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Abstract—Automatic speech recognition (ASR) assumes a crucial function in various domains, improving search engines, aiding 

healthcare with medical reporting and diagnosis, enhancing service delivery, and facilitating effective communication in service 

providers. This paper introduces FNNRA (Flexible Neural Network with Recursive Architecture), a novel method aimed at addressing 

overfitting issues in environments with limited training datasets in the field of automatic speech recognition (ASR). FNNRA utilizes a 

sophisticated architecture to extract and analyze important data features while maintaining data integrity through deep network layers. 

Theoretical and practical evaluations demonstrate FNNRA's ability to handle speaker variations, effectively train with constrained data 

sets, and broaden its relevance past speech understanding. The method is evaluated on established datasets like CallHome, TIMIT, and 

FarsDAT, showcasing its adaptability and efficacy across different data contexts. Comparative analysis with leading speech recognition 

methods reveals FNNRA's superior performance, achieving significant reductions in phoneme recognition errors by approximately 

7.88%. This research sets a strong foundation for future advancements in the field and underscores FNNRA's potential in enhancing 

recognition systems, warranting further investigation. 

Keywords — Recursive Architecture of deep model, Flexible Neural Network, Data adaptability, Multimodal processing, Neural 

networks. 

1. INTRODUCTION 

Automated speech identification (ASR) systems strive to transform human vocal signals into sequences of terms or phonetic units 

[1-3], playing a crucial role in transcribing spoken language into written text. This study introduces a robust acoustic model that 

emphasizes phoneme recognition [4-6]. ASR acts as an entry point for a variety of clever and proficient systems, impacting 
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numerous fields, including enhancing search engines with voice recognition, aiding medical reporting and disease diagnosis in the 

healthcare industry, improving service delivery, and facilitating communication in service providers by directing callers to the 

appropriate operators. 

ASR has numerous applications, including speech interfaces for mobile devices, telephone routing, automatic dictation for tasks 

like letter writing or radiology reporting, managing home systems remotely, setting up Interactive Voice Response (IVR) systems, 

and labeling speech and video content for online searches [7, 8]. Reliable ASR systems are indispensable across all these scenarios 

[9-11]. Certain research investigations yield valuable results in the domain of ASR [12-13]. While ASR technology is extensively 

utilized in a variety of contexts [14-17], its performance can be significantly enhanced under challenging circumstances [18-21] to 

achieve a level of accuracy akin to human recognition [22-24]. This discrepancy may be attributed to two primary factors: variations 

in phoneme duration and spectral alterations. 

The initial classification pertains to variations in the length of phoneme expressions within a unit of speech, which stem from 

diverse factors [25-26]. Individuals exhibit variations in the rate at which they articulate phonemes, with speech velocity differing 

from person to person. Moreover, an individual's speaking pace can vary across different contexts. As a result of these diverse 

speech speeds, phoneme durations may vary in length. Furthermore, the length of phoneme expressions is also influenced by 

contextual factors. The schematic representation in Fig. 1 delineates the sequential stages of the speech recognition procedure. 

Initially, a speech signal is captured, after which the most pertinent features are extracted. Subsequently, an acoustic model and a 

language model are employed to derive textual information from the signal. 

The second classification of alterations arises from variations in the spectrum of the speech signal. Variations in the speech 

channel's attributes, the lengths of vocal tracts, accents, individual speaker characteristics, and the gender of speakers contribute to 

alterations in the spectrum of speech signals. Consequently, automatic speech recognition encounters a significant obstacle 

stemming from the fluctuations in speech signals seen both across different speakers and within a single speaker's speech. 

Enhancing the accuracy of the audio model can be achieved by incorporating models that account for the duration of phoneme 

expression and spectral transformations within the speech signal. 

On the contrary, the utilization of deep neural networks in acoustic modeling involves the initial presentation of input data to the 

foremost layer. However, with the network's progression, subsequent layers begin to lose track of this input data. Consequently, 

the flow of information within the intricate model becomes constrained, impeding the efficient extraction of insights from the input 

data. By acknowledging and incorporating these fluctuations within the model, a reduction in error rates is achieved, rendering our 

model resilient to such fluctuations. 

In this study, our objective was to address the previously mentioned challenges by introducing a novel recursive neural network 

that provides increased adaptability. Past research has extensively delved into approaches for adapting to speakers and managing 
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varying lengths of utterances [17, 27-29]. The aim of our research is to establish a framework capable of adapting to changes in 

phonemic length and compensating for alterations in spectral characteristics. In lieu of presenting an independent model for speech 

length, our strategy implicitly contemplates variations in speech duration and spectral attributes. Previous endeavors to tackle these 

hurdles have primarily concentrated on amplifying convolutional network structures. This study reveals an original neural network 

structure referred to as the Flexible Neural Network (FNN), which captures localized alterations in the time-frequency domain 

through adaptable-length windows applied to the spectrogram of speech signals. Notably, both temporal and frequency aspects are 

taken into account. The deep neural network we suggest showcases enhanced effectiveness in contrast to other models [30]. Our 

objective is to exploit the functionalities of residual neural networks to tackle challenges linked to overfitting discerned in deep 

neural networks constrained by scarce resources. Furthermore, our intention is to craft a potent acoustic model for languages 

possessing restricted speech data, like Persian. Within our suggested structure, we adjust the advancement of input data across the 

network. Residual models assume a critical role in analyzing and dissecting insights from data in deep layers. We have effectively 

addressed the challenge of integrating flexible windows and efficiently transmitting input data to deeper layers in complex models. 

