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Abstract 

Integrating both loss and minimum angle method (MAM) as objective functions in the economic-

statistical modeling of variable acceptance sampling plans (VASPs) can yield the most cost-effective 

plan with the ideal operating characteristic (OC) curve. Nevertheless, occurring crises can disrupt 

organizational input parameters, causing inefficiencies in providing solutions. This study develops 

the first robust designs of VASPs, accounting for the uncertainty of input parameters. Unlike previous 

studies that assume fixed inputs, this research considers deviations from nominal values to address 

parameter uncertainty. In this way, the challenge of parameter uncertainty's impact on the 

effectiveness of designs is investigated. We propose a solution procedure based on Particle swarm 

optimization (PSO). Findings from case studies reveal that (1) a marginal cost increase in the Cost-

MAM model significantly reduces overall risks, (2) the repetitive group sampling plan yields lower 

costs and risks, and (3) tolerating increased costs is imperative to manage potential uncertainty. 

  

Keywords: Robust design, Repetitive group sampling, Economic-statistical design, Loss function, 

Minimum angle method, Particle swarm optimization 

 

1. Introduction 

Businesses can navigate economic challenges by implementing effective policies aimed at minimizing 

costs and losses while attaining the desired level of quality aligned with consumer expectations. In 

production systems, specific measures can be employed to regulate the quality of raw materials and 

finished goods lots. Acceptance Sampling Plans (ASPs) serve to determine the acceptance or rejection 

of a lot [1]. The quality characteristic (QC) under inspection may manifest as either an attribute or a 

variable. In situations where both inspection costs and the desired quality level are exceptionally 

high, choosing variable ASP (VASP) over attribute ASP (AASP) is a more preferable option [2]. Our 

investigation into past applications of a military standard in the case study has motivated us to delve 
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into current research. Given their adverse consequences highlighted by [3], our focus is on selecting 

appropriate policies for decision-making concerning lots. The overarching objective is to achieve 

higher quality while minimizing implementation costs, especially in scenarios with uncertain 

parameters. In this context, we review studies to outline various plans and different approaches to 

modeling under both certainty and uncertainty conditions. 

Various ASPs have been commonly employed in quality control. These include single sampling 

(SS) [4], double sampling (DS) [5], resubmitted sampling (RS) [6, 7], multiple-dependent state 

sampling (MDS) [6, 8-10], Skip-lot Sampling (SkS) [11], and Sequential Sampling (SqS) [12] plans. 

This study focuses on the investigation of the repetitive group sampling (RGS) plan, because of its 

performance acceptability [8, 13-15]. Additionally, we assume a Normal distribution for the QC. The 

Normal distribution has been commonly employed in several studies to define a variable QC [5, 13, 

14, 16]. 

Assessing plans requires an Economic-Statistical Design (ESD) to choose the most cost-effective 

option while ensuring adherence to the statistical criteria, thereby enhancing the Operating 

Characteristic (OC) curve. ESD models incorporating a sample size objective function (OBF) [8, 9, 11, 

15] and a total cost OBF [10, 17] were extended. Taking losses into account, some researchers 

employed process capability indices (PCIs) in ASPs and optimized the sample size OBF [13, 14, 18, 

19]. Another perspective involves including producer and consumer losses in the total cost OBF [6, 

20]. The resulting plan becomes more favorable when it simultaneously approaches the ideal OC 

curve by utilizing the minimum angle method (MAM). Through the integration of loss and MAM OBFs, 

Fallah Nezhad and Zahmatkesh Saredorahi [21] and Fallahnezhad et al. [22] affirmed the superior 

performance of the RGS plan compared to other VASPs. They used grid search (GS) to optimize 

models, in which all feasible solutions are examined. Banihashemi et al. [8] expanded MDS and RGS 

plans by incorporating PCI and MAM. Under Non-normal distributions, Pawan Teh et al. [23] and 

Liaqat et al. [24] utilized MAM to develop a group chain sampling plan. So far, all the studies reviewed 

have focused on designing VASPs under certainty conditions. 

However, inaccuracies may arise in the inspection process due to human or tool errors, 

introducing measurement uncertainty to the results. Various solutions addressing this uncertainty 

have been proposed, including incorporating inspection error [25, 26] and the utilization of fuzzy 

and neutrosophic approaches [27, 28]. On the other hand, the design of VASP through modeling 

necessitates the estimation of input parameters. The presence of uncertainty in estimating the 

effective input parameters can lead to inefficiencies in achieving the desired results. Addressing the 

design problem of VASP in the presence of such uncertainty aligns more closely with real-world 

scenarios. Examining the impact of input parameters on statistical process control models has 

underscored the critical importance of accurate estimation for achieving desirable results, as 

highlighted in [29]. In the context of uncertainty, recommended approaches can be found in existing 

literature [30, 31], although these methods may lack flexibility. Safaei et al. [32] applied a robust 

design (RD) approach to address the worst-case (wc) scenario for the robust ESD (RESD) of a control 

chart. Instead of incorporating uncertainty from all inputs, this approach introduces flexibility by 

incorporating the concept of a budget of uncertainty to counter the overly conservative outcomes 

associated with wc scenarios. The RD approach ensures that the obtained solution is robust against 

a wide range of uncertain parameter values. In other words, the solution is determined to perform 
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well even if the actual values of the uncertain parameters deviate from their nominal values. In a 

similar study on RESD, Jafarian-Namin et al. [33] used interval estimates for influential input 

parameters and introduced an innovative genetic algorithm (GA)-based approach for optimization. 

Utilizing the particle swarm optimization (PSO), Salmasnia et al. [34] and Jafarian-Namin et al. [35] 

have conducted in the RD on models for process monitoring and control. The better performance of 

PSO over GA in ESD of control charts has already been validated [35-37]. Notably, the RD approach, 

which has proven effective in various contexts, has not yet been applied to the design of VASPs.  

As indicated, numerous studies have investigated the ESD of VASPs under conditions where input 

parameters are certain. However, to enhance resistance strength and mitigate economic 

vulnerability during unforeseen crises, it is imperative to research the RD of VASPs is imperative 

under uncertain conditions. This study introduces novel aspects that set it apart from previous 

research. Unlike prior fixed-parameter models, this study explicitly accounts for parameter 

uncertainty by defining interval ranges. Thus, minimax optimization models are developed to 

minimize the maximum OBF across all potential values of uncertain parameters, ensuring robustness 

against wc scenarios. The introduction of the budget of uncertainty concept allows a flexible balance 

between robustness and economic efficiency. Consequently, our main objective is to introduce a 

novel RD approach that utilizes PSO to optimize minimax models for designing VASPs under 

uncertainty. This marks the first instance of such an endeavor. Pursuing this research could offer 

significant opportunities for further exploration by researchers in the field. Typically, our objectives 

include:  

1. Proposing two models by considering loss OBF and integrating loss and MAM OBFs for the RESD 

of a VASP, i.e. RGS plan, when uncertainty exists in input parameters. By incorporating different 

shifts and scenarios in uncertain input parameters, the results of both models for designing the 

RGS plan with normal QC are examined to choose the preferred model. 

2. Introducing a novel PSO-based solution procedure in optimizing VASPs. Prior to optimizing 

models, an orthogonal array design is employed to calibrate PSO factors. 

3. Comparing the performance of RGS with other VASPs, including SS, DS, and MDS, in terms of 

sample size, risk, and loss by optimizing the preferred model to determine the desired VASP.  

4. Applying RESD approach to real case studies of a VASP when lower specification limit (LSL) and 

upper specification limit (USL) are active. 

