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Abstract

In this paper, we introduce estimators for the population coefficient of variation within a two-occasion, stratified,
successive sampling framework, aiming to mitigate the impact of non-response and measurement errors. We derive
calibrated weights for the strata and thoroughly examine the properties of the proposed estimator through
comprehensive numerical and simulation studies. Furthermore, we provide valuable recommendations for survey
statisticians, guiding them on effective applications in real-world survey scenarios. By addressing the challenges of
non-response and measurement errors within a stratified sampling approach, our proposed estimators aim to enhance
the accuracy and precision of coefficient of variation estimates, ensuring more precise and accurate results.
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1 Introduction

In the field of socio-economic research, accurate estimation of population parameters is essential for drawing
meaningful inferences and making informed decisions. The coefficient of variation (CV) plays a pivotal role in this
regard, measuring the relative variability of a population’s characteristics. Facilitating the comparison of variability
across different units, the CV, when expressed as a percentage, quickly illustrates the extent of variability present in
the data. Its utility extends beyond socio-economic research, being common in various applied probability fields such
as renewal theory, queuing theory, and reliability theory. Despite its significance, recent estimation techniques for the
coefficient of variation often rely on complete information from sampled units, as observed in the work of Tripathi et
al. [1], Archana and Rao [2]. However, such assumptions disregard the reality of data in real-life surveys, which are
susceptible to non-sampling errors.

Non-response, the absence of data from certain respondents regarding specific variables, poses a significant challenge
in data collection. Factors such as unavailability of respondents, reluctance to answer sensitive questions, or simply a
lack of information contribute to non-response. For instance, in surveys targeting human populations, obtaining
information from all selected units can be challenging, especially in mail surveys where respondents are asked to
return completed questionnaires by a deadline. Non-response can manifest in various patterns and stem from diverse
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causes, affecting the representativeness of the sample and, subsequently, the accuracy of CV estimation. In agricultural
production surveys, non-response may occur due to crop loss or damage from natural disasters, leading to missing
data for certain seasons.

Measurement errors, discrepancies between recorded values and true values of variables under study, further
complicate accurate estimation. Errors may arise from over-reporting, under-reporting, memory failures, interviewer
biases, or defective measurement mechanisms. For instance, in surveys on household consumption, respondents may
struggle to recall expenditure details accurately, leading to distorted data. Inaccurate measurements can skew
variability and mean values, resulting in biased CV estimates, particularly problematic when comparing variability
across different groups or over time.

Estimating the CV faces additional challenges when dealing with non-response and measurement errors. Several
authors Sisodia and Dwivedi [3], Das and Tripathi [4, 5], Patel and Rina [6], Singh et al. [7], Muneer et al. [8], Yunusa
et al. [9], Audu et al. [10], Shahzad et al. [11, 12], Yadav et al. [13], Rajyaguru and Gupta [14] and others have
proposed estimators based on the simple random sampling scheme, which assumes accessibility to all sampling units
and complete information without measurement errors. However, these assumptions are often unrealistic in real-life
situations.

In situations where populations undergo continuous change, a single survey provides insights into the characteristics
of the surveyed population for that specific occasion only. However, this singular approach fails to offer information
about the rate of change over different occasions or the average value of characteristics across all occasions. To address
these limitations, successive sampling is employed, as seen in scenarios like monthly data collection on goods prices
to determine the consumer price index or periodic political opinion surveys to gauge voter preferences. Despite the
widespread use of successive sampling in scientific and socio-economic surveys, existing research has primarily
concentrated on developing estimators for population mean or variance, overlooking the crucial aspect of the
population coefficient of variation (CV). Our proposed work seeks to bridge this gap by suggesting suitable estimation
procedures in successive sampling, specifically addressing the challenges posed by non-response and measurement
errors. In this context, where samples are taken on two occasions—match samples and fresh samples—non-response
and measurement errors can independently or simultaneously affect either sample, presenting a significant challenge
in estimating population parameters, including the often-neglected CV. This research builds upon the foundational
work by Jessen [15] and subsequent expansions by researchers such as Yates et al. [16], Eckler [17], Sen [18], Feng
and Zou [19], Singh and Homa [20], Naz et al. [21], Younis and Shabbir [22], Abid et al. [23], Irfan et al. [24],
Bhushan and Pandey [25], Sen [26] and others who have done recent work in this field, has primarily focused on
developing estimators for population mean or variance in the presence of non-response or measurement errors.
Notably, the population coefficient of variation has been largely overlooked in this body of work Allen et al. [27],
Kumar et al. [28], Ahmed and Shabbir [29], Audu et al. [30], Shahzad et al. [31].

Therefore, the aim of this research paper is to propose an improved estimation procedure for the population coefficient
of variation (CV) under successive sampling, considering the presence of non-response and measurement errors, by
utilizing calibrated weights. This introduces a fresh perspective on estimating the CV within a stratified successive
sampling framework. While existing techniques primarily focus on mean or variance, our approach uniquely targets
the CV, addressing a critical gap in the literature. The coefficient of variation (CV) is preferable to mean alone because
it is unit-free, more stable in comparison to mean and variance, and facilitates comparisons between different
populations, making it a valuable measure of dispersion across populations regardless of their scales or units of
measurement. Incorporating CV estimation into stratified successive sampling provides a comprehensive
understanding of variability within and between populations, offering valuable insights for decision-making and policy
formulation. A significant aspect in the context of stratified successive sampling under non-response is the limited
research conducted on the estimation of the coefficient of variation, which is particularly important given the
challenges posed by non-response and measurement errors during data collection. Our proposed procedure combines
existing methods for estimating the population CV with a model-based approach that accounts for non-response and
measurement errors.

Deming and Stephan [32] introduced a calibration approach using least squares adjustment, which was later adopted
by statistical authorities in various organizations. The main goal of the calibration approach is to formulate unbiased
estimation procedures with the least amount of dispersion using the information on auxiliary variables. In follow-up,
Deville and Sérndal [33] proposed a calibration estimation procedure that decreases the distance between the initial
and final weights while still respecting the calibration equations and constraints. Subsequently, Farrell and Singh [34],



Sérndal [35], Kim et al. [36], Kim and Park [37], Sud et al. [38], Singh et al. [39], Koyuncu and Kadilar [40], Nidhi
et al. [41], Ozgiil [42], Shahzad et al. [43, 44], Pandey et al. [45-47], Clement [48] and others have produced notable
calibrated estimation procedures.

In the estimation of population variance using stratified successive sampling, calibration is a technique used to improve
the accuracy of the estimates. By incorporating calibration into the estimation process, resulting estimates are more
representative of the population and have reduced bias. This is especially important in stratified successive sampling,
where the goal is to ensure that each stratum is well-represented in the final estimate.

To demonstrate the practical relevance of our proposed method, we apply it to a real-life socio-economic example.
Specifically, we consider the case of estimating the CV of household income in a developing country where non-
response and measurement errors are prevalent due to the absence of reliable income data. Our proposed method
provides a more accurate estimation of the population CV and helps to better understand the income distribution in
the population, which has important implications for socio-economic policies and decision-making.