This manuscript also introduces a novel deep neural network, denoted as the Flexible Neural Network with Recursive Architecture, 

which expands upon the concept of the flexible neural network. Our model enhances the design of the residual network by skillfully 

guiding weight parameters, resulting in more accurate predictions, particularly in profoundly deep models. This innovative model 

can exploit input data across all layers, thereby boosting the effectiveness of the speech recognition system. Evaluation outcomes 

suggest that the flexible neural network with recursive architecture provides an effective model that surpasses the deep residual 

network and outperforms recent approaches. In Section II, we explore the relevant literature. Section III elaborates on the FNN 

and examines Multiple residual networks featuring weighted links. Section IV details the experimental outcomes derived from the 

TIMIT, FarsDAT, and CallHome databases. Finally, Section V concludes by summarizing the key discoveries and contributions 

of the paper. 

2. RELATED WORKS 

The length of phoneme expressions harbors valuable linguistic information. Most systems for speech recognition fail to integrate 

models for phoneme or word utterance duration. Previous empirical results have shown that integrating models for phoneme 

expression duration enhances speech recognition [27-29]. Typically, two approaches exist for modeling utterance length. The 

initial method involves the portrayal of the time span of phonetic components through Hidden Markov Models. Conversely, the 

subsequent approach integrates the demonstration of the duration of phonetic elements via a distinct model alongside the acoustic 

model. 
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Within the primary classification, adjustments have been enacted on the configuration of the Hidden Markov model [29]. These 

techniques encompass substantial computational intricacy resulting in extended training durations and minimal enhancements in 

model efficiency. A majority of speech recognition systems make use of Hidden Markov Models (HMMs) to exemplify the 

duration of phonetic components. These methods often delineate the duration of phonetic elements through gamma or logarithmic-

normal distributions. Techniques rooted in HMMs like Continuous Semi-Markov Models (CSMM) and Extended State Hidden 

Markov Models (ESHMM) generate a series of observations to depict the duration of phonetic components in each state [29, 31]. 

ESHMM documents alterations in phonetic component duration through the probability density function of a state [27]. In 

ESHMM, each HMM state is substituted with multiple alternate HMMs. Consequently, within each ESHMM state, multiple 

HMMs exist for modeling the duration of phonetic components. Certain methodologies like Conditional Random Fields (CRF) 

have been constructed based on conditional random fields [28]. CRF identifies features linked to speech duration to represent 

varied vowel lengths for diverse speakers. 

In a different array of solutions, the duration of phonetic components is examined distinctively from the acoustic model. Several 

of these approaches employ feedforward neural networks to anticipate the probability density function of phonetic element duration 

[29]. Certain researchers assess the conditional likelihood of each phonetic element duration using a feedforward neural network 

[32]. 

Nonetheless, a robust model like Long Short-Term Memory (LSTM) surpasses the aforementioned methods in terms of efficiency 

as an acoustic model. The LSTM model can illustrate the duration of phonetic components in its hidden layers [32-33]. The fusion 

of HMM and LSTM yields commendable outcomes when compared to other deep neural networks for speech recognition [34]. 

Furthermore, LSTM-RNN-based acoustic models implicitly signify the duration of phonetic components, negating the necessity 

for multi-state HMMs [33]. 

3. MATERIAL AND METHODS 

The precise identification of phonemes, each showcasing unique variations, presents a notable hurdle in the realm of speech 

recognition. Deep neural networks frequently encounter difficulties in categorizing phonemes with differing speech lengths into 

matching categories. Furthermore, training extremely deep neural networks with scarce data can trigger concerns related to 

overfitting [34-37]. To confront these obstacles, various remedies have been suggested in existing literature, encompassing 

techniques like early cessation, exclusion, data expansion, regularization, Residual Networks (Res-Net), and preliminary training 

[38]. 

Early cessation is applied throughout the training phase to avert overfitting. Training ceases upon the development set's error 

escalation, with the development set being entirely distinct from the test and training data, devoid of any overlap. It is utilized to 
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fine-tune the model's parameters. Exclusion is another method that randomly nullifies certain neuron activities during training, 

promoting generalization and thwarting overfitting. Neurons are systematically eliminated during training, resulting in a network 

with an altered configuration. Data augmentation involves artificially enhancing the training data by modifying image scale, angle, 

and rotation, thereby amplifying the training data volume and diminishing overfitting [39]. Moreover, some strategies introduce 

minor weight modifications to the network's weights at every training epoch to prevent extreme weight values and alleviate 

overfitting. Residual blocks and preliminary training [40] are also deployed to tackle the overfitting predicament. Nevertheless, 

when employing profoundly deep Res-Net with constrained training data, the utilization of input information might not be optimal 

[41-42]. 

Recently, the amalgamation of Convolutional Neural Networks, Residual Neural Networks, and HMMs has achieved considerable 

triumph in speech handling [43]. These complex neural networks effectively outline detailed speech characteristics. In this study, 

our suggested method seeks to exploit and enhance deep neural networks as their effectiveness still significantly trails human 

recognition levels. Nevertheless, the proposed strategy abstains from presenting an independent model for phonetic element 

duration. Conversely, it implicitly outlines the duration of the phonetic unit. 

To achieve these aims, we employ a creative approach known as the FNN, which combines diverse window sizes onto the 

spectrogram of the speech signal. Figure 2 illustrates the process of taking the raw speech signal as input and deriving Mel-

frequency cepstral coefficients (MFCC) as characteristics, which act as input for the proposed ANNRA system. Our original 

method produces likelihoods for HMM conditions, where each condition represents a phoneme.

Observing that the automated speech recognition showcases notable discrepancies both amidst speakers and within an individual 

speaker's speech, largely attributed to fluctuations in the speech signal, we acknowledge the need for a novel strategy. 

Contemporary deep models often face constraints in information dissemination. To tackle these hurdles, we introduce an original 

acoustic modeling configuration titled flexible neural network with recursive architecture. Within this suggested technique, we 

regulate the progression of input specifics across the Res-Nets employing statistical perceptions. Furthermore, this mechanism 

ought to possess the ability to establish a flexible model adept at distinctly discerning a phonetic unit along with its individual 

duration and spectral characteristics. Enhanced data extraction from input data in automated speech recognition approaches yields 

superior outcomes and mitigates the possibility of overfitting. 

