the rock parameters [17,36,37]. The chosen disturbance factor value in this paper is (D=0). It 456  

is important to note that the findings reported by Merifield et al represent the mean values 457  

between the upper and lower bound solutions of the limit analysis theory [37]. Meanwhile, Mao 458  

et al only offer an upper bound solution of the ultimate bearing capacity [36]. Table 8 shows that 459  

the results of the ultimate bearing capacity obtained from the proposed model have suitable 460  

agreement with those of other researchers. 461  

 462  

6. Conclusions 463  

In the common deterministic analysis of the bearing capacity of the foundation on rock mass, the 464  

uncertainties in the rocks are neglected and therefore no idea of the probability of failure is 465  
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reached. Therefore, practical values are obtained using safety factors which often leads to 466  

overdesigned structures. This indicates the need to use reliable methods based on statistical 467  

analysis of variations on affecting parameters and probabilistic analysis of the structure failures. 468  

In this paper, the main purpose of the analysis performed is to quantify the uncertainty associated 469  

with the bearing capacity of strip foundations placed on rock mass and determine the PDF of 470  

bearing capacity. Despite the common approaches used by other investigators, four parameters of 471  

the H-B failure criterion with uncertainties were adopted in this study as random variables, 472  

including GSI index, strength of intact rock (σci), constant of intact rock (mi), and disturbance 473  

factor (D) to increase precision and performance of the method. A new reliability analysis 474  

algorithm was proposed to calculate the PDF of bearing capacity. In the SS method extended and 475  

suggested in this study, the samples of the first stage were calculated using the MCS method, 476  

while at later levels, the Markov chain based on the Metropolis-Hastings algorithm was applied 477  

to each subset. Moreover, statistical parameters related to the PDF of bearing capacity were 478  

presented and discussed. Therefore, both MCS and the proposed SS methods were adopted for 479  

the probabilistic analysis. Discussing the results of statistical values of PDF of the bearing 480  

capacity obtained from these simulations, the following conclusions were proposed: 481  

1) A diagram of the PDF of bearing capacity resulting from changing the coefficient of 482  

variation of variables shows that the uniaxial compressive strength parameter ci has the 483  

greatest impact on the system response (bearing capacity). Another important affective 484  

variable was the geological strength index GSI, which affects the scattering of system 485  

response. The other two variables, mi, and D, have less effect on the system response. 486  

2) With a reduction in the COV of variables, the PDF diagram of bearing capacity becomes 487  

more compressed, meaning that the output results of the bearing capacity change less, 488  
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and more reliability can be applied to them. It is also observed that with increasing COV 489  

of input variables, the standard deviation of bearing capacity also increases, which 490  

indicates more scattered outputs. 491  

3) As can be seen in the output diagrams of figures (3a) to (3d), the skewness of the results 492  

is positive which increases with increasing the COV of the input variables. This means 493  

that PDF becomes more asymmetric, which is more evident in the ci and GSI diagrams 494  

figures (3a) and (3b). Also, with an increment in the COV of the input variables, the 495  

kurtosis of results decreases, meaning that the PDF diagram of bearing capacity becomes 496  

wider and moves away from the normal state. 497  

4) It should also be mentioned that by increasing the COV of the input variables, the 498  

reliability index value decreases, and as a result, the failure probability of the system 499  

increases. Also, the safety factor that is used for the design increases accordingly. This 500  

further implies the safety reduction for structure. 501  

5) By investigating the coefficient of correlation between the two variables, uniaxial 502  

compressive strength and geological strength index of the rock mass, it was observed that 503  

when a negative coefficient of correlation was used (when decreasing one parameter will 504  

increase the other parameter), the kurtosis of the diagram increases, indicating a decrease 505  

in variation of bearing capacity. 506  

6) Comparing the results of current SS and MCS methods shows that the SS method 507  

presents almost similar and precise results with a much smaller number of data samples 508  

than those of MCS. Also, in the MCS method, if the number of repetitions reaches 105 509  