In the subsequent sections of this research paper, we will present the theoretical background and methodology of our
proposed estimation procedure. We will then provide a detailed description of the application of our method to the
real-life socio-economic example. Finally, we will discuss the results and implications of our research, highlighting
the advantages and limitations of the proposed approach.

2 Sample structure and notations

Consider a finite population of size N divided into G non-overlapping strata, each containing N, (k=1, 2,...,G) units.
Let us use X and Y to represent the study character on the first and second occasions. It is assumed that information
regarding an auxiliary variable Z is accessible on both occasions, and the population variance of Z is known.

Let us consider the kth strata, where k ranges from 1 to G., To begin with, we use simple random sampling without
replacement (SRSWOR) to draw a preliminary sample of size n;, from the population for the first occasion, where I,
units do not respond. From the responding part of this sample, we draw a second stage SRSWOR sample of size
m, =n, A, where A, is the fraction of matched samples, and I,, units do not respond. We use this sample for the
second occasion and collect information on the study variable Y. Additionally, we draw a fresh sample of size
u=n-m = nku,: from the population using SRSWOR on Y again. Here, I, units do not respond. The fractions

of matched and fresh samples on the current (second) occasion are represented by ﬂk" and ,ul: , respectively, where
Ao+t =1,

From now on, we will use the following notations:

X_k , Y_k : The population mean of study variables X and Y respectively in the kth strata.

Z_k : The population mean of the auxiliary variable Z in the kth stratum.

ynk , glmk , yuk ,;nk , )_(mk , ;uk : The sample means of the variables Y and X respectively based on the respective
sample sizes shown in suffice.
- 1 M _ 1 My _ 1 Uk
Zn = —Z Zy,Im =— Z Z,and Zy, = —Z Z,, - The sample means of the auxiliary variable in the kth
N = m = k I=1
stratum are determined based on a sample size of n,, M, and U,, respectively.
o _ Ly vy e oL R xy
SYNk = N _1Z(ij -Yn,) , SXNk = N _1Z(ij — X, ) : The population mean squares of the kth
k = k =t
stratum of the study variables Y and X, respectively.
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SZZNk = N 12 (ij —Zn,) : The population mean squares of the kth stratum for the auxiliary variable Z.
kK~ +j=l

2
i 1 M —Nik _
X2 — —1 Z (Xkl — Xn.-r, ) - Depending on the responding part of sample of size n, , the sample
R (R A e

k 1k 1=1

mean square of study variable X for the kth stratum.
1 My —Tok _ 2
s? = Z (XkI — Xm,-r, ) : Depending on the responding part of sample of size m, , the sample

ka 2k — —
m —r, -1 1=

mean square of study variable X for the kth stratum.

1 M~k 2

e = n—rl Z (ykl —K/nkfrlk) - Depending on the responding part of sample of size n, , the sample
k— Tk - & 1=

mean square of study variable Y for the kth stratum.
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Vo m Z (ykI - yuk—rgk) - Depending on the responding part of sample of size U, , the sample
k— '3k & 1=l

mean square of study variable Y for the kth stratum.
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SZ2 = 1 z (Zkl —Zn,) : Depending on the sample of size n,, the sample mean square of auxiliary variable Z
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for the kth stratum.
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My -
L= —] Z (Zkl —Zm,) : Depending on the sample of size M, , the sample mean square of auxiliary
Kk~ = 1=1
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1 U -
Z (Zkl —Zu,) : Depending on the sample of size u, , the sample
1=1

u, -1
mean square of auxiliary variable Z for the kth stratum.
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S
c, = = The sample coefficients of variation for the variables Y, X and Z respectively based on the respective
Uk
Zy,

sample sizes shown in suffice.
Pxv, + Pz, » Pzx,, - The population correlation coefficients between the variables shown suffice for the kth
k k k

stratum.
Sf(N , SYZN \ S;N : The population mean squares of the variables X, Y, and Z for the kth stratum respectively.
k k k

Cy, . C

,C, ,C,, ,C, ,C,, :Thecoefficient of variation based on the variables in the suffices.
Yo' 2, XYy, ' YZy, ZXy,

3 Non-response probability model

The kth stratum is considered using random non-response model Singh and Joarder [49]. Consider a sample Snk of

size N, for which some data on X could not be collected due to random non-response. Let I, , where I, ranges from



0,1,2,..,(n,-2), represent the number of such cases in Snk . Similarly, for a sample Smk of size m, , let I, represent
the number of units for which Y information on the second occasion could not be acquired due to random non-
response, and I, represent the same for a sample of size U, . Itis presumed that I, , I, , and I fall within their
respective bounds. We assume that 0<r, <(n,—2), 0<r, <(Mm —2)and 01, <(u, —2).1f p,, P,,
and p, probabilities of non-response among the (N, —2), (M, —2) ,and (U, — 2) possible values of non-responses

respectively, the discrete probability distributions for I, , I, , and Iy, are represented by

K nk -2 e g M——2 -
(1k)_ q +2p r 1 1 lrlkzolllzl"'lnk_z
k™1 1 1k

r. m, —2
P(r _—2k k ok y Mk —T2k —2 . :0,1'2,_,_,m -2
( 2k) qu + 2 pz ( r2k ] 2 q2 2k k

u, —r. u, —2
and P(r,, ) = —Kk 8k | K Bkqek B2 p =0,1,2,...,u, — 2, respectively.
(ry) kq3+2p3[ r, jp ds 3k K pectively

The number of ways to obtain I, (I =1, 2, 3) non-responses from all potential non-response values for the three
n-—2) (m -2 u, —2
samples are represented by , ,and .
Nk Mok T3

4 Proposed estimator

After considering the aforementioned discussions and building upon the research conducted by Bahl and Tuteja [50],
we propose the estimator ka for the population coefficient of variation, derived from the sample S, of size m that is
shared between both occasions.

T =¢, +alc, —c, ) @)

i Yiye-ni
The scalar quantities @, may be determined by minimizing the mean square error of the estimators ka

c, =cC,

Mk

+(Cka —CZNk)and C:(‘nk =C . +(Cznk —CZNk). We also propose the estimators T, for the

k—T2k
population coefficient of variation. These estimators are based on a fresh sample S of size u, drawn on the current
occasion.

T, +b.(c, -C;, ) @)

y Uk =13k

Where the scalar quantities bk may be determined by minimizing the mean square error of the estimators Tuk

We use the estimators ka and Tuk , defined in Equations (1) and (2), to estimate the coefficient of variance.

Additionally, we suggest using the estimators T_ and T, to estimate the coefficient of variance for the matched
sample and the fresh sample, respectively.

G
=> QT )
k=1
and
G
T, = T, 4)
k=1



Remark 1. We have observed that the structure remains consistent in large sample approximations. Specifically, if
m,, U, and n, >N, thenc, —-C, ,¢c, —-C, ,c, »C, , ¢ —>C, ,and C —->C, .
N k 3 k Uk k k k

By utilizing the identity, we may conclude that C, —> CxN ,andalso C, — CxN . Therefore, it may be inferred
Nk Kk M k
that T, — CYNk and T, —)CYNk .