The configuration of the residual neural network and recursive architecture share resemblances, yet they diverge in the subsequent 

areas. Initially, the adaptable neural network and weight distribution permit the utilization of diverse window dimensions within 

the network. Every frame symbolizes the span of an individual phonetic element within the time-frequency spectrum. Hence, if a 

phonetic unit endures an extended duration, it necessitates a correspondingly elongated frame in comparison to a unit with swift 

articulation, and vice versa. Subsequently, residual neural networks incorporate supplementary connections in addition to the 
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prevailing connections in the residual neural network. Consequently, the newly introduced model presents augmented dimensions 

in contrast to the original residual network. Furthermore, whereas each layer in the residual neural network assimilates insights 

from two or more antecedent layers, the proposed recursive structure assimilates insights from two layers preceding itself in 

conjunction with the input layer. Moreover, all links in recursive architectures possess weights that are distanced from the residual 

neural network. In the intermediary layers of the residual neural network, input specifics dwindle due to decreased connections. 

Conversely, in scenarios involving multi-path neural networks, input data methodically propagate to subsequent layers within the 

network. This regulated data flow indicates an escalation in the aforementioned training data within specific algorithms. 

In Figure 3, a Flexible Neural Network with a Recursive Architecture (FNNRA), also known as FNNRA, is depicted. This 

framework, illustrated in Figure 3, comprises an FNN layer and 6 RA layers. In this visual representation, the initial layer 

interconnects with other layers. Consequently, particular stages within the framework establish connections with the initial layer's 

output through direct links. In this context, for clarity, the outcome of the first intermediate layer is denoted as 
1

h . Another hurdle 

in the residual layers of the network arises when each intermediary layer, represented as 
l

h  for all 2 1l L + , merges its output 

with two preceding layers 
2lh −

 without accumulating weights. Typically, in a residual neural network, one layer possesses a direct 

link while the subsequent layer lacks such a connection. Let's assume the current layer as 
l

h  without a direct connection and utilize 

a link originating from the two prior layers 
2l

h
−

 for the lower layer. Consequently, the ensuing layer tends to yield higher output 

values than the ongoing layer, resulting in increased error margins. By introducing weights to the connections, an approximate 3% 

reduction in absolute PER is observed. In the proposed framework, each layer 
l

h  is accompanied by a link to the initial layer 
1

h  

and connections to two preceding layers 
2l

h
−

. These paired connections, termed previous information, hold significant importance. 

Each of these connections embeds valuable data that aids in delineating decision boundaries in the neural network. Input data from 

layer 
1

h  is effectively channeled through these connections to the deeper layers. By integrating these direct links, an intermediary 

layer can access details from both historical and current layers concurrently. This comprehensive data is pivotal for a more accurate 

analysis of input data in deeper layers. 

In Figure 3, the proposed methodology is visually represented. The FA system, with its weighted connections spanning the 

framework, is distinctive, facilitating broad knowledge assimilation and generalization in lower layers while the upper layers focus 

on acquiring specific and distinct insights. This data propagation enhances evaluation and distinction capabilities in various settings. 

In the proposed method, past data is adjusted with a scaling factor of 1 − , while current data is adjusted with a scaling factor  . 

The parameter 𝛼 regulates the data transfer from the input layer across the system. As the process progresses, the parameter   

decreases in tandem with the value of  . Consequently, a direct adjustment in the parameter   impacts the value of  . Through 
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the parameter 𝛼, data from layer 
2l

h
−

 is merged with data from layer 
1

h . Experimental results suggest that optimal outcomes are 

achieved when 0.3 = . This parameter value of the scaling factor 0.3 showcases its influence on the 
1

h  layer as data is transmitted 

to deeper layers. 

3.1. process of the proposed approach 

The training methods for the proposed model include succinctly summarized as follows. The initial layer, referred to as the FNN, 

adapts to phoneme expression length variations by utilizing a convolution operator. The resulting output from the convolutional 

sublayer is then subjected to a maximum function and connected to a pooling sublayer. The maximum value within each window 

is transferred to the first pooling sublayer, followed by another maximum function on the output. The Flexible Neural Network 

with Recursive Algorithm (FNNRA) combines windows of various sizes under the second layer to ensure robustness against 

variations in phoneme duration, vocal tract length, and speaker characteristics. Batch Normalization (BN) is used during training 

to enhance model performance the adjusted rectified linear unit (ReLU) activation function is employed subsequent to the pooling 

process. The Recursive Algorithm (RA) calculates the result of the initial layer, with BN and ReLU coming after the convolution 

process at this phase. The fully linked layers beyond the RA systems consolidate characteristics from various frequency ranges. 

The SoftMax mechanism functions as the ultimate layer, determining the conditions of the Hidden Markov model. The FNNRA 

educates the complete intricate neural network through the backpropagation technique. Viterbi decoding is used to determine the 

phoneme sequence. The FNNRA method utilizes Gaussian Mixture Model-based Speaker Adaptive (SGMM) models to compute 

speaker information. These training methods are depicted in Figure 4 along with accompanying information. 

The displayed arrangement of the FNNRA configuration can be delineated in the subsequent manner (refer to Figure 4): The 

primary layer encompasses RA and an FNN, comprising a convolutional sub-level and two composite sub-levels. Succeeding 

layers employ hidden RA layers, culminating in the establishment of three FNN panes spanning the spectrum derived from 11 

speech frames. The outcomes from these panes are relayed to the RA layers. The hidden RA layers are crafted from non-pooling 

convolutional layers and incorporate the suggested direct connections. These layers employ convolution operations, batch 

normalization, and ReLU activation. ReLU activation introduces non-linear aspects to the layer outputs. The ultimate layer in the 

RA methodology utilizes the SoftMax activation mechanism. After the RA layers, three entirely linked layers are employed. The 

end layer gauges the probabilities of HMM states. The fusion of FNN and RA facilitates the application of an intricate model with 

restricted data. 

