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Abstract 

Due to conflictions between different purposes and objectives of the industrial robots, a multi-

objective optimization is required to find the non-dominant answers to choose from. In this article, 

we have introduced a new optimization objective which involves the robot’s high acceleration, 

actuator effort reduction; while avoiding the singularities which is applicable on any robot with an 

approximate known inverse dynamic. The cost function is defined by designing a computed torque 

control on robot. Our objectives are defined as: 1. minimizing the root mean square (RMS) power 

needed in motors for movements with the maximum acceleration of the end effector in different 

directions (cost/effort reduction), 2. Minimizing the mean Jacobian condition number in a 

predefined workspace (kinematic performance improvement) and 3. Minimizing the mass matrix 

condition number in a predefined workspace (dynamic performance improvement). The multi-

objective problem is numerically solved using a genetic algorithm, yielding non-dominated 

solutions known as Pareto fronts. Geometrical design variables are chosen from Pareto fronts by 

three different Multiple-Criteria Decision Making (MCDM) methods. Eventually, cost functions 

of the designed robot are compared with a Fanuc M-2iA/3S model. 

Keywords: Delta Rotary Robot, Parallel Robot, Multi-Objective Optimization, Genetic 

Algorithm, Multi-criteria Decision Making. 

 

1. Introduction 

The standard type of Delta parallel Robot which has 3 rotary actuators connected to 3 legs and 

parallelograms, was invented by Clavel in 1987 [1, 2]. Utilizing the actuators on top base, provides 

the robot with a light end effector, which results in high speeds and mobility. Different industrial 

and academic versions of Delta robot have been designed, optimized and manufactured [3-5]. In 

2002, Bruzzone et al. designed and controlled a linear Delta robot which was for peg-in-hole 

problem. They utilized the equivalent mechanisms rather than parallelograms [6]. In 1998, 

Tsumaki et al. designed a compact 6 DOF haptic interface with a large workspace [7]. It contained 

a five-bar spatial mechanism for orientation which is positioned on a Delta Mechanism that allows 

high speeds due to parallel mechanism. In 2021, Meza et al. designed and kinematically analyzed 

a delta robot for a predefined workspace on supermarkets for social distancing during Covid-

Pandemic [8]. 

Some research focused on Robot’s workspace mainly with the objective of maximizing the 

workspace and avoiding the singularities [9-13]. Laribi et al. solved the problem of finding suitable 

design variables of a Delta robot in order to have the nearest real workspace to a desired workspace 

shape and size [14]. Some researchers used computer assisted design for determining and 

optimizing joint areas reached by arms[12, 13]. In 2019, McCormick optimized the objective of 

minimum unutilized workspace of the rotary Delta robot by two methods of genetic algorithm and 

maximum surrounding workspace[15].  
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There are other optimizations focused on the stiffness of the robot allowing high positioning 

accuracy[16]. In 2020, by considering the compliance matrix for stiffness formulation, Mirz 

performed an optimization on the Delta robot using genetic algorithm[17].  

 

In 2003, Stock and Miller optimized a kinematic design on linear Delta robot and examined the 

mobility, workspace and manipulability and concluded that manipulability and workspace are 

contradictory, since solely optimizing the manipulability leads to a zero workspace [18]. 

Therefore, solely optimizing one objective may result in robot’s failure and simultaneously 

considering different objectives is required. In 2004, Miller optimized and modeled the Delta 

parallel manipulator by considering two objectives of maximizing workspace volume and 

manipulability [19]. In 2012, Kelaiaia et al. performed a multi-objective optimization on a linear 

Delta parallel robot [20]. Their optimization criteria were workspace, stiffness, kinematic and 

dynamic performances, and they solved the multi-objective problem by defining constraints and 

application of genetic algorithm SPEA-II. He used the Jacobian condition number for measuring 

the manipulability as well as Kelaiaia in [20]. In 2016, Bounab solved a multi-objective optimal 

design problem for Delta mechanism and its criteria was to find the maximum regular workspace 

where the robot must possess the maximum stiffness and dexterity [21]. In that work, Castigliano’s 

energetic theorem was used for modeling the elastostatic behavior of Delta robot and numerically 

solved the problem with genetic algorithm [21]. In 2021, Yang et al. considered two conflicting 

objectives of lightweight and high stiffness and used sensitivity analysis and response surface 

methods for optimization [22]. In 2021, Ohno et al. defined joint impact index to evaluate the 

magnitude of actuation torque fluctuation due to the collision at the passive joints with clearances 

and solved its target trajectories using multi-objective optimization [23]. 

