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Abstract. 
 

Maximizing system dependability, lowering overall system costs, and accounting for system constraints are critical 

to preventing the negative outcomes that result from the failure of today's modern industries' whole systems. In 

order to optimize the reliability-redundancy allocation problem (RRAP) in a series-parallel system and reduce over-

all cost, we present a novel multi-objective mixed integer non-linear model in this study. The majority of research 

on redundancy-aware parallel processing (RRAP) assumes homogeneous components, predetermined component 

dependability, and active or cold-standby redundancy techniques in each subsystem. We will use the NSGA-II strat-

egy to tackle the given multi-objective mixed-integer non-linear problem. Each of the aforementioned assumptions 

acts as a barrier, preventing the solution regions from increasing. The suggested multi-objective approach is made 

up of many diverse components, the dependability of which is not immediately apparent. Furthermore, hybrid tech-

niques (active and cold-standby redundancy) can be employed in any subsystem. The trustworthiness of subsystem 

components is uncertain and considered a decision variable. The proposed optimization problem is NP-hard, requir-

ing accurate algorithms. A multi-objective model with non-homogeneous, cold standby components will be evalu-

ated using a well-known problem-testing approach. The recently provided mathematical model outperforms previ-

ous studies in terms of dependability values and total system costs, demonstrating its high efficiency. 

Keywords: Reliability optimization, Redundancy, Reliability redundancy allocation problem (RRAP), Cold standby, Warm 

standby, Hot standby, Perfect switching, Imperfect switching 

1.  Introduction 

Engineers and managers play a crucial role in designing and constructing systems, ensuring high reliability in vari-

ous industries like aerospace, defense, chemical, and automotive through component reliability, redundant compo-

nents, and inter-changeable components. "redundancy allocation problem" (RAP) and "reliability-redundancy allo-

cation problem" (RRAP), The RAP aims to maximize system reliability by determining the optimal number of 

redundant components in each subsystem, considering factors like reliability, cost, and weight. The RRAP is a more 

complex problem in the reliability optimization area that aims to find the best structure with the highest reliability 

by calculating component reliability and redundancy levels for each subsystem simultaneously. In other words, in 

RRAPs, component reliability is not given but treated as a design variable while component cost, weight, volume, 

etc. 
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Active and standby are the two basic strategies for increasing system reliability in RRAP and RAP. In the active 

strategy, redundant components must work simultaneously from time zero, whether or not they are required to 

operate at all. The redundant components are only required to back up failed primary components in the standby 

strategy, also known as the backup strategy. For each standby component, there are three different types of standby 

strategies: 

1. The hot standby: Each associated hot standby component, like active components, runs in parallel with the whole 

subsystem, ensuring that the subsystem has the same information. As a result, the mathematical formulations for 

both the hot standby and active techniques are the same. 
2. The warm standby: A warm standby component is a backup to a primary component, periodically mirroring 

information from the primary component. 

3. Cold standby: Cold standby systems use redundant components only when needed, resulting in higher downtime 

compared to hot standby systems. They are often used for non-critical applications or data with minimal changes. 

Researchers that study on reliability optimization problems often use an active redundancy strategy and a variety of 

methods to solve them, the most famous of which are exact and meta-heuristic methods. Exact optimization tech-

niques used in such studies include dynamic programming by Fyffe et al. [1], Lagrange multipliers proposed by 

Misra [2], integer programming proposed by Gen et al. [3],The branch and bound approach by Way and Hwang [4], 

the branch and cut approach by Caserta and Kuo [5], implicit enumeration by Prasad and Kuo [6], and dynamic 

programming  by Yeh and Hsieh [7] ,are the most important exact solution approaches. RRAP and RAP are too 

difficult to solve using exact optimization methods, especially when the problem size is large, since they belong to 

the NP-hard (non-deterministic polynomial time hard) class of optimization problems proposed by Ha and Kuo [8]. 

For this reason, numerous meta-heuristic algorithms such as artificial neural networks (ANN) (Habib, Alsieidi, and 

Youssef [9]; Chamberi et al. [10]), genetic algorithms (GA) (Abouei Ardakan and Rezvan [11]; Abouei Ardakan 

and Hamadani  [12]; Zoulfaghari et al. [13]), artificial immune systems (AIS) (Chen [14]; Hsieh and You [15]), 

tabu search (TS) (Kulturel-Konak et al. [16]), particle swarm optimization (PSO) (Zhang et al. [17]; Garg et al. [18]) 

It has been widely studied to solve RRAP and RAP problems. 

However, because it is difficult to assess the reliability of the RRAP and RAP cold standby subsystems, very 

few studies have focused on the development of cold standby algorithms. Abouei Ardakan and Rezvan [11] pro-

posed the RRAP by using a cold standby strategy and solved it with the Non dominate sorting genetic algorithm-II 

(NSGA-II). Yeh and Hsieh [7] used the ant colony algorithm to solve RRAP problems and compared the results 

with those obtained from the other meta-heuristic algorithm. Tavakkoli-Moghadam et al. [19] presented a genetic 

algorithm and a simulated annealing algorithm, respectively, to solve RAP problems Coit [20] considered the allo-

cation problem with using an integer programming solution when the system contains only cold standby redun-

dancy. He assumed imperfect switching and used the K-Erlang distribution for time to failure (TTF) of components. 