In our proposed layout, the primary layer encompasses a Convolutional Neural Network (CNN) with compatible windows. This 

configuration empowers the model to adeptly manage disparities and speaker modifications. The fusion of the FNN and Recursive 

Algorithm (RA) is collectively denoted as FNNRA. Through this integration, the model can leverage the adaptability of FNN and 
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the recurrent essence of RA. To integrate broad speaker insights into the model, the FNNRA approach employs the subspace 

Gaussian mixture model methodology. This integration enhances the model's ability to accurately recognize speech across diverse 

datasets by considering speaker-specific characteristics. Before conducting experimental evaluations and comparisons, it is 

essential to mathematically prove the convergence and generalization properties of FNNRA [44-46]. This ensures that the model 

is capable of effective learning and adaptation to various inputs, leading to improved performance in speech recognition tasks. It 

is indicated that the FNNRA network converges if it is deep [30]. This demonstrates that with increasing network depth, it is 

expected that the model will converge and enhance its performance in speech recognition tasks. With the deepening of the network, 

the model gains more capability in capturing patterns and complex representations in speech data, consequently improving 

recognition accuracy and overall performance. 

In the subsequent segment, we unveil empirical evidence to demonstrate the efficiency of the FNNRA technique. Additionally, we 

will delve into how different configurations of FNNRA influence the ultimate efficacy of automated speech recognition. By 

appraising performances on CallHome, TIMIT, and FARSDAT datasets, particularly for terms and phonemes, we discern 

heightened precision utilizing the proposed tactic. The results underscore the supremacy of the recommended strategy compared 

to other models for tackling acoustics. 

4. EXPERIMENTAL EVALUATIONS 

To conduct thorough experiments, it was essential to assess the effectiveness of the suggested FNNRA technique across three 

distinct speech datasets: CallHome, TIMIT, and FarsDAT. The assessment predominantly centered on pinpointing error margins 

for both lexical terms and phonetic elements. Experimental configurations were established, and progress was made by 

meticulously scrutinizing the outcomes derived from these datasets. The FNNRA approach leverages a spectrum of speech signals 

as its primary input. Feature vectors were generated through 25-millisecond speech frames and 10-millisecond sliding windows. 

This arrangement scrutinized a series of 11 consecutive speech frames within each segment. These frames underwent a 

transformation employing a Fourier transform-oriented filter array, restructured with a logarithmic energy coefficient arranged in 

the Mel scale. The resultant characteristic vectors, coupled with their primary and secondary temporal differentials, were 

subsequently inputted into the system. All tests were conducted on a computer equipped with a 2.88GHz processor, 8 processing 

units, and 32GB of random-access memory. The graphics processing unit (GPU) utilized in this system is the GeForce GTX 780, 

boasting a memory capacity of 6144 megabytes and 2304 CUDA processing cores. 

4.1. Examining the Impact of different window sizes 

In the first experimental trial, both CNN and FNN algorithms were examined. These algorithms were combined with the HMM 

model, referred to as CNN-HMM and FNN-HMM, respectively. Each algorithm educates a neural network comprising a pair of 
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convolutional layers and three fully linked layers. The CNN-HMM algorithm utilizes the deep convolutional neural network 

described in references [43-44] as the baseline method. In this experiment, as depicted in Fig. 5, the horizontal axis labeled with 

"3x3" represents the window size in the CNN-HMM method. However, in the FNN-HMM method, three windows of different 

dimensions are considered. The size of the first window matches the number on the axis (e.g., 3x3), while the sizes of the other 

two windows are obtained by adding two and four to that number. Hence, for the FNN method, three windows with sizes of 3x3, 

5x5, and 7x7 are taken into account. However, for simplicity in visualization, only the size of the smallest window, 3x3, is shown. 

Consequently, in Fig. 5, the horizontal axis labeled with "5x5" for the FNN-HMM method indicates three windows with sizes of 

5x5, 7x7, and 9x9, whereas the "5x5" label on the axis for the CNN-HMM method represents a convolutional neural network with 

a window size of 5x5. 

Fig. 5 examines the influence of increasing window sizes on phoneme recognition error. The x-axis symbolizes the size of the 

window, with the y-axis denoting the error in recognizing phonemes in the TIMIT dataset. A lower phoneme recognition error 

signifies a more desirable outcome, indicating the algorithm's accuracy in assigning the correct label to each data point. As observed 

in Fig. 5, considering the variations in the proposed algorithm has enhanced its efficiency. The findings suggest that our technique 

outperforms the CNN-HMM approach in nearly all instances on the TIMIT dataset. The improved results can be attributed to the 

structure of the proposed model, which considers three different window lengths, accommodating phonemes with diverse lengths 

and spectral characteristics. As shown in Fig. 5, a window size of 5x5 yields better results compared to other window sizes. This 

is because a very small window size (e.g., 3x3) fails to capture the necessary information for a phoneme, while an excessively 

large window size increases the likelihood of irrelevant information entering the system, leading to a higher phoneme recognition 

error. 