The subsequent sections of this study unfold as follows: In Section 2, we outline the main 

assumptions. Subsequently, we delve into the RGS plan, loss and MAM functions, and the proposed 

model under uncertainty. Section 3 introduces a novel solution approach. Moving to Section 4, we 

scrutinize two real-world case studies to validate the proposed solution approach, while also 

conducting a comparative analysis of two models and four VASPs. Lastly, the study concludes with a 

summary of findings and suggestions for future research. 

 

2. Model description 

This research aims to design the RGS plan under uncertainty of input parameters by developing a 

robust model, incorporating the loss and MAM as OBFs. The mathematical equations of the RGS plan 

are presented in this context. Subsequently, we present the notations and assumptions, Taguchi loss 
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function, MAM method, and the structure of the cost function. Lastly, we propose the first 

mathematical model under uncertainty. 

 

2.1. Notations and assumptions 

Table 1 provides an overview of the applied notations and abbreviations. To better characterize the 

general framewok of mathematical modeling, some assumptions are outlined and should be adhered 

to: 

1. The QC follows a Normal distribution, expressed as x~N(μ,σ), 

2. The standard deviation is historically known (note that the unknown standard deviation must 

be estimated beforehand), 

3. Only either LSL or USL is active, and the k method is employed, 

4. Items produced sequentially are chosen for inspection, 

5. The proportion of nonconforming items (PNI) remains constant in submitted lots, 

6. Each sampling plan is designed to assess the PNI, 

7. Rectifying inspection is applied to any rejected lot,  

8. No lot exhibits lower quality than preceding lots. 

 

{Please insert Table 1 about here.} 

 

2.2. RGS plan 

When the measured value of a chosen item falls below the LSL, it is considered nonconforming. The 

calculation of the PNI for a lot is as follows: 

   1 1 ,
LSL

p P x LSL v




 
      

 
       (1) 

where, according to Normal distribution, we have: 

 
21

exp .
22

v
z

v dz


 
   

 
           (2) 

Thus, the mean value of the QC can be calculated as follows: 

 1 1 .p LSL                  (3) 

If USL is active, the PNI of a lot is calculated as follows: 

   1 1 .
USL

p P x USL v




 
      

 
       (4) 

The probabilities of acceptance and rejection, along with the probability of choosing a new sample, 

are determined as follows, respectively: 

   

   

     

1

2

1 2

1 ,

,

,

a a

r r

new r a

P P v k w

P P v k w

P P k v k w w

   

   

     

        (5)  

where: 
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 

 

1

2

,

.

a

r

w k v n

w k v n

 
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           (6)  

Calculating the operating characteristic (OC) curve at a specified quality level, denoted as p, is as 

follows: 

 
 

   
1

1 2

1
.

1 1

a a
a

a r new

wP P
P p

P P P w w


  

   
       (7)  

When p matches the acceptable quality level (AQL), we establish w1=w11, and w2=w21. At this 

juncture, we have: 

 
 

   
11

1

11 21

1
.

1
a

w
P p AQL

w w


 

 
         (8)  

When p matches the limiting quality level (LQL), we establish w1=w12, and w2=w22. At this juncture, 

we have: 

 
 

   
12

2

12 22

1
.

1
a

w
P p LQL

w w


 

 
         (9)  

Under active USL, the Equations (5-9) are respectively rewritten as follows: 

   

   

   

2

1

1 2

,

1 ,

1 ,

a a

r r

new a r

P P v k w

P P v k w

P P P w w

   

   

     

         (10) 

 

 

2

1

,

.

a

r

w v k n

w v k n
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           (11) 

 

 
 

   
2

1 2

.
1

a
a

a r

wP
P p

P P w w


 

  
         (12)  

 
 

   
21

1

11 21

.
1

a

w
P p AQL

w w


 

 
         (13)  

 
 

   
22

2

12 22

.
1

a

w
P p LQL

w w


 

 
         (14)  

Average sample number (ASN) is determined by multiplying the sample size by the expected 

frequency of sampling repetitions over the long term: 

.
1 new

n
ASN

P



           (15) 

The execution of the RGS plan requires the predefinition of its three decision variables (DVs) as 

(z1=n, z2=ka, z3=kr). The steps outlining its process are briefly summarized as follows: 

1. A random sample with size n is taken as (x1, x2, ..., xn) from the lot, 

2. Following the computation of the sample mean  1

n

ii
nx x


 , the subsequent statistic is 

determined: 

.
x LSL

v



             (16) 
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When USL is active, v equals   .USL x   

3. Decision-making. If v≥ka, the lot is accepted. If v<kr, the lot is rejected. If kr≤v<ka, go to the first 
step. 

 
2.3. Taguchi loss function 

Against the traditional notion of adhering strictly to specifications, Taguchi introduced a loss function 

designed to minimize deviations from the target value [38]. When LSL is active, a more-better loss 

function is formulated as follows: 

    2
,cs

K
L x C x

x
             (17) 

where x is the QC value, 2K A  is the coefficient of the loss function, A is the average quality loss, 

and Δ is the consumer’s tolerance. When USL is active, L(x) equals 2Kx where 2K A  . If both LSL 

and USL are active, L(x) equals  
2

K x T . The relationship among the target value of T, tolerance, 

and specification limits is as  ,T LSL USL   . Note that the inspection cost per item (Cins) and the 

producer's cost associated with repairing or replacing an item (Cpr=B) are regarded as constant, 

remaining unaffected by the QC value. 

 

2.4. Structure of cost function 

The components contributing to the expected loss cost, utilized in the OBF of the proposed model, 

are delineated as follows: 

1 2 3.LE L L L              (18)  

where (note that Cpr=B and Pr(p)=1-Pa(p)): 

 

 

1

2

3

( ) ( ) ( ) ( ) ,

( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ).

LSL

ins pr cs

LSL

cs a

LSL

ins pr cs r

LSL

L ASN C C x f x dx C x f x dx

L N ASN C x f x dx P p

L N ASN C C x f x dx C x f x dx P p













 
   

 

 
   

 

 
    

 

 



 

    (19)  

L1 determines the expected cost of inspected items, encompassing the expenses associated with 

(1) inspecting sample items, (2) non-conforming items with QC values below the LSL, sent back to 

the producer, and (3) losses incurred due to QC deviations from the target value for items with QC 

values surpassing LSL, dispatched to the consumer. L2 addresses the expected cost related to the 

remaining (uninspected) items within the lot when the decision involves accepting that lot. Notably, 

the remaining items are exempt from inspection costs, placing the burden of cost solely on the 

consumer. L3 tackles the expected cost tied to the remaining (uninspected) items within the lot when 

the decision leads to rejecting that lot. It encompasses inspection costs, and producer and consumer 

expenses. Initially, all remaining items undergo inspection to categorize them as conforming or 

nonconforming. The producer is accountable for the repair or replacement costs of nonconforming 

items, and the consumer assumes the potential costs associated with the conforming items. When 

USL is active, we have: 
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 

 

1

2

3

( ) ( ) ( ) ( ) ,

( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ).

USL

ins pr cs

USL

cs a

USL

ins pr cs r

USL

L ASN C C x f x dx C x f x dx

L N ASN C x f x dx P p

L N ASN C C x f x dx C x f x dx P p













 
   

 

 
   

 

 
    

 

 



 

    (20) 

 

2.5. MAM method 

The ideal OC curve is achieved when all conforming lot are accepted, and all nonconforming lots are 

rejected. Soundararajan and Christina [39] introduced the MAM method to attain this ideal OC curve. 