Coit [21] considered the problem of choosing an active or cold standby redundancy strategy for each subsystem 

component as a decision variable and solved it using the integer programming method. Coit [21] proposed the 

relationship between the cold standby strategy and the active redundancy strategy in a specific subsystem and 

showed that for each 𝑗th component, the maximum level of reliability of cold standby is greater than or equal to the 

reliability of the active component. Tavakkoli-Moghaddam and Safari [22] presented a new method with mixed 

components and a redundancy strategy with a cold-standby component. 

For the first time Ardakan and Hamadani [23] developed a modified. genetic algorithm to solve a mixed-integer 

non-linear optimization model for RRAP to use a cold-standby strategy. They proposed a novel redundancy tech-

nique termed "mixed strategy" in another study, in which certain components may well be active and others were 

on standby. Kim and Kim [24] developed an RRAP with a redundancy strategy selection (active or cold-standby). 

They also calculated the reliability of a cold standby subsystem using a continuous time Markov chain. Abouei 

Ardakan and Rezvan [11] developed a bi-objective RRAP with cold-standby strategy that used a multi-objective 

evolutionary algorithm (NSGA-II). Gholinejad and Zeinal Hamadani [25] introduced a new method for RAP in 

which the objective function is to maximize reliability by considering a mixed redundancy strategy so that active 

and cold-standby strategies can occur simultaneously in each component of a subsystem. They used a genetic algo-

rithm to solve it.  

To solve RRAP and RAP problems, some researchers used a combination of meta-heuristic algorithms. TS-

differential evolution (DE) (Liu and Qin [26]), estimation technique (IT2FLS-PSO) Interval type-2 fuzzy logic set 

particle swarm optimization (Drik. [27]), (DE-HS) Differential evolution -harmony search (Wang and Li [28]), (SA-
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GA) Simulated annealing-genetic algorithm (Dalanezi Mori, Fiori de Castro, and Lucchesi Cavalca [29]), (CS-GA) 

Cuchoo search-genetic algorithm (Kanagaraj, Ponnambalam, and Jawahar [30]), (Haiying and Yubao [31]). 

For solving multi-objective function RRAP and RAP in the form of multi-state, Salazar et al. [32] solved three 

types of reliability optimization problems: finding the optimal number of redundant components (component relia-

bility problem), finding the reliability of components, and determining both their redundancy and reliability (com-

ponent reliability and redundancy allocation) by NSGA-II. They showed that the results of their proposed algorithm 

coincide with the selection optimization redundancy allocation problem (SORAP). Li et al. [33] proposed a new 

two-phase approach for the multi-objective redundancy allocation problem. They first, using the NSGA algorithm, 

find the para-optimal set. Then, they applied a self-organizing map (SOM) to classify those para-optimal solutions 

into several clusters, and finally, by using data envelopment analysis (DEA), they determined the final solution to 

the problem. s. Attar et al. [34] proposed RRAP, in which they considered system components as active and non-

repairable and modeled them in the form of multi-objective functions. Kulturel-Konak et al. [16] solved the problem 

by using the Tabu Search method with three objective functions: maximize reliability, minimize the cost of the 

system, and minimize the weight of the system. Safari [35] considered system reliability and cost as objective func-

tions and solved the model presented by Coit [21] using the NSGA-II algorithm. Salmasnia et al. [36] considered 

RAP with multi-objective functions as maximizing the system reliability estimate, minimizing the overall system 

cost, minimizing system reliability variance estimate, and minimizing overall system cost variance. Taboada and 

Coit [37] considered RAP in the form of a multi-objective problem with three objective functions: maximizing 

system reliability, minimizing system cost, and weight. To solve it, they proposed an algorithm called multi-objec-

tive evaluation algorithm (MOEA).  Eshraghniaye Jahromi and Feizabadi [38] considered RAP as a multi-objective 

problem to maximize system reliability and minimize the cost of the system and assumed that all components of a 

subsystem are non-homogeneous. They used the NSGA-II algorithm to solve it. Garg and Sharma [39] used RRAP 

as a multi-objective problem with objective functions of reliability and cost. They applied the active strategy to the 

components and used the particle swarm optimization (PSO) meta-heuristic algorithm to solve the problem. Abouei 

Ardakan et al. [40] developed a multi-objective model in which system cost and reliability were considered as 

objective functions. They used the NSGA-II algorithm to solve it. Chambari et al. [41] considered reliability and 

cost of the system as objective functions and used a meta-heuristic algorithm (NSGA-II) and multi-objective particle 

swarm optimization (MOPSO) to solve the problem. Liang and Lo [42] considered the RAP problem in order to 

maximize system reliability while minimizing system cost or weight, and they used a modified variable neighbor-

hood search (VNS) algorithm. Coit and Konak [43] proposed a new model for the RAP to maximize the reliability 

of each individual subsystem simultaneously. They used a multiple-weighted objective based on a transformation 

of the problem into a single objective problem. R. Soltani et al. [44] considered interval programming for the re-

dundancy allocation with choices of redundancy strategy and component type under uncertainty Wang et al. [45] 

considered RAP as a multi-objective optimization problem to maximize system reliability and minimize the cost of 

the system. They used NSGA-II to solve the model. 