4.2. Investigating the Influence of the Quantity of Fully Connected Layers 

In the subsequent experiment, we delve into the consequences of augmenting the quantity of fully linked layers. Both CNN and 

FNN algorithms undergo evaluation within this trial. The neural networks of both algorithms entail dual convolutional layers, with 

the quantity of fully connected layers fluctuating. Within the FNN-HMM technique, window dimensions of 5x5, 7x7, and 9x9 are 

employed, while the CNN-HMM technique employs a window dimension of 5x5. The horizontal axis in Figure 6 illustrates the 

count of fully connected layers, whereas the vertical axis signifies the phoneme detection error rate. For instance, the digit 2 on the 

horizontal axis denotes that the proposed blueprint integrates 2 fully connected layers. Figure 6 scrutinizes the repercussions of 

enhancing the quantity of fully linked layers on phoneme detection errors. As illustrated in Fig. 6, better results are achieved, and 

the recognition error decreases as the depth of the feedforward neural network with fully connected layers increases. The improved 

results can be attributed to the structure of the proposed model, as increased depth enhances the ability to hierarchically process 

and analyze data in higher layers. Lower layers contain general information, whereas higher layers capture discriminative 
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information. As observed in Fig. 6, increasing the number of hidden layers enhances recognition accuracy. 

4.3. Examining the Impact of 𝛾 Values 

In this study, we explore the impact of varying   values. The proposed approach involves scaling prior data by the factor 1 −

and current data by the factor  . Figure 7 showcases how the   parameter influences phoneme recognition errors. The graph 

displays ( ,1 ) − values along the horizontal axis and phoneme recognition errors in the TIMIT dataset along the vertical axis. 

Multiple ( ,1 ) − values are tested in this analysis. 

As showcased in Figure 7, peak efficiency is attained when the model seamlessly merges 50% of historical data with 50% of 

present data. This outcome is realized when the parameters ( ,1 ) −  are set to (0.5 and 0.5). This study underscores the 

significance of historical data and the incorporation of input data within the network's intermediate layers. Additionally, the 

illustration emphasizes the advantage of integrating input data into the model's flow. While input data can traverse other 

connections within the model, merging it via a distinct connection with the remainder of the model offers enhanced control over 

the input data. These attributes facilitate a more thorough analysis of input characteristics within deeper layers. 

4.4. Examining the Impact of Hyperparameter   

Here, we explore the influence of modifying the hyperparameter 𝛼 on the FNNRA system. The outcomes of these investigations 

are showcased on both the evaluation group and development group of the TIMIT dataset. The influence of  on the efficiency of 

speech recognition is scrutinized. The   parameter dwindles at every phase of the procedure with a constant value. By modifying 

this 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 parameter, the value of   undergoes alterations. Hence, in this investigation, we showcase how this 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

factor impacts the network's efficacy in speech understanding. Initially, the AWCNN is implemented in the first layer of the 

proposed design. Various window sizes—5×5, 7×7, and 9×9—are analyzed within the AWCNN framework. Subsequent to the 

AWCNN phase, 18 MRes layers with 3×3 windows are integrated. To optimize outcomes based on previous experiments ( ,1 ) −  

values are configured to (0.5 and 0.5). 

Figure 8 delineates the influence of the 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 parameter (on the x-axis) on phoneme recognition inaccuracies (on the y-axis) 

for the FNNRA structure with 19 convolution layers. One line signifies evaluation on the test dataset, while the other represents 

evaluation on the development dataset. 

The α parameter regulates the transmission of input data within the network. Data from the ( 2)l − th layer is merged with data 

from the initial layer utilizing the α parameter. As shown in Figure 8, the most favorable outcome materializes at 0.3Const = . At 

Const=0.3, the impact of data from the 
1

h  layer diminishes by a factor of 0.3 as it progresses to deeper layers. At this constant 
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value, the third layer solely receives its entire preceding data from 
1

h . Within the fifth layer, 70% of its past data is derived from 

1
h  and 30% from 

2l
h

−
. The seventh layer acquires 40% of its prior data from 

1
h  and 60% from 

2l
h

−
. The ninth layer incorporates 

only 10% of its past data from 
1

h and 90% from 
2l

h
−

. Beyond the eleventh layer, the Const variable becomes negative, indicating 

zero value enforcement behavior by the algorithm. Layers past the ninth behave akin to a traditional residual learning network 

where they do not receive data from 
1

h [45]. By augmenting the 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠, lower layers acquire a greater share of data from 
1

h , 

whereas deeper layers do not receive data from 
1

h .For instance, at 0.4Const = , layers beyond the seventh do not receive data 

from 
1

h . Shallower layers necessitate more data input, whereas in this instance, the data input is unsuitable for shallower layers. 

Hence, opting for 0.4Const = leads to an escalation in error rates. At 0.05Const = , data from 
1

h  extends up to the 51st layer. 

Nevertheless, the higher layers do not necessitate data from 
1

h , which contains raw data, as they require more discriminative data. 

Fig. 8 illustrates that choosing smaller 𝛼 values also diminish algorithm accuracy. Consequently, by selecting suitable 𝛼 values, 

the FNNRA method excels due to its capability to learn both general and discriminative traits. These attributes result in increased 

error rates when opting for 0.05Const = . 

In the forthcoming experiment, we delve into the quantity of parameters essential for diverse networks. Columns 2 and 3 within 

Table. 1 respectively present the network identifier and the layer count. To ensure equitable comparison across all networks, we 

stipulate a total of ten hidden layers. Column 4 in Table. 1 illustrates the computed sum of adaptable parameters for each network. 

The initial layer accepts the speech input signal, hence devoid of adaptable parameters. The parameter count for each convolutional 

layer is denoted by       l h f k   , with h and l  indicating the layers and hidden units correspondingly. Moreover, f k

represents the window magnitude on the speech spectrogram. Every sub-layer includes a bias, yet biases are disregarded for all 

layers. In pooling sub-layers, numerous neighbors are substituted by their maximal or mean value, thus no adaptable parameters 

exist in the pooling sub-layer. For each layer with complete connections, each input unit links to a hidden unit with an individual 

weight. Consequently, the parameter count for the initial layer is n h , where n  denotes the input quantity and h  signifies the 

hidden units. The parameter count for the remaining layers with complete connections is 
2

h h h = , where h  signifies the hidden 

units. This procedure recurs for the other hidden layers. Hence, the parameter counts for a network with l  hidden layers is 

2
n h l h +  . 