Zm Y-k Y-z

5 Suggested calibration technique

G
The new calibrated weights for the estimator of the population variance T = ZQ:Zka under stratified sampling

k=1
G * 2
. . Lo . . . (Qk _Wk)
are provided by the values acquired through the minimization of the chi-square distance function Z— ,
k=1 Qka
considering the following calibration constraints.
G
1. > Q=1
k=1
G _ G _
2. > O log(zn)=> W, log(Z«)
k=1 k=1
G G
3. szCka’TZk - ZWk X"k’rlk
k=1 k=1
Sxmk‘rzk X"k"'lk
where C, ==———andC, ==——.
Mk —T2k ka_er Nk —Mk Xnk*ﬁk

The Lagrange function may be expressed by utilizing the chi-square distance measure and the calibration constraints
mentioned earlier as follows:

=S O o (5011 -22,(30 logEn )~ 3 W, log(Z.)

W
kY
G G ©)
_2ﬂ3m (z §2kcxmk7r2K - ZWkaan )
k=1 k=1
where 4., 4, and A, are Lagrange multipliers.
Upon differentiation of Equation (5) with respect to Q; , we may determine the calibrated weights by setting the
resulting expression equal to zero, as shown.
Q, =W, +(4,, + 4, 10g(zn, ) + ZanCy,, . W Q (6)

Put the value Q, in the above constraints, we get the matrix form as...
cal, cal, cal, || 4, cal,,
cal,, cal,, calg || 4, |=|caly,
cal,, cal,, cal, || 4, cal,,

cm

The solution of the above matrix provides the values of the Lagrange multipliers, as stated below:



_ et
o = lzm— . ﬂgm_det U]
where
det, =cal,cal,cal, —calcal? —cal?cal, +2cal,cal,cal, —cal,cal? (8)
det, =cal, cal_cal —cal, cal? — cal,calcal,, +cal, cal calg ©)
+cal,,cal ,cal,, —cal,cal,cal,,
det,, =cal,calcal,, —cal,cal,cal —cal,cal,cal, +cal,cal,cal
+cal,, cal,,cal,, —cal? cal, (10)
det,, =cal,,cal,cal, —cal,cal,cal, —cal; cal +cal,cal,cal, (1)

+cal,,cal, cal,, —cal,cal,cal,,

Now, let us define the term cal_, , cal,,,, cal ,, cal,,, cal,,, cal,,, cal ., cal, ., cal,, asfollows:

bm cm? dm em’ fm * gm’ hm 1
G G —
n =2 W.Q cal,, = > W,Q, log(zn,)
k=1 k=1
G G
m = z\/\/kamek,Qk caly, =1- ZWka
k=1 k=1
G _ ) G —
=>"W,Q,(log(zx,)) cal, = ZWka log(zn,)c,,
k=1
G _ _
al,, =3 W,Q, (109(Z,)~log @, ) al,, = zw Qe
G
ZW c  —->Wc
=Mk =] Xmy—rak

G

Now, the new calibrated weights for the estimator of the population variance, T, = ZQ’;*TUk , under stratified
k=1

sampling are provided. The values are acquired through the minimization of the chi-square distance function

Q
Z ( , taking into account the following calibration constraints.
= Qk
G
LY Q=1
k=1
G
2. >, =C,
k=1
S
where C, == ==

Uk
Zy,
The Lagrange function may be expressed by utilizing the chi-square distance measure and the calibration constraints
mentioned earlier as follows:



Q** W & ok & sk
-3, Sar 22, Fare, —c) )
k=1 k=1 k=1

where ﬂiu and ﬂ'Zu are Lagrange multipliers.

Upon differentiation of Equation (12) with respect to Qf , Wwe may determine the calibrated weights by setting the
resulting expression equal to zero, as shown.

Q;* =Wk + (ﬂm +Aﬂzucguk )Wka (13)
Put the value €, in the above constraints, we get the matrix form as...
cal,, cal, || 4, cal,,
cal, cal, | 4, | |cal,

The solution of the above matrix provides the values of the Lagrange multipliers, as stated below:

det det
Ay = &y =L 14
det, det,
where
2
det, = cal,,cal,, —cal,, (15)
det_, =calcal,, —cal,cal,, (16)
det,, =cal,cal,, —cal,cal, 17)
Now, let us define the term cal, , cal,,, cal ,, cal,,, cal,,as follows:
G G
cal,, = > W,Q, cal,, = szQkCEuk
k=1 k=1
G G ,
cal, =1-Y> W, caly, =Y W, Q¢
k=1 k=1

5.1 Properties of the proposed estimators

We have derived the bias and mean square errors of the proposed estimators using the following transformations,
under the assumptions of a large sample size and up to the first order of approximations:

Voo =V 0+5) | Xno = Xn (L+8) | Xoog, = X, (1+8,)
;luk—r3k =VNk (1+€3) Em ZZNk (1+84) Enk :ZNk (1+85)
7y, =Zn, (+5,) - SYsz L+e,) sfmk = SZZNk (L+&,)

Yy -ng




= Szsz A+&) Sf

Mk Mk

=Sy, @+eg) | 8§

= Ska (1+&,)

Y-z

=S;, (U+ey) | S5

ka —2k

= Sf(Nk (I+&3)

Suchthat E(g)=0and | & [£1,Vi=0,12,...,13. Using these conditions, we may obtain the following

expectations:

E(gg) = flkCYsz

E(glz) = fskc>2<Nk

E(gzz) = flkC)Z(Nk

E(«9§) = fzkc\fNk

E(e) = f5kC22Nk

E(gaz) = fs,kCzZNk

E(572) = fy (Aaoox =1

E(gsz) = fo (Aooax —1)

E(&‘g) = fux (Zooax =1

E(glzo) = fi (Aosok =1

E(glzl) = fo (Aaoox =D

E(glzz) = o (Aooa —1)

E(glzs) = o (Aosox =1

E(ee,) = flkaka

E(&p8,) = flkCXYNk

E(se,) = flkCYZNk

E(&85) = f4kCXYNk

E(&&;) = flkCYNk Aso

E(&8) = flkCYNk Aoosk

E(&s,) = f4kCYNk Aooak

E(&61) = 1kCYNk Aoso

E(&613) = flkCYNk Aoaok

E(glgz) = flkC)Z(Nk

E(e,) = fskasz

E(e&) = f4kasz

E(ge;) = flkCXNk Aok

E(e&) = fSkCXNk Aoizk

E(e&,) = f4kaNk Aorax

E(&6,) = flkCXNK Aoaok

E(&6,) = kaCXNk Aoao

E(e,8,) = flkasz

E(e,85) = f4kasz

E(e,e,) = flkCXNk Aok

E(e,8) = flkCXNk Aotk

E(e,8,) = fAkCXNk Aoiz

E(&,6,) = flkCXNk Aoao

E(&6) = flkCXNk Aoso

E(&¢) = fschsz

E(&en) = f2kCYNk Asok

E(&8,) = fskc\(Nk Aioai

E(e,8) = f4kC22Nk

E(e,6,) = flkCsz Aotk

E(e,8) = fskCsz Aooak

E(e,8,) = f4kCsz Aooax

E(e,6) = fi Csz Ao

E(e,6i) = fskCsz Aoask

E(&e;) = f4kCsz Ao

E(&s8;) = f4kCsz Aooak

E(&sg,) = f4|<Csz Aoosi

E(&s60) = f4kCsz Aoz

E(gs3) = f4kCsz Aoask

E(&en) = fskcsz Aok

E(&s81,) = fakCsz Aooak

E(e,65) = fi (Ao =D

E(&,6) = fux (Ao —1)