 

In 2021, Carabin et al. proposed using elastic elements such as springs to increase Delta robot’s 

energy efficiency [24]. Although so many optimizations have been done on Delta robot, none of 

the previous works consider cost reduction and minimizing the actuator effort by considering arm 

length. In this paper, a new optimization goal has been introduced which is to reduce the actuator 

effort by considering both Delta robot’s high acceleration, and the manipulator’s ability to follow 

desired paths in workspace. An approximation of the robot’s inverse dynamics is mandatory to 

define the cost function[25, 26]. Hence, we use the Codourey et al. dynamic modeling which is 

based on the virtual work principle [27-29]. We will use Laribi’s and Staicu’s inverse kinematics 

equations for our constraints [14, 30, 31]. There are state-of-the-art adaptive robust iterative 

control [32] and backstepping [33] control of Delta robot but to analyze the optimization results, 

a multi-layer sliding mode control method is designed on the robot. Control results demand the 

direct dynamics of the robot which is brought by [34, 35]. Since the exact direct dynamics of Delta 

robot is complicated, we will use Simulink to model and analyze the system. 

We have also considered two other objectives of kinematics and dynamics performance 

optimizations by utilizing the Jacobian and mass matrix condition number. Objectives are 

separately and simultaneously optimized, and Pareto optimal fronts are resulted. In the end, the 

multi-criteria decision making (MCDM) problem of choosing the answer from the Pareto front is 

solved. Initially, the weights of each criterion is determined using Entropy method and by using 

these weight and utilization of three different methods of CODAS, PROMETHEE II and 

ELECTRE, the best geometrical specifications are chosen and compared with the Fanuc industrial 

Delta robot [36]. 
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2. Kinematics of Delta Robot 

Solution of kinematics of the robot is necessary for solving its inverse dynamics. The inverse 

dynamics of the robot is the key for analysis of the first objective Equation 1 is the relation between 

the input angular speeds (  1 2 3

T
q q q q ) and output speed of the end effector (

 
T

X x y z ). 𝐽 is known as the Jacobian matrix.                

 X Jq  (1) 

Conforming Figure 1, from the output position, we mean the location of the end effector center 

(point P), and from the input angle “i” (i=1,2,3), we mean the angle of motor no. “i” with the 

horizontal plane (XY). Jacobian matrix is defined as below [37]: 
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where, a bR R R  . 

Rotational matrix 𝑅𝑖
𝑅  is defined by Eq. (5), in which i is the rotation angle of the motors in the 

XY plane which is constant; while  1 2 3 0, 120      
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Equation (6) will be resulted by differentiating from Eq. (1) as: 
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Jacobian matrix given by Eq. (2) is useless at the current form and it is not practical, since it 

contains the terms from the input and output simultaneously. Hence, the robot geometry should be 

solved. We will use the Laribi’s inverse geometry solution [14] as: 
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 cos sin 0i i i i jl q m q n    (7) 

In which: 

 

 1 1 12 cos sini i il R L L x L y     , 12im L z  and 

2 2 2 2 2 2

1 22 cos 2 sini i in Rx Ry x y z R L L          . 

  
Inverse geometry means that with having the end effector’s output position, we obtain the input 

angles. Equation (7), has two solutions as Eq. (8) and the correct answer will have the positive sign 

(+) before the radical. 

 2 2 2

2 2
sin

i i i i i

i

i i

m n m l n
q

m l

  



 (8) 

 

2.1 Supplementary angle condition: Inverse geometry’s solution leads to the sinus of angles. 

Using the arc sinus function for obtaining the angle’s amount eventuates an issue. For sin(q) = α, 

both arcsinq  and arcsinq     are correct. In most locations of the robot’s workspace, 

input angles are acute, but in some locations specially, far from the origin, angles are more than 

90°. We need to distinguish between these solutions and find the correct answer in order to 

correctly compute the fitness functions for optimization. 
 

According to Figure 2, the correct angle is the one which leads to the length of BC to be equal to 

L2 (length of the parallelogram). This condition must be applied to the solution. 