The approach involves minimizing the angle θ illustrated in Figure 1, bringing the OC curve closer to 

its optimal configuration. The tangent of θ is determined as follows: 

tan( ) .
( ) ( )a a

LQL AQL

P AQL P LQL






          (21) 

Given that AQL and LQL remain constant, and the goal is to minimize tan(θ), it is imperative to 

maximize the denominator of the aforementioned fraction. In situations where an additional OBF, 

denoted as   Lg S E , needs minimization, an integrated function can be formulated as 

      a ag S P AQL P LQL . 

 

{Please insert Figure 1 about here.} 

 

2.6. Proposed Models under Uncertainty 

Assume that the values of the input parameters, which are unknown but bounded, are defined within 

a set denoted as UB. Utilizing a consistent percentage of positive and negative deviations from the 

nominal value enables the derivation of bounds for each parameter. Considering the uncertainty for 

all parameters in UB may lead to quite conservative results. To discern the trade-off between 

flexibility and conservatism, we define the budget of uncertainty  0,  1, , UBm    where mUB 

indicates the maximum number of uncertain parameters. Under 0  , the outcome is exposed to 

uncertainty conditions. In contrast, when 
UBm  , the resulting conservative outcome is secure 

against uncertainty entirely. Indicating all possible scenarios by S', the vector of input parameters is 

defined as  ’ ’ ’

1 2, ,   s s sI I I  for each specific scenario s’∈S'. After generating various scenarios, the 

OBF value for each scenario s', denoted as EL
s', is computed. With a non-linear OBF, the economic-

statistical model under uncertainty (M1) is expressed as follows: 



8 

 

min max

( ) 1

( )

; , 0

s
L

s S

s Up
a

s Up
a

s s
a r

s s s
a r

E

Subject to

P AQL s S

P LQL s S

k k s S

n N k k







 





 

  

 
 
 

    

   

   

 

         (22) 

where the OBF indicates minimizing the wc scenario among all scenarios. The initial constraint 

reflects the producer's inclination to accept conforming items by the consumer under scenario s', 

with a higher probability. Therefore, the upper value αUp is set for the producer’s risk or Type-I error 

to determine a lower bound for Pa(AQL)s'. In contrast, the second constraint accounts for the 

consumer's inclination to accept nonconforming products, albeit with a lower probability. Thus, 

Pa(LQL)s' is limited by the upper bound βUp for consumer’s risk or Type-II error. According to the 

third constraint, the acceptance number (kas') must surpass the rejection number (krs') under 

scenario s'. It is noteworthy that ns' is a positive discrete variable, while kas' and krs' are continuous 

variables. 

Searching for ideal designs needs simultaneously optimizing the EL and MAM functions. Thus, the 

economic-statistical model with integrated OBFs under uncertainty (M2) is expressed as follows: 

min max
( ) ( )

( ) 1

( )

; , 0

s
L

s ss S
a a

s Up
a

s Up
a

s s
a r

s s s
a r

E

P AQL P LQL

Subject to

P AQL s S

P LQL s S

k k s S

n N k k







  





 

  

 
 
  

    

   

   

 

         (23) 

where the integrated OBF under scenario s' is formulated as stated in subsection 2.5. The constraints 

in Equation (23) is the same as those defined in Equation (22). 

To transform the models into unconstrained forms and explore the optimal solution within the 

feasible region, the penalized OBF for a given solution (S) is expressed as follows: 

          ' ' ' ' '

1 2 31 ,s s s s sfp S OBF S viol S viol S viol S           (24) 

where the violation terms are characterized as follows: 

    
    
    '

2

'

1

3

' max 0,1  / ,

max 0,  / 1 ,

max 0,1  / .

( ) 1

( )

s Up

a

s Up

a

s

s

s

a r

s

s

v P AQ

v

Liol S

iol

k

S

viol S

P LQL

k









 





 



         (25) 

The following section introduces an innovative PSO-based approach to solve the unconstrained 

models. 
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3. Solution Procedure 

The aim is to determine optimal DVs through the optimization of the proposed models, specifically 

Mixed Integer Nonlinear Programming (MINLP). Obtaining optimal DVs by explicitly solving these 

MINLPs is nearly impossible due to several complexities. These include: (1) the nonlinear nature of 

OBFs and constraints, (2) the coexistence of discrete and continuous DVs, and (3) the uncertainty 

associated with estimating input parameters. Given the development of metaheuristics for obtaining 

near-optimal solutions within a reasonable timeframe, a novel PSO-based approach is introduced to 

provide the RD of the RGS plan. PSO has been widely used in solving similar problems [34-37]. It 

benefits from both global and local search capabilities to find solutions. To provide the RD of the RGS 

plan, this proposed PSO-based approach minimizes the wc scenario among all generated scenarios, 

as follows: 

,
Γ

U U
R E

m m
S N N

   
    

   
           (26) 

where in each possible combination, random scenarios involve the repetition of NR times, while 

extreme scenarios involve the repetition of 2EN  times, both chosen randomly. Within random 

scenarios, Γ parameters get values within their bounds, selected randomly. Meanwhile, in extreme 

scenarios, Γ parameters obtain extreme values at the limits of their bounds. The remaining UBm   

parameters maintain nominal values. 

The proposed solution procedure aims to minimize the maximum OBF across various scenarios 

while ensuring the feasibility of the solution, even when input parameters deviate from their nominal 

values. Figure 2 illustrates the steps of the RD optimization. Once the inputs are determined, the 

desired number of scenarios is generated. Then, the PSO-based solution procedure is implemented 

with an initial population, calculating the OBF across all scenarios. The wc scenario, which has the 

maximum OBF among the generated scenarios, is identified and then optimized to find the minimax 

solution. Throughout the optimization process, each particle tries to reach the best position by learning 

from its own movements and those of the entire population. Each particle may follow: (1) its current 

velocity, (2) its personal best, which is the best value experienced by the particle, or (3) the global best, 

which is the best solution found by the entire population up to a specific iteration. The procedure concludes 

when a predefined number of iterations is reached. 

We set the PSO parameters according to Appendix A (in Supplementary Data) as inertia weight 

w=0.8, recognition and social learning factors c1=1.5 and c2=2.5, population size NPop=20, and 

iteration number NItr=100. For l=1,2,…,NPop and Itr=1,…,NItr, PSO characterizes each particle (PrtlItr) 

through its position ( )~ ,Itr

l low upX U b b and velocity ( | |)~ ,  Itr

l up low up lowV U b b b b   , where blow and 

bup respectively represent the boundaries defining the lower and upper limits within the search 

space. For example, in designing the RGS, a position is established by uniformly selecting values 

{z1=n, z2=ka, z3=kr} from their boundaries. Primary value of a discrete DV, such as sample size, is 

determined by (  ~ 0,1iRv U is a random number): 

  min 1 ,  .i i min i i max i min i maxz z Rv z z z              (27) 

 

{Please insert Figure 2 about here.} 
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4. Experimental results 

To explore the influence on OBF in situations where precise estimates of model parameters are 

unavailable, and to consider diverse levels of uncertainty in these parameters, two minimax models 

were developed for various scenarios under uncertainty. This section compares the performance of 

the proposed models and four VASPs. The superior VASP optimized by the effective model is 

implemted in practice. Valuable insights are derived from a practical example and a case study, 

contributing to a comprehensive review. 

  

4.1. Practical example 

In an industrial example, the wall thickness of 2-inch plastic pipes is evaluated in batches of 2500 

pieces per week (refer to the "example of creating a single sampling plan" on "support.minitab.com"). 