E(e;60) = fu (Ao =D

E(e,6135) = fu (Mg =)

E(&¢) = fa (Aooa =1

E(&&10) = fu (Aooa —1)

E(&&13) = fo (Aggax =D

E(&&) = o Qoo —1)

E(&&13) = fux (Aoza —1)

E(gloglg) = flk (ﬂ040k -1

E(enén) = o (Aoga —1)

where



1 1 1 1 1 1
w=(——m—-). fo =(——F——-). fo =(—-—)
na, +2p, N, UG, +2p; N, u N,
fo =), foo = () fo= ()
n. N, m, N, md,+2p, N,
and
He 1N _
A = = Hopx =17 _1Z(Yk| “Y) (X, — XA (Z, ~ZiY
\ Haook Hozok Hoozk k =1

Note. If there is no non-response, then ,, P,,and P, are all zero, and as a result, q,, (,, and {, are all one. In
this case, the above values are identical to the standard results.

By applying these transformations to C; and C; , We obtain:
Nk myg

2
&, &, E,E, & & E:E
¢ =C, (l-g,+0 4220 22710 ) (20 _p 42 %0 5% ) (18)
B T T2 2 g 2 ° 8 2
2
& & &, €& & & &,E,
¢ =C. (l-g +8 g2 218 _21%3 (%8 _ o 4 2 %8 C4% (19)
I T T S A P R R I S

& & EnE
To =Cy, (1—go+?7+g§—€7_%_)
C _ 1 _ 2 _ a2 1 2 L2 1 _ 20
X (6 -6+ 2(310 Ep)te; —& + 8(513 &) + 2 (61615 — €261)) (20)
+a,

1 1 1
+(§(5g - &)+ (&, —55)+§(582 —592)+(552 —55)+E(5458 —&:8))

Using Equations (20) and (3), we obtain:

G G 2
T.=Y0c, +Y0,C, (L-g+e L2
k=1 oA w2 8 2
1 2 2,1, 5, 51 1)
G Cy, (er—& + (g —e) + &, — & + (63— &)+~ (61605 — £,64))
. k 2 8 2
+> a0 . . .
k= +(§(g9 &)+ (g, — &) +§($82 —&l)+ (g2 - €2) +E(8488 ~£:&,))

Considering the close proximity of the calibrated weight QZ to the strata weight W, , we may reasonably assume
that:

To transform Equation (21) accordingly,

10



G & & sg&
T =C, +> QC, (L-g+e&f——L-21-)
Y ; v o T T8 T 5
c, ( 1 2 2, 1., 2y 1 22)
G Xy &1 7 & +E(510 — &)t &y — & +§(513_510)+§(51513_52510))
+ZakQ;

1 1 1
+(E(59 — &)+ (&, — &) +§(582 _892) + (552 —gf) +§(8488 — £56,))

After performing some rearrangement and taking expectations on both sides of Equation (22), the Bias and MSE of
T, considering the first-order approximation, may be expressed as follows:

_ (Aaoo —1) . CYNk Aaooi

Bias(T,) = ZQ f,C. (C? )
k=1 N 8 2
_ C
G CxNk (flk - f6k )(C>2<Nk - (/104% 1) - AOgOk) (23)
+> aQ; 8 c ﬂf
k=1 -1 zy, "too3k
#(fy - f)c2, Ve )
M 8 2
and
& (Ao =1
MSE(Tm) = ZQkZ flkCYsz (C>2<Nk + % T M Xy, ﬂsom()
k=1
-1 f -1
(flk + fsk)((/lo40k _ Lk (ﬂ‘OEOk ))
+C>2<Nk (flk - f6k)(CXNk ﬂ’OSOk _C>2<Nk)
-1 -1
+( f4k + f5k)(CZZNk + (/10042. )) _ (/10042 )
+Za§QE2 2
k=1 ( 4k — Sk)c 2’003k 2f4kCsz)
CXN Amzk
"'ZCXNk (f4k - f5k )(kT - szNk
_ (Aozx —1) n CZNk oo )
4 2
o (f ) ( ﬂzom CYNk Aoosk _ (Ayook —1))
*2 ik 4k
+2kz_l: 3, Q’C,, 2 4 (24
i _flkCYZNk + f4kCXYNk
By applying the same transformations to Equation (2), we obtain:
&, & £.8 P &’ £,
T, =Cy, (-4 +%—%+g§ —%—) +bk(?2_86 —?24-6‘62 —%—) (25)

Using Equations (4) and (25), we obtain:
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T S o"C & O C &n 2 5121 &38
u_z K YNk+Z K YNk(__€3+€3 =)
k=1 k=1 2 8 2
R ) (26)
v & & ELE.
+Zkak (2 g gl -2 212 )
k=1 2 8 2

Considering the close proximity of the calibrated weight Q’;* to the strata weight W, , we may reasonably assume
that:

To transform Equation (26) accordingly,

G 2
T, =C, +ZQ:§*CYN (i_gs+832 —i—ﬁ——)
k=1 « 2 8 2
R ) (@7)
& &, &€&
SporGz_p 2 b2 Sfn
; k= =k ( 2 6 6 8 2 )

After performing some rearrangement and taking expectations on both sides of Equation (27), the Bias and MSE of
T, , considering the first-order approximation, may be expressed as follows:

G _1 C Ag
Bias(T,) = 3" Q; ,,C, (C2 — oo =1 T T,
k=1 Mo 8 2
G (C2 _ (ﬂOOAk _1) _ CZNk /1003k ) (28)
+Zkak f3k( 2 8 2 )
k=1
and
N 2 2 2 (/1400k _1)
MSE(T,) = > O, faCy (Cy, T —~Cy, o)
k=1
N ok A -1 CZN /1201k CYN ﬂﬂ.ozk
RO, (R T SR e, ) -
k=1

+ib29**2 f, (C2 + G =Y _ Aogsr)
s K==k T3k \z, 4 Zy, 7003k
Thus, we may obtain the bias and MSE of estimator T by combining the biases and MSEs of two non-overlapping
samples T, and T, as shown below:

Bias(T) = ¢Bias(T,) + (1—¢)Bias(T,,) (30)

and
MSE(T) = $°MSE(T, ) + (L ¢)* MSE(T,) (31)
Where Equations (23), (28), (24), and (29) provide the expressions for Bias(T,), Bias(T,), MSE(T,), and

MSE(TU), respectively. As T,and T are based on non-overlapping samples of sizes u and m, respectively, the

covariance term may be ignored as it is of order N ™", and c(T,, T,)=0.