 

3. Dynamics of Rotary Delta Robot 

 In dynamics of the Delta robot, motor torques are the inputs and the end effector’s acceleration 

is the output. The inverse dynamics solution of the robot is mandatory for definition and 

measurement of the objectives, so that for a known and desired end effector’s movement, input 

torques are computed. This is also known as computed torque control which is a predictive 

functional method [38]. 

Delta robot has a nonlinear, complex and coupled dynamics and attributing a torque to a single 

motor, will affect the other motors. Applying the incorrect torque to a motor will result in high 

tracking errors or even damage and breakdown. Precise dynamics of the Delta robot is not available 

and only approximate dynamics can be used.  

 The Codoury’s model [27-29] has been used for inverse dynamics. Codoury has used the 

virtual work method for inverse dynamics’ solution. For simplification, rather than considering the 

parallelogram’s big side’s mass as continuous, it is distributed into two-point masses at side’s 

endings as shown in Figure 3. 
 

with mass distribution’s approximation, inverse dynamics problem is solved as [28]: 

 p   (9) 
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 In the formulas, 1lm represents first elbow's mass, 2lm the parallelogram’s big side’s mass, g 

the gravity, tm the payload, and 3lm the parallelograms' small side's mass. 

  Additionally, ,i xr is the distance between 
thi elbow from the motor and ,i yyI is the second 

momentum inertia of 
thi elbow with respect to 

thi motor. 

 Inverse dynamics’ standard form equation is resulted by rewriting the equation solely with 

linear acceleration as: 
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3.1 Approximated Dynamics Error 
 To control the robot, error of the simplified dynamics must be approximated. Hence, for a 

sinusoidal movement with an amplitude of 15 cm (Figure 4), motor torques are computed by Eq. 

(10). Then, computed torques are applied to the motors and the end effector position is measured 

with Simulink. Then, this measured position is compared with the primitive desired position and 

error is measured. 
 

  Simplified dynamics error is shown in Figure 5. Note that there are no other errors or 

uncertainties other than dynamics. Error is 1mm in X and Y directions and 4mm in Z direction. 

Due to gravity, end effector’s position is always lower than desired. 

 

Properties of the system are as below: 
l1=0.571 m , l2=0.847 m 

R=0.114 m , h=0.32 m 

ml1=0.634 Kg , ml2=0.551 Kg 

ml3=0.028 Kg , mt=3.0 Kg 

As the ratio of the end effector mass to the second elbow’s mass (mt/ml2) decreases, simplified 

dynamics error increases, since the effect of mass distribution has a more impact on the system.  
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4. Objectives and Optimization Process 

Pre-determined workspace of the Delta Robot is a cube with the side of b (b=60 cm) and a 

height of h from the base, as shown in Figure 6. Design variables are including the: 1- first elbow 

length (𝐿1), 2- Second elbow length (𝐿2), 3- R and 4-h. 
 

 

4.1 Constraints of the Problem 
Constraints of the problem are listed as follows: 

a) Motor torques should not go beyond a limit (motor constraint). We consider this limit as 

45 N.m with respect to a suitable industrial motor [39]. 𝜏𝑚𝑎𝑥 < 𝜏𝑎𝑙𝑙 
b) For each point in the workspace, a possible solution should exist for inverse geometry. 

c) Due to the geometry limits, elbow lengths, R and height should be chosen from these 

intervals: 

0 < h < 0.5 (m), 0 < R < 0.4 (m), 0.3 < L1 , L2 < 1  (m) 

 

4.2 Objectives of the Problem 
In this research, three objectives are considered: 

Objective 1: Minimizing the root-mean-square (RMS) power needed in motors for the 

maximum acceleration movement of the end effector 

  High speed and agility are the features of Delta robot. At this problem, robot must perform 

point to point movements in the fastest time possible. If the highest acceleration would be assigned 

as “𝑔”, then the fastest way of a point-to-point travel is to start accelerating with “+𝑔” from the 

start point to the path’s midpoint and then decelerating with “−𝑔” and finally stop at destination. 

This is called a bang-bang path, as shown in Figure 7. 