A more recent study considered different model and algorithm for RRAP as Ramezani Dobani et al. [46] pro-

posed for the first time CM in a RRAP with the active redundancy strategy considered as the predetermined one for 

all the subsystems. Mahdavi-Nasab et al. [47] used water cycle algorithm for solving RRAP. Yeh et al. [48] General 

RRAP, is proposed to extend the series-parallel structure or bridge network to a more general network structure a 

new algorithm called the binary addition tree algorithm small sampling tri-objective orthogonal array (BAT-

SS3OA). They used the simplified swarm optimization (SSO) to update solution, the small-sampling tri-objective 

orthogonal array (SS30A). Peykany et al. [49] considered a novel mathematical approach for the fuzzy multi-period, 

multi-objective portfolio optimization problem under uncertainty. Mekawy [50] proposed a novel method for solv-

ing multi-objective linear fractional programming problems under uncertainty. Nath and Muhuri [51] formulated 

the many objective RRAP (many objective reliability redundancy allocation problem (MaORRAP)) and for solve 

the used non-dominated sorting genetic algorithm-III (NSGA-III). Mellal et al. [52] considered RRAP with cold-

standby strategy and used enhanced nest cuckoo optimization algorithm (ENCOA) for solve them. Yeh et al. [53] 

used a hybrid algorithm (SEB) (simplified swarm optimization (SSO), elite selection (ES) and boundary search (BS) 

called the SEB) solving cold-standby RRAP. Najmi et al. [54] used a parallel stochastic fractal search algorithm for 

mathematical model of RRAP with heterogeneous components. Karamasa et al. [55] considered a single-valued 

neutrosophic analytic hierarchy process (AHP) based on multi-objective optimization on the basis of ratio analysis 

plus a full multiplicative form (multi-objective optimization on the basis of ratio analysis plus a full multiplicative 

form (MULTIMOORA)) to rank the training aircraft as the alternatives. Rasoulzadeh et al. [56] considered a multi-
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objective approach based on Markowitz. Wang et al. [57] used Bare-bones multi-objective particle swarm (BB-

MOPS). Ouyang et al. [58] proposed an improved particle swarm optimization algorithm (PSO) for RRAP with CM 

and mixed redundancy strategy. Wei et al. [59] considered RRAP as a bi-objective and used a new simplified swarm 

optimization (SSO) with a penalty function. Mahdavi-Nasab et al. [60] Considered RRAP with mixed redundancy 

strategy and is developed new model based on a continuous-time Markov chain model and used water cycle algo-

rithm for solve them.  

The problem's limitations include homogeneity in components, cold redundancy, weight, cost, volume, and ar-

rangement. Removing homogeneity could improve system reliability and mathematical model. As a result, three 

new redundancy strategies are introduced in this article: 

Strategy 1: Non-homogenous of subsystem components. 

Strategy 2: The problem model is considered to be a multi-objective problem by considering the reliability and cost 

of the system as objective functions and solving the model by using the NSGA-II algorithm. 

Strategy 3: The reliability of the system is considered to be uncertain. 

Previous research has assumed homogeneous, predefined system components, limiting problem model expan-

sion and optimal solution improvement. However, none of the presented papers have considered system components 

with uncertain reliability, non-homogeneous, and mixed strategies simultaneously. 

Among the research gaps in previous articles is that none of the articles presented so far have simultaneously 

mentioned the following: 1- Heterogeneous components 2- Uncertainty of component reliability 3- Mixed strategies 

4- Multiple key objective functions 5 - Series-parallel components 6- Use of Gamma distribution 7- redundancy 

strategies in each subsystem are considered cold-standby or active, which are considered in this article as a combi-

nation of all of them, and a new mathematical model is presented. In most research for system design, the compo-

nents were considered homogenous and the reliability of the system was determined, which is a bigger limitation, 

prevents reaching a high level of system reliability, and increases the cost of system design. For the first time in this 

study the RRAP is reformulated, a new redundancy strategy known as the "mixed strategy" is developed to improve 

system reliability. In this strategy, cold-standby and active components are simultaneously used in each subsystem, 

and the reliability of the components is uncertain. The cold-standby and active determine the number and reliability 

of components in each subsystem in order to optimize the reliability of each subsystem and the whole system. 

The research utilizes meta-heuristic algorithms to optimize reliability and cost in non-homogeneous redundancy 

components, outperforming previous literature and demonstrating superiority and innovation in real systems. 

This article focuses on maximizing system reliability using heterogeneous components, mixed series strategies, 

and weight and cost limitations using a new method, offering the best answer to previous research. It turns out that 

the results are clearly shown in Table 1 compared to other previous studies, and the reason for this concentration is 

the best answer so far, and what it brings to managers and decision makers is that by using this mathematical model 

presented in the system optimization mentioned and with the help of metaheuristic algorithms to solve it and then 

get the optimal solution. 
The rest of this paper is structured as follows: in Section 2, mixed strategies are explained along with the concepts. 