Nominal values for the input parameters are outlined in Table 2. First, PSO-based algorithm was 

compared with GS [21] in optimizing M1 and M2 models for RGS under certainty (Γ=0). Optimizing 

M1 using PSO and GS resulted in EL=17830 in 7.52 seconds and EL=19416 in 4569.16 seconds, 

respectively. Similarly, optimizing M2 using PSO and GS resulted in EL=18084 in 7.67 seconds and 

EL=19991 in 4566 seconds, respectively. Therefore, utilizing PSO is preferred due to its ability to 

produce better quality solutions in a shorter computational time.  

In Appendix B (in Supplementary Data), a set of model input parameters was considered, as shown 

in Table S.3 (in Supplementary Data). Based on the results of the sensitivity analysis shown in Figure 

S.1 (in Supplementary Data), five input parameters were identified with significant effects on OBF. 

Consequently, UB was set as {αUp, βUp, K, N, AQL} where mUB=5. For parameters within that set 

subject to uncertainty, deviations of 10% and 20% from the nominal value are taken into account. 

This implies mUB=5 and a range of Γ=0,1,...,5. Additionally, we establish NR=4 in our analysis. The 

outcomes for the M1 and M2 models are indicated in Table 3 and Table 4, respectively (MATLAB 

codes can be obtained upon request from the authors). In Table 3, the smallest EL is observed when 

Γ=0. Conversely, the most conservative scenario with Γ=5 yields the highest EL. The gradual rise in EL 

becomes apparent as Γ increases. This upward trend reveals the following points: 

 The rate of cost increase in 20% deviation is steeper than that of 10%. For instance, EL(Γ=1)-EL(Γ=0) 

for 20% and 10% deviations results in 3506.41 and 1753.42, respectively. 

 Initially, the EL trend experiences an increase (EL(Γ=1)-EL(Γ=0)=3506.41 under a 20% shift). 

Conversely, subsequent results, such as 17.06, 1.21, 1.27, and 3.11, display a decreasing trend. 

Our analysis demonstrates the superiority of RESD over standard ESD in handling parameter 

uncertainty. For instance, under a 10% shift, as shown in Table 3, standard ESD yields EL=17830.52, 

whereas RESD shows varied EL values as Γ increases, reflecting its adaptability to uncertainty. These 

results provide strong evidence for RESD's applicability in real-world scenarios where parameter 

uncertainty is a concern. After Γ=mUB0.5=50.5≈2, the oscillations in the trend appear to diminish [40]. 

The consistency of the outcomes for the 10% deviation becomes more prominent. Hence, opting for 

Γ=2 appears to be a suitable choice for addressing the present example. Typically, decision-makers 

should embrace some risks to handle potential uncertainties. Comparable findings can be derived 

from the M2 results in Table 4. Figure 3 compares the optimal costs and risks associated with RD for 

the proposed models under both 10% and 20% deviations. The visualization illustrates that a slight 
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increase in the cost of M2 in comparison to M1 leads to a noteworthy reduction in the overall risks 

of the RGS plan. Consequently, the effective performance of M2 for RD is validated. 

Utilizing M2 under Γ=2, we conducted a comparison of four sampling plans. Table 5 reveals that 

the RGS plan yields lower cost, ASN, and risk values (the DVs for each plan were equated to zi values). 

Additionally, the OC curve of the RGS plan closely aligns with the ideal situation (see Figure 4). The 

comprehensive findings demonstrate the superior performance of the RGS plan. Consequently, its 

application is recommended for further evaluation. Table 6 indicates 104 samples taken from one 

received lot. A P-value=0.704>0.05 confirms the normality assumption based on the Anderson-

darling index. Considering the optimal DVs by M2 under 20% shift and Γ=2, including (n, ka, kr)=(61, 

2.25, 1.89), the inspection procedure is summarized in the following steps:  

1. A random sample with size 61 is taken from the lot as (x1, x2, ..., x61)= (0.1735, 0.1810,...,0.1710), 

2. After obtaining the sample mean 0.200043x   from the first step, the following statistic is 

calculated: 

0.200043 0.09000
4.40,

0.02500

x LSL
v



 
    

3. Decision-making. Since v=4.40≥ka=2.25, the lot is accepted. 
 

{Please insert Table 2 about here.} 

{Please insert Table 3 about here.} 
{Please insert Table 4 about here.} 

{Please insert Table 5 about here.} 

{Please insert Table 6 about here.} 

{Please insert Figure 3 about here.} 

{Please insert Figure 4 about here.} 

 

4.2. Case study 

A company manufactures a diverse range of spare parts for automobiles. On a daily basis, it receives 

batches containing 350 plano-convex glass lenses, which are integral components for producing a 

specific model of fog light. Its external diameter is a critical QC for assembly, with a targeted value of 

57 mm. To assess it, the company has transitioned to utilizing RGS, departing from its previous 

approach based on MIL-STD-105E. Table 7 indicates the nominal values of the input parameters. The 

key distinction in this study, unlike previous examples, is the activation of USL. Following the 

execution of the solution algorithm, Table 8 and Table 9 indicate the outcomes of models M1 and M2, 

respectively. Figure 5 depicts the optimal costs and risks associated with both models under 

uncertainty conditions. Accordingly: 

 The minimum (maximum) cost is attained in the most risky (most conservative) scenario with 

Γ=0 (Γ=5), 

 The rate of cost escalation in the 20% shift surpasses that of the 10% shift, 

 Initially, there is an upward trend in the cost changes, succeeded by a subsequent decline, 

 The discernible shifts in the cost trend diminish notably after Γ=50.5≈2, 

 After Γ=2, the uniformity of outcomes for the 10% shift becomes more evident, 

 The superior efficacy of M2 is validated in the design of RGS. 
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 The superiority of RESD is confirmed over standard ESD in handling parameter uncertainty. 

The results of the comparison among four VASPs are presented in Table 10 and Figure 6. Given 

that the RGS plan exhibits the most closed OC curve with the lowest associated cost, it has been 

chosen for the evaluation of the lot in this particular case study. Considering the DVs (n, ka, kr)=(65, 

1.87, 1.48) obtained by optimizing M2 under 20% shift and Γ=2, a sample of 65 items was taken from 

one lot (see Table 11). The inspection procedure is summarized in the following steps:  

1. A random sample with size 65 is taken from the lot as (x1, x2, ..., x65)= (57.05, 57.10,..., 57.05), 

2. After obtaining the sample mean 57.05354x   from the first step, the following statistic is 

calculated: 

57.10 57.05354
2.09,

0.0222

USL x
v



 
    

3. Decision-making. Since v=2.09≥ka=1.87, the lot is accepted. If we used M1, the decision criteria 
would be closer to the threshold according to v=2.08≥ka=1.88. In other words, decision making 
in M2 is associated with less risk. 

 

{Please insert Table 7 about here.} 

{Please insert Table 8 about here.} 

{Please insert Table 9 about here.} 

{Please insert Table 10 about here.} 

{Please insert Table 11 about here.} 

{Please insert Figure 5 about here.} 

{Please insert Figure 6 about here.} 

 

5. Conclusions 

To enhance resistance strength and mitigate economic vulnerability in the face of unforeseen crises, 

it was imperative to conduct RD for VASPs under uncertain conditions. The proposed models 

involved some influential input parameters, challenging accurate estimation in reality. Introducing 

the concept of RD for the first time in VASP modeling aimed to provide an optimal policy considering 

the potential effects of uncertainty in input parameters. Evaluation of the RD for cost-based and cost-

MAM models, utilizing practical examples and case studies, resulted in the presentation of optimal 

policies for the RGS plan. The findings demonstrated that the cost-MAM model exhibited superior 

performance in the RGS plan, resulting in the lowest risk under various budgets of uncertainty. 