  Optimization should not tend to a specific path or direction and chosen paths should be 

distributed in all directions. The assigned paths contain the start point of cubic workspace’s center 

and end point of workspace’s boundary in different directions. In sum, 26 paths are chosen, RMS 

power is computed in each path and finally the average of these 26 paths is reported as the objective 

1 fitness function value; as below: 
 

Start point:  O (0,0, )
2

bh  

End point: ( , , )i end end endA x y z  

, ,0, , , ,
2 2 2

end end end

b b b
X Y Z h h h b

   
        
   

 

and  , , 0,0,
2

end end end

b
X Y Z h

 
  
 

 

 
Obj 1: minimize 

26

1

1
( )

26
rms i

i

P OA


  (11) 

 

Objective 2: Improvement of the kinematic performance  

  A good kinematic performance, means that in all points of the workspace, the end effector 

could be able to move in all directions. In other words, moving in one direction shouldn’t be harder 

than other directions which is defined as dexterity. As if the robot is kinematically isotropic and 
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dexterous. In order to define this as a cost function, we utilize the concept of condition number 

described in [20, 21]. 

 Condition number of a matrix, calculates the ratio of its maximum singular value to minimum 

one. A matrix with determinant of zero, has an infinite condition number. Conversely, a completely 

isotropic matrix has a condition number of 1. 

 For a good kinematic performance of the robot in a specific position, its Jacobian condition 

number should tend to 1. Thus, minimizing the condition number of the Jacobian matrix (equal to 

1 in the best case) for all points of the workspace, would be defined as the objective. Since, there 

are infinite points in the workspace, the average of a finite number of points must be calculated. 

For a uniform distribution of the workspace, we attribute 5 points with equal spacing to the cubic 

workspace on each axis (X,Y,Z), and a total of 125 distributed points in the workspace will be 

surveyed. The cost function of the objective 2 is defined as: 

 
Obj 2: minimize: 

1
_ ( )condition number J

N
  (12) 

In which 𝑁 is equal to 125. 

 

 

Objective 3: Improvement of the dynamic performance  

  In the previous objective, nothing about the inertia or mass was considered. Objective 3 is 

defined with an approach of accelerating in all directions, in which the mass and inertia are 

considered. Mass matrix is calculated as below [20]: 

 ( ) ( , ) ( )I q q V q q q G q     (13) 

 1( )TM J I q J   (14) 

and objective 3 is defined as: 

 
Obj 2: minimize: 

1
_ ( )condition number M

N
  (15) 

This objective means in a distributed point cloud (as defined in the previous objective), 

accelerating in all directions would be easy and uniformed and the robot is dynamically isotropic. 

4.3 Optimization results 
  Objectives are separately optimized with genetic algorithm method and results are shown in 

Table 1. 

Note that the results in Table 1, are the best possible values for each objective. Focusing on one 

objective may result in poor values in other objectives.  

Figure 8 represents the optimization results and Pareto fronts for the Two-objective problem. 

There are three Pareto fronts for each two objectives, together. 

 
 

The third Pareto front in Figure 8 concludes objectives 2 and 3 are consistent with each other 

due to a little change in their fitness function value. 

Finally, three-objective optimization is solved, and Pareto surface is shown in Figure 9. 

Corresponding results are shown in Table 2. 
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5. Solving the MCDM problem of choosing the alternative 

There is a total of six alternatives based on Table 2. These alternatives are resulted from the 

Pareto front; meaning they are dominant compared to all other designs. In this part, the best 

alternative is chosen with the help of three MCDM methods.  

5.1 Calculating the normalized decision matrix 
To make the comparison of these alternatives possible, the normalized decision matrix must be 

derived. To convert the minimization problem to maximization, inversion of each value can be 

done. Since lower values in all criteria of RMS power, Jacobian and mass condition number are 

favorable, all of values must be inversed after the normalization. The normalized decision matrix 

is derived as Table 3: 

The next step of decision-making progress is determining the weights of each criterion.  

5.2 Determining the weights of each criterion 
There are different methods for determination of weights for each criterion such as direct 

weighting, Entropy method, Eigenvector method and SWARA method. In the direct weighting 

method, the expert determines the importance of each criterion. However, a more systematic 

method of determining the weights is the Entropy method. This method does not solely rely on 

expert’s opinion and it uses the available information from the input data. the importance of each 

objective is determined through its variance among the alternatives. The walkthrough of Entropy 

method is brought in the following. 