Within Table. 1's fifth column, the precise calculation of parameter quantities for each network is detailed. Throughout most 

experiments detailed in this paper, 7×7 window sizes have predominated. Hence, 7f k= =  is the established norm. With 

1024h =  hidden units utilized in the tests, the corresponding value in the sixth column of the table is derived. Notably, the 
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parameter count in the proposed FNNRA technique aligns closely with that of the residual neural network model. Solely fully deep 

neural networks exhibit a notable surplus of parameters compared to alternative approaches. This divergence stems from the 

absence of convolutional layers in deep neural networks. Consequently, except for deep neural networks, which necessitate 

prolonged training durations due to their augmented parameter count, the parameter quantities and training durations across other 

networks remain relatively consistent. 

4.5. Results of phoneme detection in the FARSDAT dataset 

The efficiency of the novel method was assessed through experimental tests on a Persian dataset called FARSDAT. As depicted 

in Table 2, the FARSDAT dataset encompasses 304 speakers, encompassing both genders, with a total of 4738 vocalizations. 

Following the precedent of prior investigations [31], the datasets were segregated into training, validation, and test sets, comprising 

3994 utterances for training, 457 for validation, and 287 earmarked for testing. This segment delves into the appraisal of different 

methodologies using the evaluation and validation datasets drawn from FARSDAT. Figure 9 delivers an extensive assessment of 

the proposed FNNRA-HMM technique alongside other sophisticated strategies on the FARSDAT dataset. This illustration 

scrutinizes an array of deep networks and integrates endorsed strategies, all of which integrate the HMM framework. 

In the FNNRA approach, a batch size of 256 is employed with Stochastic Gradient Descent (SGD). The initial learning rate is 

established at 0.08, with a reduction factor of 0.5 triggered when the discrepancy in errors between successive stages in the 

development set falls below 0.02, alongside a momentum coefficient of 0.9. Across the three datasets detailed in this segment, the 

values for   and (1 )−  are precisely fixed at 0.5 each, while   is configured to 0.3. 

Specifically, Figure 9 showcases the outcomes of the FNNRA-HMM mechanism featuring 19 convolutional layers in contrast to 

alternative models. Nonetheless, this analysis concentrates solely on contrasting the outcomes of various approaches onto the test 

collection. The initial and second columns in Figure 9 (b) portray the influence of employing CNN and FNN methodologies with 

a setup embracing 10 convolutional and dense layers. These bars underscore that utilizing the FNN approach correlates with a 

decline in Word Error Rate (WER). Moreover, the third and fifth columns from the top in Figure 9 (b) reveal that the innovative 

FNNRA method attains a substantial 7.88% reduction in error rate when juxtaposed with the DNN-HMM technique. Furthermore, 

an evaluation between Res and FNNRA networks was carried out. Figure 9 demonstrates that the FNNRA-HMM approach 

showcases a remarkable 5.53% decrease in error rate relative to the Res-HMM strategy, comprising 19 convolutional layers. 

4.6. Phone recognition results on TIMIT 

At the outset, we undertake a comparison of error rates among diverse algorithms utilized in tasks pertaining to speech recognition. 

The TIMIT dataset holds widespread recognition within the realms of speech and acoustic exploration, standing as a yardstick for 

appraising automated speech recognition systems. Table 3 furnishes an outline of the fundamental attributes of the TIMIT 



13 
 

repository. It encompasses an exhaustive compilation of 6,300 phrases articulated by 630 distinct speakers. The captured sounds 

are archived in a 16-bit structure and sampled at a frequency of 16 kHz. Each speaker presents 10 sentences sourced from 8 

disparate linguistic regions spread across the United States. Notably, the dataset incorporates two sentences shared by all speakers. 

For assessment purposes, the complete TIMIT dataset is employed. Our scrutiny is specifically directed towards 24 speakers from 

the primary test assemblage, encompassing 192 unique sentences segregate from the development set. The training corpus 

incorporates 3,696 sentences vocalized by 462 speakers, all enunciating the two shared sentences (SA1 and SA2). Initially, within 

the TIMIT dataset, 61 phonetic units are correlated to 48 categories for acoustic modeling. Nevertheless, for the sake of phonetic 

identification error documentation, these categories are further condensed to 39 classes. Phonetic recognition is executed through 

the utilization of the Viterbi algorithm coupled with a bigram language model. 

In order to assess the efficacy of the proposed approach, we juxtapose it with cutting-edge methods in the realm of speech 

recognition. The evaluation includes the presentation of phoneme recognition errors for both the existing approaches and the 

proposed method. This comparison allows for a comprehensive analysis of the performance and improvements offered by the 

FNNRA approach in the context of the TIMIT dataset. 

In this section, we present an evaluation of diverse approaches in conjunction with the suggested model. We executed the Res-

HMM method utilizing diverse configurations. It should be noted that this model can similarly be applied with an increased count 

of convolutional layers, for instance, 51 or 101. The error rate of sound detection versus various 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 values for the FNNRA 

method in the TIMIT dataset. Experimental findings demonstrate a notable enhancement in the model's efficiency and precision 

by incorporating data not only from the current layer but also from the two preceding layers. We also assess the CNN-HMM 

method with and without the inclusion of RA and Res networks. Moreover, investigations are carried out on the FNN-HMM model 

both with and without the integration of Res and RA components. It is essential to underscore that all these models are deep and 

encompass HMM within, ensuring a just and rational comparison among them. 

Figure 10 illustrates a comparative analysis between the FNNRA-HMM methodology proposed in this research and the most 

intricate methods in the current literature, particularly focusing on their performance within the TIMIT dataset. This assessment 

encompasses FNN-HMM and CNN-HMM techniques, which also embrace a similar HMM-oriented strategy. Additionally, we 

explore the amalgamation of Res and RA networks with these techniques. The amalgamated approach of FNN with RA is termed 

FNNRA, while the hybrid methodologies of FNN-HMM and CNN-HMM with Res are denoted as FNN-Res-HMM and CNN-

Res-HMM, respectively. 