Section 3 deals with the research questions and mathematical modeling of multi-objective functions, symbols, de-

cision variables, constraints, assumptions, and optimal solutions. In Section 4, well-known tests are used to test the 

validity of the model, and the optimal solutions are compared to those obtained from other models in the literature. 

The NSGA-II Algorithm is explained in Section 5. Chapter 6 presents conclusions and suggestions for further stud-

ies. 

2. Reliability (mixed strategies) 

Engineers and managers plan, design, and build systems based on probability, satisfactory performance, time, and 

specific operation conditions. Reliability assessment is crucial, estimating indicators based on real tests and analyt-

ical methods. The reliability of a system can be improved in four ways: 

1. Increasing the reliability of components 

2. Use redundant components in parallel. 

3. The use of redundancy components in parallel systems in conjunction with increasing component reliability. 

4. Displacement of components in the subsystem 
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Reliability optimization is crucial for various industries, including communication, transportation, and manufactur-

ing. Researchers are exploring methods to improve system reliability, such as using starting operation redundancy 

components in parallel series systems. The paper explores RRAP, a new method focusing on reliability maximiza-

tion, cost minimization, non-homogeneous components, and mixed redundancy strategies, aiming to maximize sys-

tem reliability in various systems. The types of issues studied and researched are: 

 The problem of allocating continuous reliability 

 Allocation of continuous-discrete reliability 

 Redundancy allocation problems 

 Reliability and redundancy allocation problems 

The methods used for optimization purposes include: 

 The exact method (linear programming, integer programming, and dynamic programming) 

 Approximate methods (geometric programming, Lagrange coefficient method, random search, and lexicographic 

method) 

 Heuristic and meta-heuristic methods 

3. Problem modeling 

The paper explores RRAP, focusing on maximizing reliability and cost optimization of series components in 

mixed strategies under uncertainty. It considers continuous monitoring of failure detection and switching perfor-

mance, and switches dependent on component failure. As Table 1 shows, none of the researchers have simultane-

ously investigated the afore-mentioned scenarios in any single study. the study considers non-homogeneous redun-

dancy components in parallel series systems with mixed, active, and cold-standby components under uncertainty 

conditions. Reliability maximization and cost minimization are objective functions, solved using the NSGA-II al-

gorithm, and are defined as shown in Figure 1. 

3.1. Assumptions 

 The state of components has only two options (good or bad). 

 The cost and weight of components are known and deterministic. 

 Three redundancy strategies (namely, active, cold standby, and mixed) 

 There are no repairable components or preventive maintenance. 

 Component failure is considered an independent event. 

 Failures of components do not cause the entire system to crash. 

 Components within a similar subsystem can be of different types, in other words. The use of complex compo-

nents is allowed. 

 There is imperfect switching for the cold standby redundancy strategy. 

3.2. Notation 

Parameters 
s The number of subsystems 

A Set of all subsystems using active redun-

dancy 

𝑆1 Set of all subsystems using standby redun-

dancy 

NR Set of all subsystems with no redundancy 

M Set of all subsystems using mixed redun-

dancy 

T Mission time 

( )R t  System reliability at a time (𝑡) 
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in  The number of available component choices 

for sub 𝑠 

maxin  Upper bound for (𝑛𝑖) 

ig  Index for active components of type 𝑗 in sub-

system 𝑖 

id  Index for standby component of type 𝑗 in 

subsystem 𝑖 

,ij ijc c
 

The cost for the 𝑗th available active and 

standby component for  the subsystem 𝑖 

,ij ijw w  Weight for the 𝑗th available active and 

standby component for subsystem 𝑖 

( )iP t  Failure – detection / switching reliability at 

time 𝑡 for case 1 

iP  Failure – detection / switching reliability at 

time 𝑡 for case 2 

 switch, switch,,i ic w
 

Cost and weight of switch used in subsystem 

𝑖 
w  

System – level constraint limit for weight 
c  

System – level constraint limit for cost 

( )ijr t  Reliability component of type of type 𝑗 in 

subsystem 𝑖 at time 𝑡 

( )ijf t  pdf of the failure time for type 𝑗 components 

for subsystem 𝑖 at time 𝑡 

ijk  An index  for the number of failures of 

standby components of type 𝑗 in subsystem 𝑖 

(𝑘𝑖𝑗 = 1, . . . , 𝑦𝑖𝑗, 𝑖 =  1, … , 𝑠, 𝑗 = 1,2, . . . , 𝑑𝑖) 

( )ijF t  is the CDF(cumulative distribution function) 

for the failure time of the 𝑗th component type 

in subsystem 𝑖 
( )ikF t  is the CDF for the failure time of the 𝑘th 

component type in the  subsystem 𝑖 

( )ijk

ijf t  represents the pdf for the 𝑘𝑖𝑗 failure time of 

component type 𝑗 in the sun system 𝑖 

Indices 

l  Index for standby component types that have 

been allocated. 