and 106 times, results converge to those given by the SS method. 510  

 511  
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Figure captions : 628  

Figure 1. A series of failure events in the SS method 629  

Figure 2. Flowchart showing the implementation of Subset simulation-based reliability analysis for 630  
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Figure 2. Flowchart showing the implementation of Subset simulation-based reliability analysis 672  

for bearing capacity 673  

Determine rock properties, statistical information 

and probability distributions, P0 and N1 for SS method 

Generate N sets of bearing capacity by uncertain parameters 

(GSI, mi, D, ci) using Monte Carlo Simulation method 

Generate N1 bearing capacity samples in the first level of SS 

using Markov Chain 

Last level of SS 

Pi>P0 

Calculate failure probability and reliability index 

Generate additional conditional 

samples using Markov Chain based 

on Metropolis Hastings method 

Rank the values in ascending order and take the first Nc 

samples as seeds for Markov Chain in the next level of SS 
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   674  

    675  

Figure 3. Effect of the COV of the input random variables on the PDF diagram of the ultimate bearing 676  

capacity : (a) effect of cov(σci); (b) effect of cov(GSI); (c) effect of cov(mi); (d) effect of cov(D) 677  

 678  
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 679  

Figure 4. Effect of the correlation coefficient on PDF variation of the ultimate bearing capacity 680  

 681  

 682  

Figure 5. PDF of ultimate bearing capacity at 105& 106 iterations 683  

 684  

    685  
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    686  

          687  

Figure 6. Effect of the number of simulations on statistic parameters of ultimate bearing capacity :          688  

(a) mean; (b) standard deviation; (c) skewness; (d) kurtosis 689  

 690  

 691  

 692  

 693  
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Table 1. Statistical parameters values of random variables [36] 694  

Variables Mean COV PDF 

σci [MPa] 10 25 Log-normal 

GSI 25 10 Log-normal 

mi 8 12.5 Log-normal 

D 0.3 10 Log-normal 

 695  

Tables 2. Effect of the COV of σci on statistical parameters of bearing capacity 696  

parameters 
value of the COV of σci 

12.5% 18.75% 25% 31.25% 37.5% 

mean 1.50741 1.51014 1.50550 1.50763 1.50377 

Stdev 0.38293 0.44201 0.50825 0.58920 0.66083 

Skew 0.82210 0.92925 1.06488 1.24571 1.40944 

Kurt 1.2887 1.56995 2.06502 2.84794 3.70555 

COV 25.4034 29.2698 33.7594 39.081 43.9448 

β 3.93649 3.41649 2.96214 2.55879 2.27558 

FS 1.0128 1.0147 1.0116 1.0130 1.0104 

Pf(SS) 0.00532 0.00538 0.00555 0.00561 0.00575 

 697  

Tables 3. Effect of the COV of GSI on statistical parameters of bearing capacity 698  

parameters 
value of the COV of GSI 

5% 7.5% 10% 12.5% 15% 

mean 1.49056 1.50199 1.50547 1.51899 1.52959 

Stdev 0.42207 0.45978 0.50806 0.56469 0.62025 

Skew 0.30013 0.46227 0.62467 0.76540 0.87777 

Kurt 0.23620 0.45756 0.71196 0.99006 1.31516 

COV 28.3164 30.6114 33.7475 37.1752 40.5498 

β 3.53152 3.26675 2.96319 2.68997 2.46610 

FS 1.0015 1.0092 1.0128 1.0206 1.0277 

Pf(SS) 0.00517 0.00518 0.00524 0.00528 0.00530 

 699  
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 701  

 702  

 703  

 704  

 705  

 706  
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Tables 4. Effect of the COV of D on statistical parameters of bearing capacity 707  

parameters 
value of the COV of D 

5% 7.5% 10% 12.5% 15% 

mean 1.50781 1.50661 1.50773 1.50951 1.51013 

Stdev 0.50487 0.50394 0.50919 0.51698 0.51826 

Skew 1.08669 1.06335 1.06843 1.09791 1.04747 

Kurt 2.29784 2.01102 2.06196 2.23812 1.94653 

COV 33.4835 33.4489 33.7717 34.2484 34.3188 

β 2.98655 2.98964 2.96106 2.91984 2.91386 

FS 1.0131 1.0123 1.0131 1.0143 1.0147 

Pf(SS) 0.00550 0.00551 0.00552 0.00551 0.00548 

 708  

Tables 5. Effect of the COV of mi on statistical parameters of bearing capacity 709  