In Figure 3, the similarity of layers and connections within the proposed strategy to the residual network is evident. However, the 

bypass links between these two systems differ. Notably, the crucial layer in the FNN-Res-HMM technique showcases an FNN that 

sets it apart from the other layers. This FNN evaluates three distinct window dimensions (3x3, 5x5, and 7x7) in the initial layer 
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and functions as input for the subsequent layer. Beyond the initial layer, the subsequent layers of the residual network use a window 

size of 3x3. By taking into account the diverse lengths of speech articulation and the amalgamation of three windows, the FNN 

model heightens its adaptability to changes in speech length and temporal frequency fluctuations. 

Within Figure 10(b), the primary column displays the initial phoneme error rate (PER) for the GMM-HMM method computed 

through maximum likelihood estimation [46]. In this evaluation, a 3-state left-to-right HMM with 40 Gaussian components 

achieves a PER of 26.43%. The eighth column from the top represents the proposed FNN-HMM methodology, yielding a PER of 

20.88% in the TIMIT test set. In contrast to the GMM-HMM approach, the FNN-HMM method diminishes the absolute PER by 

over 5.55%. 

The exhibited columns from 1 to 12 offer a comparison between sophisticated methodologies and the proposed approach within 

the TIMIT dataset. The results underscore the unwavering superiority of the suggested strategy over most of these methodologies. 

Particularly in column 11, the proposed technique with 19 convolutional layers and 3 concatenated layers showcases significant 

advancements. The FNNRA-HMM network arrangement simplifies effective data management and information transmission to 

deeper layers. Empirical assessments have evidenced that integrating RA results in a boost of more than 5.15%. Bars 10 and 11 

highlight that FNNRA methodologies with 19 convolutional layers outperform Res-nets. With the escalation in layers count in 

Res-nets, data information fails to disseminate throughout the entire profound model, diminishing its efficacy. This issue is tackled 

through both pre-training and the proposed FNNRA technique. 

A distinct trial was executed to explore the exact influence of the FNNRA method on diverse frameworks. Bars 9 and 11 exhibit a 

notable 3.43% decrease in absolute inaccuracies, accomplished with the recommended FNNRA technique in comparison to the 

corresponding FNN-Res-net configuration. Derived from the discoveries, it can be deduced that the employment of the FNNRA 

technique incorporating 19 convolutional layers notably results in enhanced effectiveness by diminishing error frequencies within 

the examination dataset. Integrating shortcut links from layer ℎ1 to the present layer empowers the network to preserve both current 

and preceding input details in deeper layers. Nevertheless, in extremely deep layers, the parameter γ influences the necessity of 

retaining input details. Consequently, the amalgamation of input shortcut connections is inferred to enhance model efficacy. 

The suggested FNNRA-HMM approach consistently attains a decrease in WER when juxtaposed with alternate methods across 

diverse trials. These revelations regarding the elevated precision of this technique predominantly underscore the simplified 

immediate conveyance of input specifics via the proposed dynamic links. Additionally, the weighted links within this network play 

a role in augmenting precision in contrast to intricate methods. Bars 11 and 12 demonstrate a substantial 4.435% decrease in 

absolute inaccuracies, accomplished by the proposed FNNRA technique when harmonized with wav2vec-U possessing a similar 

configuration. 
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4.7. Word recognition on CallHome  

The dataset from CallHome functioned as the principal source of data in our trials to assess the efficacy of our speech recognition 

system. These records encapsulate English telephone dialogues spanning a broad spectrum of subjects, speakers, and speech 

modulations. On the flip side, the CallHome dataset encompasses spontaneous phone discussions covering more conventional and 

genuine speech manners. The datasets present a variety of speech segments for the meticulous evaluation of our models across 

different speech settings. In our experiments, we strictly followed a detailed preprocessing sequence for the CallHome dataset, 

encompassing standard steps like normalization, segmentation, and feature extraction. Acoustic characteristics such as MFCCs 

were derived from speech signals using frame-based extraction methods. These attributes were utilized as inputs for our models 

during both the training and testing phases. 

We trained the proposed FNNRA approach alongside other similar techniques employing robust optimization algorithms like 

Stochastic Gradient Descent (SGD) or Adam. The model hyperparameters were carefully fine-tuned using techniques such as 

cross-validation and network exploration. Figure 11 delineates the comparison between our proposed methodology termed 

"FNNRA" and various intricate methods in speech recognition on the CallHome dataset. The objective of this evaluation was to 

gauge the performance and competitiveness of our strategy by assessing its efficacy against these methodologies. Objective metrics 

like WER were applied to gauge and juxtapose the effectiveness of diverse techniques on the CallHome test sets. Following an 

exhaustive scrutiny of the outcomes, it emerged that our proposed approach (emphasized by bar 6 from the top) attained 

commendable outcomes in contrast to other techniques. While certain methodologies like CNN-BLSTM and LSTM-ResNet 

outperformed, our approach notably shone in situations with restricted linguistic resources. 

These empirical assessments furnish a profound insight into the robust points of our proposed FNNRA methodology in contrast 

advanced techniques, charting a course for advancements in speech recognition research. 

 

5. CONCLUSION AND DISCUSSION  

In brief, this investigation presents FNNRA, a novel technique addressing overfitting in situations with restricted training 

information. The distinctive trait of FNNRA lies in its capacity to effectively navigate fluctuations in speech signals and deliver 

efficient training with minimal data. The versatility of this approach is showcased through its initial blueprint, integrating up to 19 

convolutional layers for precise extraction and examination of vital data while conserving it in profound layers. Both theoretical 

scrutiny and practical authentication affirm the efficacy of FNNRA across diverse data contexts. Assessments on standardized 

archives validate its competitive or superior efficiency when juxtaposed with contemporary advanced strategies in speech 
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recognition. Particularly, FNNRA displays promise in diminishing errors in word identification, establishing a basis for 

forthcoming strides in detection systems. 