Additionally, the RGS plan, when compared to SS, DS, and MDS plans, incurred lower costs and risks.  

As indicated, some input parameters have a major impact on optimal solutions and can undermine 

the effectiveness of the models. When these parameters deviate from their nominal values, 

deterministic-based models become ineffective in the face of such uncertainty. Disregarding this can 

lead to additional costs. The proposed models, while upholding statistical conditions and minimizing 

costs, afford the decision-maker the flexibility to apply the desired level of protection against 

uncertainty. Indeed, for various levels of uncertainty in the parameters, there are observable changes 

in the total cost, with these incremental changes initially being noticeable. However, as the 

uncertainty budget further increases after specific points, the changes in the OBF become 

imperceptible. In essence, dealing with potential uncertainty necessitates taking some level of risk 
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and paying for it. Recognizing the risks and associated costs, utilizing robust optimization in 

modeling VASPs provides decision-makers with a robust solution for managing potential 

uncertainties in real-world scenarios. 

Pursuing the current research could offer opportunities for further exploration by researchers. In 

this context, additional aspects to expand include evaluating novel VASPs, extending new models, 

and proposing efficient solution approaches. Studies on RDs in experimental design [41] and system 

reliability [42] already exist, and applying the PSO-based RD in these contexts could be expanded. 

Investigating the RD approach in larger manufacturing systems could enhance the model's 

applicability to more complex real-world scenarios. However, this would also present challenges, 

such as increased parameter dimensionality and higher computational requirements. Moreover, the 

current approach has several limitations. These include dependence on accurate estimation of 

uncertain parameter ranges, the assumption of a uniform distribution for defining intervals, 

disregard for potential dependencies among uncertain parameters, and challenges in accounting for 

uncertainty in the model structure. Our upcoming investigation will focus on the RD of VASPs for life-

testing under both certainty and uncertain conditions.  

 

Supplementary Data 

Supplementary data is available at: 

file:///C:/Users/pc/Downloads/Supplementary%20data-SCI-2403-8879.pdf 

 

References 

[1]Schilling, E.G. and Neubauer, D.V., Acceptance sampling in quality control, 3rd Edn, Chapman & Hall 
(2017). 

[2]Montgomery, D. C., Introduction to statistical quality control, 8th Edn., Wiley (2019). 
[3]Negrin, I., Parmet, Y. and Schechtman, E. “Developing a sampling plan based on Cpk”, Quality 

Engineering, 21(3), pp. 306-318 (2009). DOI: 10.1080/08982110902873597 
[4]Jafarian-Namin, S., Pakzad, A. and Fallah Nezhad, M.S. “A DEA-bases approach for multi-objective 

design of attribute acceptance sampling plans”, International Journal of Data Envelopment 
Analysis, 5(2), pp. 1231-1242 (2017). URL: https://ijdea.srbiau.ac.ir/article_12317.html 

[5]Fallah Nezhad, M.S. and Seifi, S. “Designing optimal double-sampling plan based on process 
capability index”, Communications in Statistics - Theory and Methods, 46(13), pp. 6624-6634 
(2017). DOI: 10.1080/03610926.2015.1132325 

[6]Banihashemi, A., Fallah Nezhad, M.S. and Amiri, A. “A new approach in the economic design of 
acceptance sampling plans based on process yield index and taguchi loss function”, Computers & 
Industrial Engineering, 159, p. 107155 (2021). DOI: 10.1016/j.cie.2021.107155 

[7]Balamurali, S. “Combined attri-vari inspection policy for resubmitted lots based on the process 
capability index”, Communications in Statistics - Simulation and Computation, 51(9), pp. 5406-
5425 (2022). DOI: 10.1080/03610918.2020.1771367 

[8]Banihashemi, A., Fallahnezhad, M.S. and Amiri, A. “Developing two variables sampling plans 
considering the compliance rate with the ideal OC curve”, Journal of Industrial and Systems 
Engineering, 12(4), pp. 242-251 (2020). DOR: 20.1001.1.17358272.2019.12.4.13.6 

[9]Wang, T.C., Shu, M.H., Hsu, B.M. et al. “Adjustable variables multiple-dependent-state sampling 
plans based on a process capability index”, Journal of the Operational Research Society, 73(12), pp. 
2626-2639 (2022). DOI: 10.1080/01605682.2021.2007805 

[10]Arshad, R., Mahmood, Y., Aslam, M. et al. “Cost model of variable multiple dependent state 

file:///C:/Users/pc/Downloads/Supplementary%20data-SCI-2403-8879.pdf


14 

 

sampling plan with rectifying inspection”, Communications in Statistics: Simulation and 
Computation, 52(6), pp. 2349-2364 (2023). DOI: 10.1080/03610918.2021.1905844 

[11]Wu, C.W., Lee, A.H.I. and Huang, Y.S. “A variable-type skip-lot sampling plan for products with a 
unilateral specification limit”, International Journal of Production Research, 59(14), pp. 4140-
4156 (2021). DOI: 10.1080/00207543.2020.1757778 

[12]Fallah Nezhad, M.S., Yousefi Babadi, A., Momeni, M. et al. “Optimal sequential sampling plans 
using dynamic programming approach”, Pakistan Journal of Statistics and Operation Research, 
11(4), pp. 575-586 (2015). DOI: 10.18187/pjsor.v11i4.583 

[13]Wu, C.-W. “An efficient inspection scheme for variables based on taguchi capability index”, 
European Journal of Operational Research, 223(1), pp. 116-122 (2012). DOI: 
10.1016/j.ejor.2012.06.023 

[14]Fallah Nezhad, M.S. and Seifi, S. “Repetitive group sampling plan based on the process capability 
index for the lot acceptance problem”, Journal of Statistical Computation and Simulation, 87(1), 
pp. 29-41 (2017). DOI: 10.1080/00949655.2016.1189553 

[15]Wu, C.-W., Lee, A.H.I. and Liu, S.-W. “A repetitive group sampling plan based on the lifetime 
performance index under gamma distribution”, Quality and Reliability Engineering International, 
38(4), pp. 2049-2064 (2022). DOI: 10.1002/qre.3060 

[16]Wu, C.W., Darmawan, A. and Liu, S. W. “Stage-independent multiple sampling plan by variables 
inspection for lot determination based on the process capability index Cpk”, International Journal 
of Production Research, 61(10), pp. 3171-3183 (2023). DOI: 10.1080/00207543.2022.2078745 

[17]Kumar, M. and Ramyamol, P.C. “Construction of minimum cost reliability acceptance sampling 
plans for multistage process”, Journal of Industrial and Production Engineering, 39(5), pp. 353-
364 (2022). DOI: 10.1080/21681015.2021.1992801 

[18]Liu, S.W., Wang, Z.H. and Wang, T.C. “Developing a cost-efficient dual sampling system for lot 
disposition by considering process yield and quality loss”, Quality Engineering, 35(2), pp. 267-
278 (2023). DOI: 10.1080/08982112.2022.2124381 

[19]Wu, C.W. and Darmawan, A. “A modified sampling scheme for lot sentencing based on the third-
generation capability index”, Annals of Operations Research (2023). DOI: 10.1007/s10479-023-
05328-z 