 

Step 1: Calculation of feature weight 𝑃𝑖𝑗 for the 𝑖𝑡ℎ alternative and 𝑗𝑡ℎ criterion: 

 

6

1

ij

ij

ij

i

a
p

a





,   1 6i     ,   1 3j   

 

(16) 

Step 2: The output entropy 𝑒𝑗 of the 𝑗𝑡ℎ factor is calculated as follows: 

 6

1

1
ln

ln 6
j ij ij

i

e p p


      ,   1 3j   (17) 

Step 3: Calculation of weight of the entropy 𝑤𝑗: 

 
5

1

1

(1 )

j

j

j

j

e
w

e






 

 

(18) 

Using entropy method, the weights for each objective are derived which are 0.414, 0.0080 and 

0.506 for criteria one to three, respectively. 

 

5.3 MCDM methods for determining the best alternative 
With weight coefficients for each criterion determined, MCDM method can be used.  

 

1- CODAS (Combinative Distance-based Assessment) method 

This method uses Euclidean and Texicab distances from the minimum value in each criterion 

and the assessment score is calculated afterwards. Table 4 shows the rankings of each alternative. 
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2- PROMETHEE II (preference ranking organization method for enrichment 

evaluation) 

PROMETHEE II (complete ranking) method was developed by J.P. Brans [40]. This method 

consists in a preference function associated to each criterion as well as weights describing their 

relative importance. PROMETHEE ІІ method is based on pairwise evaluation considering the 

difference (deviation) between two alternatives. The scores and rankings are represented in Table 

5. 

 

3- ELECTRE (Elimination Et Choice Translating Reality) method 

The ELECTRE method helps with solving the concept of outranking relations encountered with 

diverse concrete problems [41]. In this method, the alternative with a higher concordance and 

lower discordance outranks other alternatives. The score of each alternative can be calculated with 

these values. The scores and rankings are shown in Table 6. 

Even though all of the MCDM methods do not agree on all rankings, they mutually highlight 

fifth alternative (A5) as the first rank.  

  Pareto front resulted from objectives two and three has no vision on reducing the robot’s size 

and two first design variables of L1 and L2 tend to upper limit. Hence, by surveying the Pareto 

optimal fronts, we choose: 

L1=0.609 m,    L2=0.843 m,   R=0.094 m,   h= 0.349 m 

  Fitness functions of this solution are shown in Table 7. By comparing the fitness functions 

with the optimization results of the three-objectives problem shown in Table 2, we find it is rather 

a good chosen answer by considering all goals altogether. 

5.4 Comparison of the results with an industrial robot 
  Designed robot is compared with the well-known Fanuc industrial robot model M-2iA/3S [36] 

which is similar in payload (3 kg) and workspace dimensions to our designed robot. The 

comparison results are shown in Table 7. Although the workspace of the industrial robot is not an 

exact predefined cube, clearly, the proposed designed robot is better in fitness functions in almost 

every criterion. 

6. Conclusion 

  A Delta robot is designed and optimized with objectives including the 1. Minimizing mean 

RMS power for bang-bang movements with an acceleration of gravity, 2. Improvement in 

kinematic and 3. Improvement in dynamic performance and making the robot isotropic for 

accelerating and movement. As most multi-objective optimizations, these objectives are 

inconsistent and conflicting. Therefore, by utilizing the genetic algorithm and extracting the Pareto 

optimal fronts, all non-dominant answers are discovered. 

The multi-criteria decision making of choosing the final design among the Pareto front 

alternatives was executed in two stages. Initially, the weight factors of each criterion were 

calculated with Entropy method. Then, the MCDM problem was solved with three different state-

of-the-art methods. All the methods mutually converged on one alternative and the design 

variables of the robot was determined. 