The discussion accentuates critical hurdles and perspectives unearthed in the exploration. Scalability and computational efficacy 

emerge as crucial factors, notably when grappling with more extensive and intricate datasets characterized by an array of audio 

attributes and acoustic terrains. Subsequent research to ensure the resilience of the approach when applied to expansive datasets 

remains imperative. Furthermore, delving into the utilization of FNNRA in varied data configurations and a spectrum of practical 

applications, like biometric authentication or medical image scrutiny, charts avenues for future revelations. Enhancing the depth 

of convolutional layers, analyzing alterations in connectivity structures, and managing trade-offs among computational resources, 

time efficiency, and precision stand out as pivotal focal points for forthcoming studies. While FNNRA showcases substantial 

progress in the accuracy of speech recognition and the adaptability to data, it also unveils numerous avenues for enhancing 

methodologies and broadening our insights beyond conventional speech and image datasets. 

Engagement in this study contributes to propelling deep learning strategies in the auditory and visual domains, fortifying detection 

technologies. FNNRA's ingenuity lies in its adept handling of sparse training data, its resilience against overfitting, and its 

exhibition of competitive or superior performance across diverse data contexts, setting it apart from prevailing speech recognition 

methodologies. 
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FIGURE CAPTIONS 

Figure 1. Block Diagram of the Speech Recognition Process. 

Figure 2. The architecture of the proposed Flexible Neural Network with Recursive Architecture (FNNRA).

Figure 3. The suggested approach employs certain layers from the FNNRA and completely linked layers. The results from the fully connected layers 

represent probabilities related to the HMM state. 

Figure 4. Training Steps Flowchart for the Proposed FNNRA Model. 

Figure 5. Exploring the Impact of Window Size Increase on Phoneme Recognition Error in CNN and FNN Algorithms. 

Figure 6. Comparative analysis of CNN and FNN algorithms, emphasizing the impact of increasing Fully Connected Layer depth. 

Figure 7. The error rate of sound detection in relation to various γ values for the FNNRA technique for the TIMIT dataset. 

Figure 8. The error rate of sound detection in relation to various 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 values for the FNNRA technique within the TIMIT dataset. 

Figure 9. Phoneme error rate (PER) comparison of different proposed method structures on the FarsDAT dataset.

Figure 10. Contrasting different configurations of the proposed approach with sophisticated methods on the TIMIT dataset. 

Figure 11. Contrast among varied configurations of the suggested technique and cutting-edge methodologies in the CallHome dataset. 
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TABLE CAPTIONS 

Table 1. Comparison of Parameter Counts between the Proposed Model and Other Models. 

Table 2. FARSDAT Dataset information [31] 

Table 3. Information about the TIMIT dataset 
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FIGURES  

 
Figure 12. Block Diagram of the Speech Recognition Process. 
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Figure 13. The architecture of the proposed Flexible Neural Network with Recursive Architecture (FNNRA).
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Figure 14. The suggested approach employs certain layers from the FNNRA and completely linked layers. The results from the fully connected layers 

represent probabilities related to the HMM state. 
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Figure 15. Training Steps Flowchart for the Proposed FNNRA Model. 
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Figure 16. Exploring the Impact of Window Size Increase on Phoneme Recognition Error in CNN and FNN Algorithms. 

 
 

 
Figure 17. Comparative analysis of CNN and FNN algorithms, emphasizing the impact of increasing Fully Connected Layer depth. 
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Figure 18. The error rate of sound detection in relation to various γ values for the FNNRA technique for the TIMIT dataset. 

 
 

 
Figure 19. The error rate of sound detection in relation to various  const  values for the FNNRA technique within the TIMIT dataset. 
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Figure 20. Phoneme error rate (PER) comparison of different proposed method structures on the FarsDAT dataset.

 

Figure 21. Contrasting different configurations of the proposed approach with sophisticated methods on the TIMIT dataset. 
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1.  

Figure 22. Contrast among varied configurations of the suggested technique and cutting-edge methodologies in the CallHome dataset. 
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TABLES 

Table 4. Comparison of Parameter Counts between the Proposed Model and Other Models. 

 Network model Number of 
layers 

Number of parameters Number of 
parameters 

Number of 
parameters 

1  Deep neural network 10FC 2
10n h h + 

2
420 10h h+ 

10.92 M 

2  Convolutional neural 
network 

7Conv+3Fc 2
7 3h f k h  + 

2
343 3h h+ 

3.49 million 

3  Flexible Neural 
Network 

7Conv+3Fc 2
9 3h f k h  + 

2
441 3h h+ 

3.5 million 

4  Res 7Conv+3Fc 2
7 3 3h f k h  + + 

2
346 3h h+ 

3.50 million 

5  Flexible Neural 
Network-Res 

7Conv+3Fc 2
9 7 3h f k h  + + 

2
448 3h h+ 

3.60 million 

6  Flexible Neural 
Network with Recursive 

Architecture 

7Conv+3Fc 2
9 3 3h f k h  + + 

2
444 3h h+ 

3.60 million 

 

 

Table 5. FARSDAT Dataset information [31] 

Data set Speakers Numbers Utterance Numbers Hours numbers 

Train 224 3994 2.91 

Development set 50 475 0.39 
Test set 30 287 0.23 

Total 304 4756 3.54 

 

Table 6. Information about the TIMIT dataset 

 #Speakers #Utterance #Hours 

Train 462 3696 3.14 

Complete test  168 1344 0.81 

Core test  24 192 0.16 

Total 654 5232 4.11 

 

 