iZ  Set of 𝑍𝑖𝑙  , {𝑍𝑖1, 𝑍𝑖2, . . . , 𝑍𝑖𝑙} 

ilZ
 

Index of standby component choices used 

for subsystem 𝑖, {1, 2, . . . , 𝑑𝑖} 

Decision variables 

ijx  The number of active redundancies used in 

the subsystem 

ijy  The number of cold standby redundancies 

used in the subsystem 

ijn  The number of redundancies used in the sub-

system 

( )ijr t  The reliability of the redundancies in the sub-

system (0 ≤ 𝑟𝑖𝑗(𝑡) ≤ 1) 

3.3. Selection of strategies 

Strategies applied to each subsystem can be classified under four scenarios: 

1. The subsystem components have an active component and no standby component. 

2. The subsystem components have several active components. 

3. The subsystem components have one active component and several cold-standby components. 

4. The subsystem components have several active and several cold standby components. 

3.4. Mathematical model 

In the first scenario, the reliability of the system can be calculated in the following way: 

( )ij

i NR

r t


  (1) 
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where ( )ijr t  denotes the probability that only the jth active component in the subsystem will operate normally until 

time t.  

The second scenario assumes active components in parallel configuration and subsystems in series, resulting in 

at least one system operating until time t, indicating system reliability. 

  
1

1 1
i

ij

g
x

ij

i active j

r t
 

 
  

 
   (2) 

If the system has a strategy of three, considering that in each system we have one active component and several 

inactive components and a cold standby, then when the active component breaks down, the switch is constantly 

running with reliability 𝑃𝑖(𝑡) and the cold standby is activated. After the breakdown, the first component of cold 

standby, the second component of cold standby, starts operating until the end. 
In this case, the system reliability can be calculated as follows: 

     

 

1

0
0standby

                                   

ij

ij

ij

y
t

ij i ij

ki

k

ij

r t P t r t u

f u du






 






 
 (3) 

where ijk

ijf  denotes the probability density function for the ijk  time of failure in the component j used for the sub-

system i, when the component continues operating until time t and no standby component is needed. Here, the 

summation is equal to the probability that a ijk  component of type j in a subsystem i at a time u is broken and the 

next component of the same type survives until t. 
When the fourth scenario applies, the system reliability can be calculated as follows: 

  

     

       

 

0

1

max

0

1

0
0

0

max

0 0

1 1
i

ij

ij

ij

i ij

g
x

ij

i mixed j

t

i ij ij

y
t t k

i ij ij
t

j Z k

i

r t

P t r t u f u du

P t r t u f u t

f t du dt

 



 

 
  

 

 

  

 

 



   

 (4) 

The first part includes the probability that the active components in the subsystem will operate until time 𝑡 without 

any need for a standby component. The second part covers the probability that all active components fail before 

time u (and that the last active component fail exactly at time u) and that the first standby component starts operating 

at time u and remains in operation until time t. The third part of the equation shows the probability that the last 

active component fails at time 1t  just when the first standby component starts operating, and that ijk  is the time of 

failure of the type j component used for 𝑖th subsystem failing at time 𝑢 and the standby component survives until t. 

In this equation, ijk

ijf denotes the probability density function for ijk  time of failure of the component j used for the 

subsystem i, and represents the probability density function of the time of failure in the last active component. 

 If ( )iP t  is a nonincreasing function ( ( ) ( )i iP u P t for all t u ), 0 ( ) 1iP t  , if switching is perfect, then ( ) 1iP t   

(Gholinezhad [25]). 

As a result, the objective function is as follows: 

The mathematical model for maximizing the reliability of the problem has the following two modes. 
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1. In the case of failure detection and switching to be done continuously, and this is displayed with the possibility 
of ( )iP t  in the issue. 

2. After the failure of the active member, the switch is displayed as a ijk

iP  in the problem. 

Case 1: Detection and switching on a continuous basis 

Because the subsystem is sequential, the reliability function of maximizing the reliability of the whole system is 

modeled as a product. 

  

   

       

   
     

       

 

0

active 1

1

standby 0
0

1
mixed

max

0

1

00 0

max

0

max

1 1

1 1

iji

ij

ij

ij

iji

ij ij

i ij

iji NR

xg

iji j

y
t k

ij i ij iji
k

xg

ijj
i

t

i ij ij

t ty k

i ij ijj Z k t

i

R r t

r t

r t P t r t u f u du

r t

P t r t u f u du

P t r t u f u t

f t d



 











 



  

 
   

  

  


 

  





 

 

 



   

0u dt 

 

(5) 

 

1 1 1 1

switch,,

min

                                       

i is g s d

ij ij ij iji j i j

ii s x

c c x c y
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   
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1
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0
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(8)  
 

1

0
,
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t
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

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
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   1 /ij ij ij t

ij ij ijf t t e
  

  
   (9) 

is the probability density function of failure with a gamma distribution. 