12



5.2 The estimator’s minimum mean squared error (MSE)

MSEs of T, and T, depend on &, and b, . To find the best @, and b, , we minimize the MSEs in Equations (24)
and (29). We get optimal a, and bk values.

2

&, = (32)
oPt (f, + f.)( -1 f,( -1)

2 1k 6k4 2’040k 1k ﬂO;Ok + ( flk _ fek )(CxNk /1030k _ C)Z(Nk ))

CXNk (
CXNk orai _C _ Ao —1 " CZNk Aoz = )
X2y
2 k 4 2 2

-1 Csz Aok CYNk Aoosk
CYNk {( flk - f4k)(22022 - - 2 )+ flkCYZNk - f4|<CXYNk

+2CxNk (flk B fSk)(

-1
+(fu + T )(szNk + /10042) +(fy — fo )Csz Aooze = 2 Fap szNk

and

2 4 YN 2
b, = (33)

opt _ 1
szNk + /10042 - Csz ﬂ1)03k

Using @, from Equation (32) in Equation (24) and b, from Equation (33) in Equation (29) gives the minimum
kopt kopt

CYNk {Csz Aok B Y — . CYNk Aaozk }

MSEof T, and T,,.

| . Aoy —1

MinMSE(T,,) = > Q7 f,C; (C%, +%—CXNK Ao
k=1

2

Csz /1201k CYNk /1003k )

2 2

-1
C\?Nk (flk - f4k)(ﬂ'2022 -
+ flkCYZNk - f4kcx‘(Nk

G
N7
é ‘ C2 ((flk + fek)(/lo40k _1) _ flk (%40k _1)
Xy
‘ 4 2 (34)

+(fy - fek)(CxNk Aosox — C>2<Nk )
CxNk Aorax C B Agpor —1 N Csz Aoaa

+2CxNk (flk o fsk)( 2 Xz, 4 2 )
- f4k (ﬂo;m -1 +(f4k n f5k )(szNk + /1004;r _1)

+(f — T )Csz Aooak — 2 fAkCZZNk

and
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-1
f2k (CYsz + ﬂoo% - CYNk ﬂSOOk )

2
MinMSE(T, ) = in*szNk i {Csz Ak oo =1 _ _ S, ﬂmk} (35)
k=1 2 4 "k 2
CZZNk + %042—1 ~Cy,, ook
MSE of T depends on ¢ . To find the best@ , we minimize the MSE. The optimal ¢ is
by = MIinMSE(T,,) (36)

MInMSE(T,,) + MinMSE(T,)
We may use this ¢ value to get the best MSE of T, which is
MinMSE MIinMSE(T,
MSE(T)Opt — . (Tm) - ( u) (37)
MinMSE(T,,) + MinMSE(T,)

Equations (34) and (35) give the expressions for MINMSE(T,,) and MIinMSE(T, ), respectively.

6 Effects of measurement error

Let X, Y, ,and Z, represent the true values of variables X, Y, and Z, respectively. The corresponding observed values
are denoted as X,, Y, ,and Z, . We define the measurement errors for X, Y,and Zasu, = X, — X, ,V, =Y, — Y,
andW, =2, —z,. These errors are assumed to follow normal distributions: u, €U [ N(O, S?),
Vv, €V I N(O, S?),and w, eW [ N(O, S?). The variables X, Y, Z, U, V, and W are pairwise uncorrelated.

We consider two cases in this analysis.

Case I: Assuming Z as a variable without measurement errors
In this case, we assume that the auxiliary variable Z is free from measurement errors, meaning that W, = 0.

Consequently, the joint moment about the mean is expressed as:
13 =)
@ o :N—12uk"vf (z, -2) (39)
k — k=

Considering the influence of measurement errors U and V, we derive the expression for the minimum mean square
error (MSE) of the proposed estimators ¢ as follows:

MSE(T).. = MInMSE (T, ), MinMSE(T, ), )
P MIinMSE(T, ), + MIinMSE(T, ),

Alz.m(l) :|
AZ.m(I)

where
G

MinMSE(T ), =ZQ’;{A).m(.) -
k=1

2 2

2 SUNk 2 S
Ab.m(l) = flk CYNk + ?2 CYNK =
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2

Uy, o -
CYsz +T(f1k - f4k) 2024k 2
Anay = YN,

1 Csz D501k

1 C, @
_ T l+ zy, Po21k

2 ' g 2

1

@oon —1 @oop —
—2 D)+ ( fa — fo )Csz Toos — Ta (%

+(f + Ty )(szNk + - ZCZZNk )

A2m(|) =
' 3 £ (@ —1)
+[Cx, T =2 (fu = o) - Z‘Ok
N

2

SVN T —1
+ C>2<Nk +sz [( fu + f6k)%j

N

G
MInMSE(T,), = > ;| G2 +—2
k=1

2 Toou —1 _ -
Zy, 4 zy, @003k

Case I1: Assuming Z as a variable with measurement errors
In this case, we consider that the auxiliary variable Z is characterized by measurement errors. Thus, the joint
moment about the mean is given by:

l G
Kpask = zuk" Vi W (40)
Nk -1 k=1

Taking into account the effects of measurement errors U, V, and W, we obtain the expression for the minimum
mean square error (MSE) of the proposed estimators ¢ as follows:

MSE(T). = MInMSE(T,),, MinMSE(T,), @)
P MInMSE(T, ), + MIinMSE(T,),

A12.m(ll) j|
Az.m(ll)

where

G
MInMSE(T,,), =ZQ’;{A).m(..) -
k=1
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2 2
Ay = T CYNk += CYNk +

U, Kopor —1
CYsz +T(f1k - f4k) %‘
Ai.m(ll) = N,
i - flkCYZNk - fAkC
A2.m(||) =

f 2 Uy, Koo —1
2k YNk —2 4
Ny

2
Wa Kook Kook -1

o 2 \2 C;Nk + = > A
MInMSE(T,), = > Q2| C2 +—x Zn,
k=1 K YNk

7 Empirical study

Before employing an estimator in practical situations, it is crucial to assess its performance based on its inherent
properties. In light of this, an empirical analysis has been carried out in this section utilizing both real and simulated
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data to evaluate the suggested estimator. To accomplish this, we will conduct a comparison between the suggested
estimator T and an alternative estimator 7 , which is also designed to handle random non-response and measurement
errors and is defined in the same manner. The purpose of this comparison is to evaluate how well the suggested
estimator T performs under conditions of random non-response and measurement errors.

r=yr, +[1-y)z,
SN S (N
The values of 7, = ;(ijcywm , T, = ;(W“}:ynw and ¥ (0 <y <1)are unknown, and the constant

v needs to be determined by minimizing the Mean Squared Error (MSE) of estimator 7 .