[20]Ahmadi Nadi, A., Gildeh, B.S., Kazempoor, J. et al. “Cost-effective optimization strategies and 
sampling plan for weibull quantiles under type-II censoring”, Applied Mathematical Modelling, 
116, pp. 16-31 (2023). DOI: 10.1016/j.apm.2022.11.004 

[21]Fallah Nezhad, M.S. and Zahmatkesh Saredorahi, F. “Designing an economically optimal repetitive 
group-sampling plan based on loss functions”, Communications in Statistics - Simulation and 
Computation, 47(3), pp. 783-799 (2018). DOI: 10.1080/03610918.2017.1291964 

[22]Fallahnezhad, M.S., Zahmatkesh Saredorahi, F., Owlia, M.S. et al. “Design of economically and 
statistically optimal sampling plans”, Hacettepe Journal of Mathematics and Statistics, 47(3), pp. 
685-708 (2018). URL: https://dergipark.org.tr/en/pub/hujms/issue/38121/440364 

[23]Pawan Teh, M.A., Aziz, N., and Zain, Z. “A new method in designing group chain acceptance 
sampling plans (GChSP) for generalized exponential distribution”, International Journal of Quality 
& Reliability Management, 38(5), pp. 1116-1129 (2021). DOI: 10.1108/ijqrm-12-2018-0345 

[24]Liaqat, M., Saeed, N., Saleem, K. et al. “A modified group chain sampling plan for lifetime following 
kumaraswamy generalized power weibull distribution with minimum angle approach”, Scientia 
Iranica (2023). DOI: 10.24200/sci.2023.59768.6413 

[25]Razmkhah, M., Sadeghpour Gildeh, B. and Ahmadi, J. “An economic design of rectifying single 
sampling plans via maxima nomination sampling in the presence of inspection errors”, 
Communications in Statistics - Simulation and Computation, 50(1), pp. 217-233 (2021). DOI: 
10.1080/03610918.2018.1554111 



15 

 

[26]Rakhmawati, D.Y. and Lee, J. “A product acceptance decision-making method based on process 
capability with considering gauge measurement errors”, Communications in Statistics - Theory and 
Methods, 52(8), pp. 2646-2665 (2023). DOI: 10.1080/03610926.2021.1955929 

[27]Thomas, J.T. and Kumar, M. “Cost optimization of acceptance sampling plan in a fuzzy supply 
chain environment”, International Journal of Quality & Reliability Management, 41(3), pp. 901-914 
(2024). DOI: 10.1108/ijqrm-03-2023-0076 

[28]Işık, G. and Kaya, I . “Design of acceptance sampling plans based on interval valued neutrosophic 
sets”, Soft Computing, 27(20), pp. 14601-14619 (2023). DOI: 10.1007/s00500-023-09027-6 

[29]Mortarino, C. “Duncan's model for X̄-control charts: sensitivity analysis to input parameters”, 
Quality and Reliability Engineering International, 26(1), pp. 17-26 (2010). DOI: 10.1002/qre.1026 

[30]Linderman, K. and Choo, A.S. “Robust economic control chart design”, IIE Transactions, 34(12), 
pp. 1069-1078 (2002). DOI: 10.1080/07408170208928935 

[31]Taromi, M. and Asgharpour, K. “A risk-based approach to robust economic-statistical design of 
control charts under duncan’s economic model”, Life Science Journal, 10(8), pp. 277-289 (2013).  

[32]Safaei, A.S., Kazemzadeh, R.B. and Gan, H.-S. “Robust economic-statistical design of x-bar control 
chart”, International Journal of Production Research, 53(14), pp. 4446-4458 (2015). DOI: 
10.1080/00207543.2015.1018449 

[33]Jafarian-Namin, S., Fallahnezhad, M.S., Tavakkoli-Moghaddam, R. et al. “Robust economic-
statistical design of acceptance control chart”, Journal of Quality Engineering and Production 
Optimization, 4(1), pp. 55-72 (2019). DOI: 10.22070/jqepo.2018.3646.1078 

[34]Salmasnia, A., Jafarian-Namin, S. and Abdzadeh, B. “Robust optimization of an imperfect process 
when the mean and variance are jointly monitored under dependent multiple assignable causes”, 
Stochastics and Quality Control, 37(2), pp. 137-151 (2022). DOI: 10.1515/eqc-2022-0018 

[35]Jafarian-Namin, S., Fallah Nezhad, M.S., Tavakkoli-Moghaddam, R. et al. “Robust design of ARMA 
and ACC charts for imperfect and autocorrelated processes under uncertainty”, Journal of 
Statistical Computation and Simulation, 94(4), pp. 762–786 (2024). DOI: 
10.1080/00949655.2023.2273370 

[36]Chih, M., Yeh, L.-L. and Li, F.-C. “Particle swarm optimization for the economic and economic 
statistical designs of the x¯ control chart”, Applied Soft Computing, 11(8), pp. 5053-5067 (2011). 
DOI: 10.1016/j.asoc.2011.05.053 

[37]Zhu, J., Sun, J., Xin, H. et al. “Acceptance sampling scheme with warranty for life testing using 
bayesian inference methods”, Journal of Testing and Evaluation, 49(5), pp. 3081-3096 (2021). 
DOI: 10.1520/JTE20180476 

[38]Taguchi, G., Chowdhury, S. and Wu, Y., Taguchi’s quality engineering handbook, John Wiley & Sons 
(2005). DOI: 10.1002/9780470258354 

[39]Soundararajan, V. and Christina, A.L. “Selection of single sampling variables plans based on the 
minimum angle”, Journal of Applied Statistics, 24(2), pp. 207-218 (1997). DOI: 
10.1080/02664769723819 

[40]Bertsimas, D. and Thiele, A. “Robust and data-driven optimization: modern decision making 
under uncertainty”, In Models, Methods, and Applications for Innovative Decision Making, M.P. 
Johnson, B. Norman, N. Secomandi et al. Ed.,  pp. 95-122, INFORMS (2006). DOI: 
10.1287/educ.1063.0022 

[41]O zdemir, A. and Turkoz, M. “Robust design modeling and optimization for dealing with a non-
convex design space”, Computers & Industrial Engineering, 185, p. 109688 (2023). 

[42]Hong, L., Wang, X., Zhang, W., et al. “System reliability-based robust design of deep foundation pit 
considering multiple failure modes”, Geoscience Frontiers, 15(2), p. 101761 (2024). 

[43]Jafarian-Namin, S., Fallah Nezhad, M.S., Tavakkoli-Moghaddam, R. et al. “An integrated model for 
optimal selection of quality, maintenance, and production parameters with autocorrelated data”, 



16 

 

Scientia Iranica, 31(3), pp. 206-227 (2024). DOI: 10.24200/sci.2021.56484.4745 
 

 

Figure 1. θ angle in OC curve 
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Figure 2. PSO-based solution procedure 
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Figure 3. Robust design of RGS plan in the practical example using M1 and M2 to examine the changes in: (a) cost under 

10% and 20% shift scenarios, (b) total risk under 10% and 20% shift scenarios for different uncertainty budgets 

 

 

 
Figure 4. OC curves of four VASPs with M2 model in the practical example under 20% shift 

 

 



19 

 

 
Figure 5. Robust design of RGS plan in the case study using M1 and M2 to examine the changes in: (a) cost under 10% 

and 20% shift scenarios, (b) total risk under 10% and 20% shift scenarios for different uncertainty budgets 

 

 

 
 

Figure 6. OC curves of four VASPs with M2 model in the case study under 20% shift 
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Table 1. Notations and abbreviations 