Case 2: Switch activation only in response to a failure ( )iP  
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
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
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and  ij  is Gamma function, ij  is rate parameters of Gamma function, and 1ij   is shape parameters of Gamma 

function. 
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3.5. Solving a multi-objective mathematical model using the NSGAI meta-heuristic algorithm 

Evolutionary algorithm implementation stages are as follows: 

1. Generating a set of random solutions 

2. Comparing the solutions, rating them, and choosing the best one. 

3. Combining the obtained solutions by simulation of natural processes such as reproduction and integration of new 

answers with old answers 

4. Return to stage 2 (end) 

The genetic algorithm implementation steps are as follows: 

1. Generating a random population and evaluating it 

2. Selecting parents and combining them to create offspring population 

3. Selecting the most fitted members of the population to perform mutations and create mutant populations 

4. Combining the parent, offspring, and mutant populations and generating a parent population 

5. Repeat steps 2 through 6 until termination criteria are satisfied.  

6. End 

Different end conditions are as follows: 

1. Achieve an acceptable level of response. 

2. Iteration time out/definition repetition. 

3. The chance of achieving significant changes in the next generation is excessively low. 

The coding solution in the proposed GA consists of a (2 )m s  matrix. Although max{ }im m and im  denote the 

number of variants available in the subsystems, 𝑚 in the initial rows represents the active components and 𝑚 in the 

last row represents the standby components. 
The first row shows the number of type I active components that have been allocated, and the second row shows 

the number of allocated type II active components. Moreover, (m+1)th row shows the allocated type I standby 

components, and (m+2)th row shows the allocated type II standby components. The components that are in an idle 

state are represented by the number zero. 
Figure 2, for instance, shows the coding solutions for s = 14 and m = 4 in this matrix. The results show that there 

is one solution in subsystem 1 with a mixed strategy consisting of two type I and four type IV active components, 

as well as one type I and three type II standby components. Subsystem 2 has a mixed strategy consisting of two type 

I and two type II active components and two types II and one type IV standby component. The fourteenth subsystem 

has an active strategy with three type II active components. 

3.6. Non-dominant Sorting Genetic Algorithm (NSGA-II) 

NSGA-II and Controlled NSGA II are popular multi-objective optimization algorithms, with genetic algorithms 

emerging as a new approach. These multidimensional, universal search algorithms can solve complex problems 

without relying on the problem's mathematical structure. 

1. Fitness distribution to population members based on non-dominated sorting 

2. preserving diversity in solutions in the non-dominant border 

Although multi-objective evolutionary algorithms provide efficient solutions to such problems, Deb et al. [16] 

proposed an algorithm called NSGA-II, which could partially eliminate the shortcomings of the previous algorithm 

(NSGA). These shortcomings include: 

1. The computational complexity of the previous algorithm was reduced from  

2. Lack of efficient elitism 

3. The obviation of the need to determine parameters in the splitting process. 
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The NSGA-II algorithm selects solutions from each generation using a binary tournament selection method. It pri-

marily considers solution rank and crowding distance. Crossover is applied to some selected population members, 

mutation is applied to others, and a new population is generated. Members are sorted by rank and crowding distance. 

3.6.1. Generating the initial population 

Literature typically introduces two methods for generating an initial population: random selection and heuristic 

algorithms. 

3.6.2. Evaluation of chromosomes 

The NSGA-II algorithm evaluates each member's potential for passage to the next generation using non-domi-

nated ranking and scattering diversity. The optimal front solution algorithms are placed in F1, while non-dominated 

solutions are placed in F2 and F3. The crowding distance approach maintains diversity at each front. 

3.6.3. Selection operator 

This paper presents a selection operator based on the roulette wheel selection operator, a crucial element in evo-

lutionary algorithms for random selection of better members for reproduction. 

3.6.4. Crossover operators  

This study uses spin crossover to demonstrate the permutation of elements in complementation, a genetic algo-

rithm technique used to generate better offspring with positive traits inherited from parents. 

3.6.4.1 Spin crossover operator in permutation presentation 

The spin recombination operator is a genetics method that displays permutation by shifting genes between parents, 

repeating for the second parent, and then back to the first parent, determining remaining genes until the first off-

spring is complete. (Figure 3). 

3.6.5. Mutation operator 

The proposed algorithm uses a mutation operator to prevent premature convergence by altering offspring chro-

mosomes, dislocating genes from each family, and employing inversion mutation operator permutation presentation. 

3.6.5.1 Inversion mutation operator in permutation presentation 

The inversion mutation operator, similar to the hashing mutation operator, copies gene values between two cut 

points, resembling a mirror between them. (Figure 4). 

3.6.6. Validation 

Model accuracy measurement ensures numerical solutions' accuracy, while validation introduces verified models 

as alternatives to experimental methods, eliminating challenges from tests and comparing components and models 

to literature solutions. This article uses a numerical method as an alternative to experimental tests, ensuring system 

implementation aligns with intended results and conforms to description, using problem test and MATLAB. 