The minimum Mean Squared Error (MSE) of estimator 7 , up to the first order of approximations, may be expressed
as:

MSE (z, )MSE(z,,)
MSE(z,) + MSE(z,,)

MSE(z) = (42)

where

¢ (N -1
MSE(ru)=Z(—ijY 1 (CYZ +/1“L—CY Amj and
=\ N “lug;+2p; N, Nk 4 Nk

S (N 1 1 Aok —1
MSE :Z —k I | N o i | Sl o,
(Tm) kl( N jCYNk [nk% + 2p1 Nk ]( e 4 e %Oij

The proposed estimator T may be evaluated in terms of its Absolute Relative Bias (ARB) and Percentage Relative
Efficiency (PRE) with respect to the estimator 7 respectively. This may be calculated using the following formula:

AR = [ ET=C)I 43)
PRE = _MSE(D) 100 (44)
MSE(T)opt

where MSE(T),,, and MSE(7) are defined in Equations (37) and (42), respectively.
The following Q, values have been considered:

Case I: Q, =1.0 This case assigns equal importance to each stratum, treating them equally in the calibration
process.

1
Case ll: Q, = VT Here, the importance of each stratum is inversely proportional to its initial weight W, , implying
k
that strata with lower initial weights are given higher importance during calibration.

Case lll: Q, = Z— In this case, the importance of each stratum is inversely proportional to its mean auxiliary
k

variable value, suggesting that strata with higher mean auxiliary variable values are given more weight in the

calibration process.

7.1 Simulation study

Using the statistical computing software R, we simulated data based on our theoretical findings. To generate data for
both the study and auxiliary variables, following a normal distribution with specific parameters and correlation
coefficients, we utilized the mvrrnorm function from the MASS package. The population parameters for the generated

data are presented in Table 1. We conducted simulations to analyze the impact of the controlling parameter Q, under
conditions of random non-response and measurement error.
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7.2 Study based on real data

In this section, we examine the application of a proposed class of estimators to address a real-world problem
concerning prostate cancer. Prostate cancer is a major cause of cancer-related deaths among men (Source: Ellsworth
Pamela 2020). Developing effective screening tools for early detection of prostate cancer is crucial. The prostate-
specific antigen (PSA) test, along with other diagnostic tests, is commonly employed for this purpose. Elevated PSA
levels in the blood often indicate prostate cancer in patients. Individuals diagnosed with prostate cancer are advised to
undergo regular PSA tests to monitor disease progression or detect its recurrence.

However, the PSA test suffers from a significant limitation - a high false-positive rate. Overdiagnosis may result in
unnecessary invasive medical procedures, such as biopsies. One way to overcome this challenge is to establish age-
specific cutoff values for PSA levels, which necessitates a study of age-related variations in PSA levels.

To explore this further, we consider data from a study involving men who were about to undergo a radical
prostatectomy. The study analyzed the correlation between PSA levels and several clinical measures (Source: Stamey
et al. 1989). The data utilized to illustrate the application of the proposed class of estimators is obtained from Section
4 and may be found under the name ‘prostate’ in the ‘faraway’ package in R (Faraway 2016).

The study incorporates the following variables:
Y: Logarithm of PSA

X: Logarithm of cancer volume

Z: Logarithm of prostate weight

To examine age-specific cutoff values for PSA range, the individuals participating in the study are divided into
strata based on their ages:

Stratum 1: Individuals below the age of 60

Stratum 2: Individuals aged between 60 and 69

Stratum 3: Individuals aged 70 and above

Although complete data are available for this study, it is important to note that this is not always the case. In scenarios
where some data on the study variable are missing, the goal is to estimate the coefficient of variance as accurately as
possible. Table 2 provides statistical information about the population. Further tables present the PRE under non-
response and measurement error for both cases, as well as the PRE in the absence of non-response and in the presence
of measurement errors.

7.3 Discussion and results
Based on the simulation study and the study based on real data presented above:

1. Tables 3 and 4 show that calibrated strata weights are similar to original weights. Instead of calibration

because it

weights for both simulated and real data. Instead of calibration weights, we may also use — k
2.0
k=1

N
is an estimator of Wk . The estimator effectively reduces the negative impact of non-responses, and the bias
is negligible for all Q, choices.

2.  Tables 5-7 reveal that the proposed estimator significantly outperforms the standard estimator, exhibiting
higher Percent Relative Efficiency (PRE). This indicates that the proposed method is more effective in the
presence of random non-response and assuming Z as a variable without measurement errors, as evidenced
by its lower Mean Squared Error (MSE). The results validate the robustness of the proposed estimator,
making it a more reliable choice when addressing non-response issues (simulated data).
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Tables 8-10 demonstrate that the proposed estimator consistently outperforms the standard estimator, as
indicated by higher PRE values. This performance advantage is particularly evident in scenarios with random
non-response and assuming Z as a variable without measurement errors, underscoring the estimator's
robustness and effectiveness in practical applications (real data).

The analysis in Tables 11-13 reveals that the Absolute Relative Bias (ARB) of the proposed estimator due to

random non-response is minimal, approximately around 1074, suggesting that the proposed method
effectively reduces non-response bias and enhances performance compared to the standard estimator. The

results for the simulated data show that as D, increases, the bias rises while the PRE decreases. For fixed Py
and [,, increasing P2 results in a constant bias but a decrease in PRE. Conversely, increasing Py while
keeping P and P;constant maintains a constant bias but increases the PRE. Additionally, as the non-

response rate of Py increases, the PRE also increases, further highlighting the estimator's ability to maintain
accuracy even in the presence of random non-response and measurement errors. These findings underscore
significant patterns in the simulated data.

Tables 14-16 demonstrate that the Absolute Relative Bias (ARB) of the proposed estimator remains minimal

-2
(approximately 10 even in the presence of random non-response, highlighting its effectiveness in
mitigating non-response bias and maintaining accuracy and reliability in real-world conditions. The findings

further indicate that increasing P, results in a rise in bias and a reduction in PRE, while keeping Py and [,

constant and increasing P leads to a constant bias but reduced PRE. Conversely, increasing Py with P

and P, fixed results in a constant bias and an increase in PRE. Additionally, as the non-response rate of Py

grows, the PRE also increases. These observations underscore the estimator's robustness and the key trends
identified in the real data.

Tables 17 and 18 show that the proposed estimator has negligible ARB and a higher PRE than the standard
estimator, even in the absence of non-response and measurement errors. This indicates that the proposed
method is more effective, even without non-response and measurement errors for simulated as well as real
data.

We may observe in a simulation study that as we increase the value of the correlation coefficient, the value
of the PRE will increase and the bias will decrease. Conversely, as we decrease the value of the correlation
coefficient, the PRE will decrease and the bias will increase.