Notation Description 

Decision variables  
ns' The sample size under scenario s' 

kas', krs' The acceptance and rejection numbers under scenario s', respectively 

zi Representing the decision variables of a RGS plan (i=1,2,3) 

Cost parameters  
ELs' The expected total cost (loss) for scenario s' 

L1 The expected cost of inspected items 

L2 The expected cost of items remaining in the lot if it is accepted  
L3 The expected cost of items remaining in the lot if it is rejected 

Cins The cost of inspecting an item 

Cpr, Ccs The producer’s and consumer’s loss functions, respectively 

K The coefficient of consumer’s loss function 

A The average quality loss 

B The producer’s cost to repair or replace an item 
Process parameters   
α, β The producer’s and consumer’s risks or Type-I and Type-II errors, respectively 

αUp, βUp The upper bounds on Type-I and Type-II errors in constraints, respectively 

USL, LSL Upper and lower specification limits, respectively 

x A specified value of the QC 

v A standardized normal value 

δ The minimum possible value of the QC 

Δ The consumer’s tolerance 

T The target value 

µ, σ The mean and standard deviation of the QC, respectively 

N The lot size 

f(x) The probability density function (pdf) 

Φ(v) The cumulative distribution function (cdf) 

AQL, LQL The acceptable and limiting (rejectable) quality levels, respectively 

p The nonconforming proportion of the lot 

Pa(p), Pr(p) The probability of accepting and rejecting a lot at the quality level p, respectively 

Pnew The probability of selecting a new sample when implementing the RGS plan 

ASN The average sample number 

S A set of DVs as a solution 

fp s'(S) A Penalized OBFs' for a given solution S under s' 

viols'(S) A violation term associated with a constraint for a given solution S under s' 

θ The angle in MAM method 

Solution parameters  

UB The set of bounded input parameters for uncertainty study 

S' All possible scenarios 

s' A specific scenario (s'=1,…,S') 

swc' The worst case (wc) scenario among S' 

mUB The maximum number of uncertain parameters 

Γ The budget of uncertainty 

Is’ The vector of input parameters under s' 

NE The repetitions of extreme scenarios among S' 

NR The repetitions of random scenarios among S' 

w The inertia weight 

c1, c2 The recognition and social learning factors, respectively 
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NPop The population size 

NItr The iteration number 

PrtlItr The lth particle in the Itrth iteration, where l=1,2,…,NPop and Itr=1,…,NItr 

XlItr, VlItr The position and velocity of PrtlItr, respectively 

U Uniform distribution 

blow, bup The lower and upper limits of DVs within the search space, respectively 

Rvi, rp, rg The generated random numbers according to Uniform distribution between (0,1) 

pbestlItr, gbestlItr The particle best and global best of PrtlItr, respectively 

Abbreviations  

ASP Acceptance sampling plan 

AASP Attribute ASP 

AQL Acceptable quality level 

DS Double sampling 

DV Decision variable 

ESD Economic-statistical design 

GA Genetic algorithm 

GS Grid search 

LQL Limiting quality level 

M1 The economic-statistical model with loss-based OBF under uncertainty 

M2 The economic-statistical model with integrated OBFs under uncertainty 

MAM Minimum angle method 

MDS Multiple-dependent state sampling 

MINLP Mixed integer nonlinear programming 

OBF Objective function 

OC Operating characteristic 

PCI Process capability index 

PNI Proportion of nonconforming items 

PSO Particle swarm optimization 

QC Quality characteristic 

RD Robust design 

RESD Robust ESD 

RGS Repetitive group sampling 

RS Resubmitted sampling 

SkS Skip-lot sampling 

SqS Sequential sampling 

SS Single sampling 

VASP Variable ASP 

wc Worst-case 

 
 

Table 2. Nominal values of the input parameters in the practical example 
µ σ USL LSL Δ δ A K 

0.2025" 0.025" 0.315" 0.09" 0.1125" 0.065" 11.1 0.14 

N AQL LQL Cp αUp βUp Cins Cpr 

2500 0.01 0.03 1.50 0.05 0.10 7 25 
 

 
Table 3. Optimal results of M1 with RGS plan under different shift scenarios and uncertainty budgets 

Shift Γ z1 z2 z3 EL Pa(AQL) Pa(LQL) ASN tan(θ) α+β 

 0 29 2.23 1.76 17830.52 1.00 0.10 41.99 0.02 0.10 

 1 31 2.22 1.76 19583.94 1.00 0.10 43.24 0.02 0.10 
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10% 2 31 2.23 1.78 19592.03 1.00 0.09 43.39 0.02 0.09 

 3 30 2.24 1.76 19591.85 1.00 0.09 43.41 0.02 0.09 

 4 31 2.22 1.78 19592.55 1.00 0.09 43.11 0.02 0.09 

 5 28 2.27 1.73 19596.44 1.00 0.09 44.87 0.02 0.09 

 0 30 2.23 1.76 17830.40 1.00 0.10 42.52 0.02 0.10 

 1 31 2.23 1.76 21336.81 1.00 0.10 43.46 0.02 0.10 

20% 2 33 2.22 1.78 21353.87 1.00 0.08 45.48 0.02 0.08 

 3 34 2.21 1.79 21355.08 1.00 0.08 45.53 0.02 0.08 

 4 33 2.22 1.78 21353.81 1.00 0.08 45.67 0.02 0.08 

 5 31 2.25 1.74 21356.92 1.00 0.08 46.99 0.02 0.08 

 
 

Table 4. Optimal results of M2 with RGS plan under different shift scenarios and uncertainty budgets 

Shift Γ z1 z2 z3 EL Pa(AQL) Pa(LQL) ASN tan(θ) α+β 

 0 59 2.25 1.89 18084.41 1.00 0.00 80.78 0.02 0.01 

 1 60 2.25 1.89 19844.75 1.00 0.00 82.15 0.02 0.00 

10% 2 60 2.25 1.89 19844.45 1.00 0.00 82.11 0.02 0.00 

 3 60 2.25 1.89 19844.55 1.00 0.00 82.13 0.02 0.00 

 4 60 2.25 1.89 19844.43 1.00 0.00 82.11 0.02 0.00 

 5 60 2.25 1.89 19844.40 1.00 0.00 82.11 0.02 0.00 

 0 59 2.25 1.89 18084.58 1.00 0.00 80.81 0.02 0.01 

 1 61 2.25 1.89 21603.83 1.00 0.00 83.35 0.02 0.00 

20% 2 61 2.25 1.89 21603.85 1.00 0.00 83.36 0.02 0.00 

 3 61 2.25 1.89 21603.78 1.00 0.00 83.35 0.02 0.00 

 4 61 2.25 1.89 21603.94 1.00 0.00 83.37 0.02 0.00 

 5 61 2.25 1.89 21603.87 1.00 0.00 83.36 0.02 0.00 

 
 

Table 5. Optimal results of four VASPs using M2 in the practical example under Γ=2 

Shift Plan z1 z2 z3 z4 z5 EL Pa(AQL) Pa(LQL) ASN tan(θ) α+β 

10% SS 137 2.09 - - - 20280.15 1.00 0.01 137.00 0.02 0.01 

 DS 76 214 2.17 1.87 2.07 19921.13 1.00 0.01 94.16 0.02 0.01 

 MDS 99 2.14 0.42 2 - 19987.77 1.00 0.01 99.00 0.02 0.01 

 RGS 60 2.25 1.89 - - 19844.45 1.00 0.00 82.11 0.02 0.00 

20% SS 140 2.09 - - - 22052.30 1.00 0.01 140.00 0.02 0.01 

 DS 141 51 2.11 2.08 2.11 22045.90 1.00 0.00 141.13 0.02 0.01 

 MDS 101 2.14 1.85 2 - 21752.80 1.00 0.00 101.00 0.02 0.01 

 RGS 61 2.25 1.89 - - 21603.85 1.00 0.00 83.36 0.02 0.00 

 
 