4. Numerical example 

A well-known example adopted by Fyffe et al. will be used to compare the proposed model with models presented 

in the literature. This example has been used in many articles. The system designed in this example includes 14 

subsystems, and there are three or four component choices for each subsystem. The cost and weight of components 

such as k-erlang distribution parameters are presented in Table 2. The goal is to maximize system reliability in 100 

units of time while the system cost and system weight limits are Each subsystem may have an active, cold-standby, 

or mixed redundancy strategy, or none of them at all. Also, different types of components can be simultaneously 

chosen in each subsystem. The maximum number of components within each subsystem is 6. Once the proposed 

model is applied to the example mentioned above, optimal solutions are obtained. These solutions are presented in 

Table 3. Maximum reliability is achieved by the proposed NSGAII algorithm. The data used for this purpose is 



 

13 

 

presented in Table 2. As Table 3 shows, the system reliability obtained using the new model is equal to 0.9939. 

Moreover, the optimal values for system cost and weight were found to be 98 and 170, respectively. 

Figure 5 shows the performance of the proposed model compared to Gholinejad and Zeinal Hamedani’s models 

[25] in obtaining the reliability of subsystems. Comparison of the proposed method to the models used by Fyffe et 

al. [1], Tavakkoli-Moghadam and Safari [19], Soltani et al. [44], Abouei Ardakan and Zeinal Hamedani [23] and 

Gholinejad and Zeinal Hamedani [25], showed that the system obtained from the proposed model is more reliable 

and incurs lower costs (Table 4 and Figure 6). Therefore, it can be argued that the proposed model outperforms the 

previous models. 

 According to Table 3, Section 4 shows the optimal reliability values of all subsystem components and the opti-

mal number of active and standby members for cold-standby and what type they are. In Table 4, Section 4, the 

optimal reliability values, the optimal cost values, and the optimal total system weight values, related to previous 

studies and the present article, show the superiority of the proposed method in this article in terms of the optimal 

system reliability value and the optimal cost value compared to other methods. It shows the methods in the previous 

studies, and it is noteworthy that the optimal cost of the whole system compared to the optimal cost of the whole 

system of the studies mentioned in Table 4, Section 4, shows a very noticeable superiority with a large difference. 

In this proposed mathematical model, due to the limitations of cost, weight, and heterogeneity of components, un-

certainty of component reliability, and considering mixed strategies, the best capability of the whole system is 

0.9939, with the lowest consumption cost value of 98, which indicates the tangible superiority and cost-effectiveness 

of the proposed method in this article. 

5. Conclusion 

In the present paper, a new model for RRAP is presented. In this system, the components in the subsystems are non-

homogeneous and have uncertain reliability, providing design engineers with an opportunity to use the proposed 

model to increase the reliability of individual components and, consequently, the whole system. Since the homoge-

neity constraint has been crossed out in the component selection, this may lead to improvements in the reliability of 

the whole system, and the mixed redundancies and strategies applied to each subsystem may provide the ground for 

access to more realistic solutions. In this case, the subsystem will be much more realistic and can be used as a useful 

tool by designers to simultaneously choose standby and active redundancies for subsystems. The choice and relia-

bility of strategies can be assumed as decision variables, and the number of each active and cold-standby component 

can also be considered as decision variables. The proposed model is a non-linear programming model of the NP-

hard type that cannot be solved by exact algorithms and is usually solved using the NSGA-II algorithm. 

The performance of the proposed mathematical model was evaluated by a well-known test problem. The optimi-

zation results show the effectiveness of the proposed model, and according to the results in Table 4, it shows that 

it has led to more reliability at a very low cost, which indicates that the mathematical model works better than the 

previous methods. Further studies can consider system components independently, considering multiple failure 

modes and integrating multiple parallel, repairable switches. The RRAP mathematical model can be integrated with 

game theory to address attacker-defender problems and artificial goals, leading to improved articles for defending 

sensitive military and civilian areas. 
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 Table 1. Comparison between previous research and the pro-posed model. 

 Reliability Cost Other RAP RRAP Non-homogeneous Uncertain 
Mixed 

Strategy 
Algorithm 

Kulturel-Konak et al. [16] * * * *     Tabu Search 

Coit and Konak [43] *   *     GA 

Salazar et al. [32] *   * *    NSGA-II 

Wang et al. [57] * *  *     NSGA-II 

Tavakkoli-Moghaddam et al. 

[19] 
*   *     GA 

Chambari et al. [10] *   *     
Simulated 

Annealing 

Liang and lo [42]  *  *     VNS 

Abouei Ardakan et al. [40] * *  *    * NSGA-II 

Yeh and Hsieh [7]     *    Ant Colony 

Garg and Sharma [39] * *   *    PSO 

Safari [35] * *  *     NSGA-II 

Eshraghniaye Jahromi and 

Feizabadi [38] 
* *  *  *  * NSGA-II 

Abouei Ardakan and Rezvan 

[11] 
* *   *   * NSGA-II 

Gholinezhad and Zeinal Ham-

adani [25] 
*   *    * GA 

Salmasnia et al. [36] * * * *   *  DFS 

Proposed Method * * *  * * * * NSGA-II 

 

 

Table 2. Component data for the given example. 