The study assessed the feasibility of employing calibrated weights to combat non-response in stratified successive
sampling, aiming to improve the accuracy of coefficient of variation estimation at the population level. Our evaluation
included both simulation studies, as detailed in section 7.1, and analyses of real data, outlined in section 7.2. The
developed estimator exhibited significant efficacy in mitigating random non-response in stratified two-occasion
successive sampling, particularly when auxiliary information on positively correlated variables was available. This
method not only reduced bias but also enhanced accuracy in CV estimation, demonstrating commendable performance
across various scenarios of non-response rates, correlation coefficients, and error structures. Survey statisticians are
encouraged to consider adopting this approach in similar contexts.

8 Conclusions

In summary, our research highlights the critical empirical outcomes of incorporating calibrated weights to address
non-response in the context of stratified successive sampling. The proposed estimator offers substantial advantages,
particularly when auxiliary information is available, enhancing its applicability in practical survey scenarios.
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Validation through comprehensive numerical and simulation studies demonstrates the remarkable reduction in bias
and improved precision in coefficient of variation (CV) estimation across diverse simulated and real-life scenarios.
Notably, our approach proves highly feasible, showcasing its effectiveness in refining CV estimation at the population
level, as evidenced by superior performance observed in both simulated data and its application to estimate the
coefficient of variation for the logarithm of PSA in prostate cancer datasets. Survey statisticians are urged to integrate
this estimator into their methodologies, given its established track record in improving precision and accuracy,
especially in the face of challenges posed by non-response and measurement errors. Furthermore, the demonstrated
effectiveness of our approach in mitigating random non-response in the context of stratified two-occasion successive
sampling emphasizes its relevance and practical value for survey statisticians encountering similar challenges in real-
world scenarios.
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Stratum | Nk Ny M | M | G | U | Pxy | Pz | Pxx
Strata 3 | 5000 2000 | 400 | 1200 | 300 | 800 0.8 0.8 0.8
Strata 4 | 8000 800 50 500 50 300 0.7 0.7 0.7

Table 1: The statistical parameters corresponding to the simulated data.

Stratum

N, | n,

e | My

r2k uk

Pxy | Pvz

Pzx

Strata 1

20 11

2 6

5

0.85 | 0.47

0.48

Strata 2

60 |45

12 | 25

1
5 20

0.64 |0.35

0.15

Strata 3

17 10

2 5

2 4

0.69 | 0.61

0.31

Table 2:

Case

Stratum

W,

Q

*k
Qk

0.2631579

0.1389900

0.10775276

0.3947368

0.5512098

0.75216865

0.1315789

0.1816670

0.05387638

0.2105263

0.1281332

0.08620221

0.2631579

0.1195100

0.14401396

0.3947368

0.5193507

0.75216865

0.1315789

0.2121448

0.01243501

0.2105263

0.1489945

0.09138238

0.2631579

0.1389244

0.10758672

0.3947368

0.5511026

0.75216865

0.1315789

0.1817695

0.05387086

BAONIRP|IRWOINIRP|RWOIN|EF-

0.2105263

0.1282034

0.08637377

Table

3: Calibrated strata weights for simulated data.

Case

Stratum

W,

Q

sk
Qk

0.2061856

0.26446760

0.3126980

0.6185567

0.37455840

0.4659243

0.1752577

0.36097410

0.2213777

0.2061856

0.34605130

0.1694016

0.6185567

0.34189170

0.6420778

0.1752577

0.31205710

0.1885206

0.2061856

0.28186790

0.3497671

0.6185567

0.50458530

0.5310217

WIN(FP|WINFP|WIN |-

0.1752577

0.21354680

0.1192113

Table 4: Calibrated strata weights for real data.

[ %]

0.05

0.10

0.15

0.20

0.05

0.05

153.1851

141.6388

133.2162

126.8583

0.05

0.10

152.9561

141.4076

132.9828

126.6227

0.05

0.15

152.7422

141.1916

132.7647

126.4026

0.05

0.20

152.5418

140.9894

132.5606

126.1965

0.10

0.05

155.4660

143.2761

134.3790

127.6585

0.10

0.10

155.2714

143.0795

134.1804

127.4579

0.10

0.15

155.0926

142.8990

133.9980

127.2737

0.10

0.20

154.9279

142.7326

133.8299

127.1039

0.15

0.05

158.0574

145.1688

135.7562

128.6415
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The statistical parameters corresponding to the real data.




0.15 ] 0.10 | 157.8970 | 145.0068 | 135.5924 | 128.4759
0.15 ] 0.15 | 157.7532 | 144.8614 | 135.4455 | 128.3274
0.15 ] 0.20 | 157.6234 | 144.7303 | 135.3129 | 128.1935
0.20 | 0.05 | 161.0059 | 147.3563 | 137.3818 | 129.8371
0.20 | 0.10 | 160.8801 | 147.2291 | 137.2531 | 129.7070
0.20 | 0.15 | 160.7711 | 147.1189 | 137.1416 | 129.5942
0.20 | 0.20 | 160.6757 | 147.0224 | 137.0441 | 129.4955

Table 5: For case I: Q, = 1.0, Q, = 1.0, Q, =1.0,and Q, = 1.0, the PREs of T with respect to 7 for simulated
data, assuming Z as a variable without measurement errors.

Ps
p, | p, 0.05 0.10 0.15 0.20

0.05 | 0.05 | 153.8399 | 141.9968 | 133.4138 | 126.9665
0.05 | 0.10 | 153.6085 | 141.7633 | 133.1780 | 126.7285
0.05 | 0.15 | 153.3923 | 141.5450 | 132.9577 | 126.5061
0.05 | 0.20 | 153.1897 | 141.3405 | 132.7513 | 126.2977
0.10 | 0.05 | 156.1804 | 143.6734 | 134.6042 | 127.7872
0.10 | 0.10 | 155.9825 | 143.4735 | 134.4023 | 127.5833
0.10 | 0.15 | 155.8005 | 143.2897 | 134.2166 | 127.3958
0.10 | 0.20 | 155.6326 | 143.1202 | 134.0454 | 127.2229
0.15 | 0.05 | 158.8355 | 145.6074 | 136.0098 | 128.7908
0.15 | 0.10 | 158.6707 | 145.4409 | 135.8415 | 128.6208
0.15 | 0.15 | 158.5226 | 145.2913 | 135.6903 | 128.4680
0.15 | 0.20 | 158.3888 | 145.1561 | 135.5537 | 128.3299
0.20 | 0.05 | 161.8519 | 147.8381 | 137.6642 | 130.0066
0.20 | 0.10 | 161.7203 | 147.7050 | 137.5296 | 129.8705
0.20 | 0.15 | 161.6060 | 147.5894 | 137.4127 | 129.7523
0.20 | 0.20 | 161.5057 | 147.4880 | 137.3102 | 129.6486

Table 6: For case 11: Q, =3.80, Q, =2.53, Q, = 7.60,and Q, = 4.75, the PREs of T with respect to 7 for
simulated data, assuming Z as a variable without measurement errors.