parameters 
value of the COV of mi 

6.25% 9.375% 12.5% 15.625% 18.75% 

mean 1.50898 1.50676 1.50740 1.50383 1.50530 

Stdev 0.50068 0.50708 0.50943 0.51148 0.51842 

Skew 1.04331 1.07208 1.07935 1.05642 1.08485 

Kurt 1.97126 2.04864 2.10298 1.94907 2.15942 

COV 33.1802 33.6534 33.7955 34.0120 34.4400 

β 3.01384 2.97147 2.95897 2.94014 2.90360 

FS 1.0139 1.0124 1.0128 1.0105 1.0114 

Pf(SS) 0.00547 0.00553 0.00552 0.00555 0.00555 

 710  

Table 6. Results of variation of the coefficient of correlations between σci and GSI  711  

parameters 
value of correlation coefficient between σci and GSI 

-1 -0.75 -0.5 -0.25 0.00 0.25 0.5 0.75 1 

mean 1.43472 1.45123 1.46932 1.48880 1.50407 1.52250 1.54795 1.56397 1.58021 

Stdev 0.13225 0.26622 0.35890 0.43799 0.50631 0.57281 0.64291 0.70616 0.76435 

Skew 0.32085 0.54489 0.73754 0.91968 1.05718 1.20324 1.36173 1.51782 1.58095 

Kurt 0.24592 0.53912 0.95678 1.60825 1.99090 2.70541 3.43864 4.55541 4.45567 

COV 9.21758 18.3446 24.426 29.419 33.6625 37.6227 41.533 45.1515 48.3702 

β 10.8488 5.4512 4.0940 3.39917 2.97066 2.65797 2.40773 2.21476 2.06739 

FS 0.964 0.9751 0.9872 1.0003 1.0106 1.023 1.0401 1.0508 1.0618 

Pf(SS) 0.00675 0.0059 0.00569 0.00558 0.00552 0.00549 0.0054 0.00541 0.00541 

 712  

 713  

 714  

 715  
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Table 7. Comparative results of Monte Carlo and Subsets Simulations 716  

statistical 

parameters 

No. of Repetitions 

MCS method SS method 

103 104 105 106 3700 

mean 1.4152 1.4353 1.4654 1.5047 1.5055 

Stdev 0.4522 0.4713 0.4826 0.4963 0.5082 

Skew 0.6563 0.7812 0.8509 0.9758 1.0648 

Kurt 1.3055 1.5124 1.7050 1.9880 2.0650 

COV 31.953 32.609 32.710 32.983 33.759 

β 3.1296 3.0666 3.0572 3.0318 2.9621 

FS 3.1161 2.6353 2.2741 1.0588 1.0161 

Pf(SS) 0.0510 0.0221 0.0106 0.0075 0.0055 

 717  

Table 8. Comparative results of qu (MPa) as given by the proposed method and previous studies (D=0)  718  

GSI 
σci 

(MPa) 

mi  

(MPa) 

FLAC3d 

[17] 

Mao, Al-

Bittar, and 

Soubra [36] 

Merifield, 

Lyamin, and 

Sloan [37] 

Proposed 

method 

20 7.5 10 1.460 1.600 1.568 1.585 

20 10 10 1.960 2.130 2.090 2.109 

20 12.5 10 2.450 2.670 2.613 2.642 

20 15 10 2.930 3.200 3.135 3.167 

20 20 10 3.920 4.270 4.180 4.225 

30 7.5 10 2.784 3.040 2.978 3.009 

30 10 10 3.710 4.060 3.970 4.015 

30 12.5 10 4.660 5.070 4.963 5.016 

30 15 10 5.605 6.120 5.955 6.037 

30 20 10 7.498 8.080 7.940 8.010 

 719  
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