  The designed robot was compared with an industrial robot of Fanuc. Cost reduction, less 

movement power and torques, avoiding the kinematic and dynamic singularities in the predefined 

cubic workspace, better kinematic and dynamic performance and a better isotropy are our robot’s 

improvements. However, industrial robot has smaller dimensions and as a result, gravity has less 

effect (lower static torques) and its workspace is more similar to the desired workspace. 
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  Indeed, Delta robot still establishes rooms for improvement and further research. Delta robot’s 

mechanism can be modified for a workspace with a large height. Although linear Delta mechanism 

is designed for these applications, it lacks the high operational speeds. Hence, a new modified 

mechanism can be beneficial. Also, adding the balance masses to the arms can reduces the gravity 

effects on the motor torques which increases the motors’ durability and can increase the 

performance speed. 
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Figure 1. Input angles and output position 

 

 

 
Figure 2. Distinguishing the correct angle between two supplementary angles  
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Figure 3. distributing parallelogram’s mass [24] 
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Figure 4. Position-time diagram for the desired path 
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Figure 5. Simplified dynamics error 

 

 
Figure 6. Desired workspace of the Delta Robot  
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Figure 7. Desired Bang-Bang path velocity-time diagram 

 

 

 

 

 
Figure 8. Pareto fronts for two-objective optimizations 

 

 



18 

 

 

 
Figure 9. Pareto Surface for three-objective optimization 

 

 

 

 

 

 
Table 1. Optimization results for one-objective problem 

 

Objective L1 (m) L2 (m) R (m) h(m) Best value 

Power RMS 0.632 1 0.162 0.4 17.83 watts 

Condition number of Jacobian 0.837 1 0.003 0.385 1.248 

Condition number of Mass matrix 0.788 1 0.046 0.499 1.141 

  

 

 
Table 2. Dominant answers for the three-objective problem 

Criteria Design parameters 

Power 

RMS (w) 

Jacobian 

condition number  

 Mass matrix 

Condition number 

L1 (m) L2 (m) R (m) h (m) 

21.87 1.4430 1.2981 0.647 0.811 0.016 0.236 

21.00 1.5968 1.5009 0.584 0.795 0.101 0.226 

22.09 1.5158 1.2887 0.659 0.970 0.235 0.424 

21.20 1.5537 1.3098 0.563 0.788 0.103 0.267 

22.56 1.4524 1.1911 0.609 0.843 0.094 0.349 

20.35 1.6293 1.4891 0.570 0.870 0.149 0.317 
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Table 3- Normalized decision matrix 

Alternative Power RMS Jacobian 

condition number 

Mass matrix 

condition number 

A1 0.335 0.478 0.403 

A2 0.472 0.355 0.240 

A3 0.300 0.410 0.416 

A4 0.440 0.382 0.388 

A5 0.226 0.468 0.629 

A6 0.574 0.336 0.246 

 

 
Table 4- Alternative ranking based on CODAS method 

Alternative Euclidean Texicab Score Rank 

A1 0.090 0.127 -0.119 5 

A2 0.074 0.075 -0.212 6 

A3 0.092 0.117 -0.103 4 

A4 0.099 0.143 -0.063 3 

A5 0.197 0.207 0.527 1 

A6 0.105 0.108 -0.028 2 

 

 

 
Table 5- Rankings resulted from PROMETHEE II method  

Alternative phi+ phi- phi Rank 

A1 0.060 0.077 -0.017 3 

A2 0.044 0.171 -0.127 6 

A3 0.059 0.089 -0.030 4 

A4 0.071 0.059 0.012 2 

A5 0.310 0.090 0.220 1 

A6 0.104 0.162 -0.058 5 

 

 

 
Table 6- Rankings based on ELECTRE method 

Alternative Concordance Discordance Score Rank 

A1 0.492 -0.013 0.505 3 

A2 -1.528 2.842 -4.370 6 

A3 0.356 1.168 -0.812 5 

A4 -0.172 -1.537 1.365 2 

A5 0.700 -2.342 3.042 1 

A6 0.152 -0.118 0.270 4 
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Table 7. Comparison of the results with an industrial robot  

    Designed 
Fanuc 

M-2iA/3S [29] 

Design 

Variables 

L1 (m) 0.609 0.32 

L2 (m) 0.843 0.681 

R (m) 0.094 0.02 

h (m) 0.349 0.386 

L1 / L2 0.722 0.470 

Fitness 

Functions 

Power RMS (W) 22.56 29.05 

Average Jacobian condition No. 1.4524 4.0564 

Maximum Jacobian condition No. 2.1912 18.6475 

Average mass matrix condition No. 1.1911 1.6268 

Maximum mass matrix condition No. 1.6295 4.3575 
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