Table 6. Obtained Data from a shipment in the practical example (starting from the left side in order from top to 
bottom) 

0.1735

0 

0.1926

0 

0.2175

0 

0.1892

0 

0.1786

0 

0.1942

0 

0.2097

0 

0.1694

0 

0.1994

0 

0.2267

0 

0.1675

0 

0.2083

0 

0.1810

0 

0.2086

0 

0.2046

0 

0.1903

0 

0.2112

0 

0.2296

0 

0.1750

0 

0.1800

0 

0.1708

0 

0.2046

0 

0.2309

0 

0.2075

0 

0.2543

0 

0.2560

0 

0.2331

0 

0.2366

0 

0.1984

0 

0.1640

0 

0.1800

0 

0.2311

0 

0.1867

0 

0.2423

0 

0.2238

0 

0.2277

0 
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0.1803

0 

0.1861

0 

0.2135

0 

0.1898

0 

0.1518

0 

0.2195

0 

0.1636

0 

0.2061

0 

0.1593

0 

0.1507

0 

0.1890

0 

0.1463

0 

0.2028

0 

0.2261

0 

0.1894

0 

0.2070

0 

0.2039

0 

0.2159

0 

0.2260

0 

0.1804

0 

0.2095

0 

0.2167

0 

0.1805

0 

0.2471

0 

0.2001

0 

0.1821

0 

0.2160

0 

0.2135

0 

0.2034

0 

0.2028

0 

0.2107

0 

0.2189

0 

0.1917

0 

0.2073

0 

0.1627

0 
- 

0.1931

0 

0.2124

0 

0.2143

0 

0.2146

0 

0.1882

0 

0.2303

0 

0.1710

0 

0.1414

0 

0.1807

0 

0.2087

0 

0.2135

0 
- 

0.1585

0 

0.2489

0 

0.1593

0 

0.2357

0 

0.2054

0 

0.1997

0 

0.2238

0 

0.2064

0 

0.1797

0 

0.1973

0 

0.2033

0 
- 

0.1974

0 

0.1612

0 

0.1564

0 

0.1817

0 

0.1968

0 

0.1689

0 

0.2187

0 

0.2405

0 

0.2466

0 

0.2201

0 

0.1732

0 
- 

 
 

Table 7. Nominal values of the input parameters in the case study 
µ σ USL LSL Δ δ A K 
57 0.0222 57.10 56.90 0.10 57.12 11.1 0.11 
N AQL LQL Cp αUp βUp Cins Cpr 

350 0.025 0.075 1.50 0.05 0.10 7 25 
 
 

Table 8. Optimal results of M1 with RGS plan under different shift scenarios and uncertainty budgets 

Shift Γ z1 z2 z3 EL Pa(AQL) Pa(LQL) ASN tan(θ) α+β 

 0 17 1.87 1.34 126539.04 0.99 0.10 26.16 0.06 0.11 

 1 17 1.87 1.35 139174.77 0.99 0.10 25.83 0.06 0.11 

10% 2 18 1.87 1.35 139180.97 0.99 0.09 27.35 0.06 0.10 

 3 18 1.86 1.37 139181.01 0.99 0.09 26.70 0.06 0.10 

 4 18 1.86 1.36 139180.81 0.99 0.09 26.99 0.06 0.10 

 5 18 1.86 1.36 139180.81 0.99 0.09 27.04 0.06 0.10 

 0 18 1.85 1.37 126539.21 0.99 0.10 26.04 0.06 0.11 

 1 18 1.86 1.35 151810.45 0.99 0.10 26.61 0.06 0.11 

20% 2 18 1.88 1.34 151823.77 0.99 0.08 28.52 0.06 0.09 

 3 19 1.86 1.37 151823.32 0.99 0.08 28.40 0.05 0.09 

 4 20 1.85 1.38 151823.78 0.99 0.08 28.69 0.05 0.09 

 5 19 1.86 1.38 151823.54 0.99 0.08 28.01 0.06 0.09 

 
 

 
Table 9. Optimal results of M2 with RGS plan under different shift scenarios and uncertainty budgets 

Shift Γ z1 z2 z3 EL Pa(AQL) Pa(LQL) ASN tan(θ) α+β 

 0 63 1.87 1.48 126916.42 1.00 0.00 82.71 0.05 0.00 

 1 64 1.87 1.48 139557.60 1.00 0.00 83.78 0.05 0.00 

10% 2 64 1.87 1.48 139557.60 1.00 0.00 83.78 0.05 0.00 

 3 64 1.87 1.48 139557.58 1.00 0.00 83.77 0.05 0.00 

 4 64 1.87 1.48 139557.61 1.00 0.00 83.78 0.05 0.00 

 5 64 1.87 1.48 139557.56 1.00 0.00 83.77 0.05 0.00 

 0 63 1.87 1.48 126916.43 1.00 0.00 82.71 0.05 0.00 

 1 65 1.87 1.48 152198.35 1.00 0.00 84.78 0.05 0.00 

20% 2 65 1.87 1.48 152198.35 1.00 0.00 84.78 0.06 0.00 
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 3 65 1.87 1.48 152198.34 1.00 0.00 84.78 0.06 0.00 

 4 65 1.87 1.48 152198.33 1.00 0.00 84.77 0.06 0.00 

 5 65 1.87 1.48 152198.35 1.00 0.00 84.78 0.06 0.00 

 
 

Table 10. Optimal results of four VASPs using M2 in the case study under Γ=2 

Shift Plan z1 z2 z3 z4 z5 EL Pa(AQL) Pa(LQL) ASN tan(θ) α+β 

10% SS 152 1.70 - - - 140036.03 1.00 0.00 152.00 0.05 0.00 

 DS 78 171 1.82 1.49 1.71 139638.53 1.00 0.00 95.34 0.05 0.00 

 MDS 106 1.76 1.56 1.00 - 139713.80 1.00 0.00 106.00 0.05 0.00 

 RGS 64 1.87 1.48 - - 139557.60 1.00 0.00 83.78 0.05 0.00 

20% SS 154 1.70 - - - 152683.83 1.00 0.00 154.00 0.06 0.00 

 DS 79 170 1.82 1.49 1.71 152277.51 1.00 0.00 96.08 0.06 0.00 

 MDS 111 1.75 1.44 2.00 - 152382.52 1.00 0.00 111.00 0.06 0.00 

 RGS 65 1.87 1.48 - - 152198.35 1.00 0.00 84.78 0.06 0.00 

 
 

Table 11. Obtained Data from a shipment in the case study (starting from the left side in order from top to bottom) 

57.05 57.05 57.05 57.04 57.10 57.00 57.08 57.08 57.07 57.04 

57.10 57.08 57.05 57.05 57.07 57.02 57.08 57.02 57.00 57.05 

57.06 57.03 57.05 57.05 57.05 57.04 57.10 57.00 57.08 - 

57.08 57.07 57.10 57.08 57.05 57.05 57.07 57.02 57.08 - 

57.02 57.00 57.06 57.03 57.05 57.05 57.05 57.04 57.10 - 

57.00 57.08 57.08 57.07 57.10 57.08 57.05 57.05 57.07 - 

57.02 57.08 57.02 57.00 57.06 57.03 57.05 57.05 57.05 - 
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