 Choice 1 ( 1j  ) Choice 2 ( 2j  ) Choice 3 ( 3j  ) Choice 4 ( 4j  ) 

i ij  ijk  ijc  ijw  ij  ijk  ijc  ijw  ij  ijk  ijc  ijw  ij  ijk  ijc  ijw  

1 0.00532 2 1 3 0.000726 1 1 4 0.00499 2 2 2 0.00818 3 2 5 

2 0.00818 3 2 8 0.000619 1 1 10 0.00431 2 1 9 – – – – 

3 0.0133 3 2 7 0.011 3 3 5 0.0124 3 1 6 0.00466 2 4 4 

4 0.00741 2 3 5 0.0124 3 4 6 0.00683 2 5 4 – – – – 

5 0.00619 1 2 4 0.00431 2 2 3 0.00818 3 3 5 – – – – 
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6 0.00436 3 3 5 0.00567 3 3 4 0.00268 2 2 5 0.000408 1 2 4 

7 0.0105 3 4 7 0.00466 2 4 8 0.00394 2 5 9 – – – – 

8 0.015 3 3 4 0.00105 1 5 7 0.0105 3 6 6 – – – – 

9 0.00268 2 2 8 0.000101 1 3 9 0.000408 1 4 7 0.000943 1 3 8 

10 0.0141 3 4 6 0.00683 2 4 5 0.00105 1 5 6 – – – – 

11 0.00394 2 3 5 0.00355 2 4 6 0.00314 2 5 6 – – – – 

12 0.00236 1 2 4 0.00769 2 3 5 0.0133 3 4 6 0.011 3 5 7 

13 0.00215 2 2 5 0.00436 3 3 5 0.00665 3 4 6 – – – – 

14 0.011 3 4 6 0.00834 1 4 7 0.00355 2 2 6 0.00436 3 6 9 

 

 

Table 3. Optimal solution and its comparison with those obtained from other models 

    Active components  Standby components   
Subsys-

tem  Redundancy strat-

egy  Type1 Type2 Type3 Type4  Type1 Type2 Type3 Type4  Reliabil-

ity 
1  Mixed  2 0 0 0  1 0 0 0  0.9993 
2  Standby  1 0 0 0  1 0 0 0  0.9998 
3  Mixed  0 2 0 0  0 1 0 0  0.9998 
4  Mixed  1 0 0 0  0 0 1 0  0.9988 
5  Mixed  0 0 0 2  0 0 0 1  0.9999 
6  Standby  1 0 0 0  0 1 0 0  1 
7  Standby  1 0 0 0  0 1 0 0  0.9992 
8  Mixed  2 0 0 0  0 0 1 0  0.9991 
9  Standby  0 0 1 0  0 0 1 0  0.9992 

10  Mixed  2 0 0 0  0 1 0 0  0.9988 
11  Standby  0 1 0 0  0 0 1 0  0.9993 
12  Mixed  2 0 0 0  0 1 0 0  1 
13  Active  0 2 0 0  1 0 0 0  0.9999 
14  Standby  0 0 1 0  0 0 1 0  0.9995 

  System reliability            0.9939 

  System weight            170 

  System cost            98 

Table 4. A comparison between the results of the system reliability, system weight and system cost. 

 Fyffe et 

al. [16] 
Tavakkoli-Moghaddam 

and safari [50] 
Soltani et al. 

[47] 
Abouei Ardakan and 

Zeinal Hamadani [2] 
Gholinezhad and 
Zeinal Hamadani 

[20] 
Proposed 

Model 

System reliability 0.97 0.9875 0.9863 0.99233 0.99266 0.9939 
System weight 170 170 170 170 170 170 

System cost 119 123 123 116 118 98 
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Figure 1. System structure.  
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    Figure 2. Encoding solution as a chromosome representation. 

Type 1 2 2 0 0 0 0 3 0 1 0 1 0 3 0 

Type 2 0 0 0 4 0 0 0 0 0 2 0 3 0 3 
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Type 3 0 2 0 1 3 0 0 0 1 0 1 0 2 0 

Type 4 4 0 0 0 0 0 0 0 4 1 0 0 0 0 

Type 1 1 0 0 1 0 0 3 0 0 0 1 1 0 0 

Type 2 3 2 0 0 2 0 0 0 0 1 0 0 1 0 

Type 3 0 0 0 0 0 0 0 0 1 0 1 0 0 0 

Type 4 0 1 0 0 1 0 1 0 1 2 1 1 0 0 

               

Figure 3. (a) Step one: Determine the steps. (b) Step second: Copy steps in offspring. Spin crossover operator in permutation presentation. 

(a( 

 
1 2 3 4 5 6 7 8 9  1 2 3 4 5 6 7 8 9  1 2 3 4 5 6 7 8 9 

                             

9 3 7 8 2 6 5 1 4  9 3 7 8 2 6 5 1 4  9 3 7 8 2 6 5 1 4 

 

(b) 

 
1 2 3 4 5 6 7 8 9     1 2 3 4 5 6 7 8 9 

                      

9 3 7 8 2 6 5 1 4     9 3 7 8 2 6 5 1 4 

 

 

 

 

Figure 4. Inversion mutation operator in permutation presentation. 
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Figure 5. A comparison between the results of the subsystems reliability. 
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Figure 6. Comparison between the solutions based on system reliability and system cost. 
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