Ps
p, | p, | 005 0.10 0.15 0.20

0.05 | 0.05 | 153.1566 | 141.6193 | 133.2024 | 126.8484
0.05 | 0.10 | 152.9276 | 141.3881 | 132.9690 | 126.6127
0.05 ] 0.15 | 152.7136 | 141.1721 | 132.7510 | 126.3926
0.05 | 0.20 | 152.5133 | 140.9699 | 132.5468 | 126.1865
0.10 | 0.05 | 155.4360 | 143.2557 | 134.3645 | 127.6480
0.10 | 0.10 | 155.2414 | 143.0590 | 134.1659 | 127.4474
0.10 | 0.15 | 155.0626 | 142.8785 | 133.9835 | 127.2632
0.10 | 0.20 | 154.8978 | 142.7121 | 133.8154 | 127.0934
0.15 | 0.05 | 158.0257 | 145.1472 | 135.7409 | 128.6304
0.15 ] 0.10 | 157.8653 | 144.9852 | 135.5771 | 128.4648
0.15] 0.15 | 157.7215 | 144.8398 | 135.4302 | 128.3163
0.15 ] 0.20 | 157.5917 | 144.7086 | 135.2976 | 128.1823
0.20 | 0.05 | 160.9724 | 147.3335 | 137.3656 | 129.8254
0.20 | 0.10 | 160.8466 | 147.2062 | 137.2369 | 129.6952
0.20 | 0.15 | 160.7375 | 147.0960 | 137.1254 | 129.5824
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[ 0.20 | 0.20 | 160.6421 | 146.9995 | 137.0278 | 129.4837 |
Table 7: For case 111: Q, =0.3324468, Q, = 0.3315064, Q, =0.3321156, and Q, =0.3316337, the PREs of T
with respect to 7 for simulated data, assuming Z as a variable without measurement errors.

Ps
p, | p, | 005 0.10 0.15 0.20

0.05 | 0.05 | 124.2784 | 122.2180 | 120.3446 | 118.6380
0.05 | 0.10 | 124.1082 | 122.0459 | 120.1706 | 118.4620
0.05 | 0.15 | 123.9496 | 121.8855 | 120.0084 | 118.2979
0.05 | 0.20 | 123.8015 | 121.7357 | 119.8568 | 118.1447
0.10 | 0.05 | 125.4450 | 123.2509 | 121.2538 | 119.4326
0.10 | 0.10 | 125.2943 | 123.0983 | 121.0994 | 119.2763
0.10 | 0.15 | 125.1547 | 122.9570 | 120.9564 | 119.1316
0.10 | 0.20 | 125.0250 | 122.8257 | 120.8235 | 118.9971
0.15 | 0.05 | 126.7816 | 124.4531 | 122.3316 | 120.3951
0.15 | 0.10 | 126.6434 | 124.3130 | 122.1898 | 120.2514
0.15 | 0.15 | 126.5161 | 124.1841 | 122.0592 | 120.1191
0.15 | 0.20 | 126.3986 | 124.0650 | 121.9386 | 119.9969
0.20 | 0.05 | 128.2934 | 125.8302 | 123.5840 | 121.5317
0.20 | 0.10 | 128.1594 | 125.6943 | 123.4462 | 121.3920
0.20 | 0.15 | 128.0369 | 125.5701 | 123.3203 | 121.2643
0.20 | 0.20 | 127.9244 | 125.4560 | 123.2047 | 121.1471

Table 8: For case I: Q, = 1.0, Q, = 1.0, and Q, =1.0, the PREs of T with respect to 7 for real data, assuming Z
as a variable without measurement errors.

P;
P, P, 0.05 0.10 0.15 0.20

0.05 | 0.05 | 133.5361 | 130.4289 | 127.6419 | 125.1352
0.05 | 0.10 | 133.2576 | 130.1458 | 127.3543 | 124.8429
0.05 | 0.15 | 132.9993 | 129.8832 | 127.0874 | 124.5717
0.05 | 0.20 | 132.7590 | 129.6390 | 126.8392 | 124.3194
0.10 | 0.05 | 134.7752 | 131.4922 | 128.5437 | 125.8880
0.10 | 0.10 | 134.5302 | 131.2430 | 128.2902 | 125.6301
0.10 | 0.15 | 134.3043 | 131.0131 | 128.0564 | 125.3922
0.10 | 0.20 | 134.0952 | 130.8005 | 127.8400 | 125.1720
0.15 | 0.05 | 136.1819 | 132.7252 | 129.6168 | 126.8133
0.15 | 0.10 | 135.9623 | 132.5015 | 129.3890 | 126.5813
0.15 | 0.15 | 135.7611 | 132.2966 | 129.1803 | 126.3688
0.15 | 0.20 | 135.5761 | 132.1082 | 128.9884 | 126.1733
0.20 | 0.05 | 137.7503 | 134.1221 | 130.8557 | 127.9062
0.20 | 0.10 | 137.5475 | 133.9153 | 130.6450 | 127.6913
0.20 | 0.15 | 137.3632 | 133.7274 | 130.4533 | 127.4959
0.20 | 0.20 | 137.1948 | 133.5557 | 130.2783 | 127.3174
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Table 9: For case 11: Q, =4.85, Q, =1.62, and Q, =5.71, the PREs of T with respect to 7 for real data, assuming
Z as a variable without measurement errors.

Ps
p, | p, | 005 0.10 0.15 0.20

0.05 ] 0.05 | 110.5138 | 110.1408 | 109.7955 | 109.4762
0.05] 0.10 | 110.1174 | 109.7405 | 109.3914 | 109.0682
0.05 | 0.15 | 109.7497 | 109.3692 | 109.0165 | 108.6897
0.05 | 0.20 | 109.4076 | 109.0237 | 108.6676 | 108.3376
0.10 | 0.05 | 110.1999 | 109.7928 | 109.4152 | 109.0651
0.10 | 0.10 | 109.8419 | 109.4311 | 109.0496 | 108.6958
0.10 | 0.15 | 109.5114 | 109.0971 | 108.7122 | 108.3548
0.10 | 0.20 | 109.2053 | 108.7877 | 108.3995 | 108.0389
0.15] 0.05 | 110.0815 | 109.6407 | 109.2309 | 108.8503
0.15] 0.10 | 109.7501 | 109.3055 | 108.8920 | 108.5076
0.15] 0.15 | 109.4458 | 108.9978 | 108.5807 | 108.1929
0.15] 0.20 | 109.1654 | 108.7142 | 108.2939 | 107.9028
0.20 | 0.05 | 110.1562 | 109.6823 | 109.2410 | 108.8305
0.20 | 0.10 | 109.8384 | 109.3606 | 108.9154 | 108.5009
0.20 | 0.15 | 109.5486 | 109.0673 | 108.6185 | 108.2004
0.20 | 0.20 | 109.2831 | 108.7985 | 108.3464 | 107.9250

Table 10: For case I11: Q; =0.296, 0.274, and Q, =0.261, the PREs of T with respect to 7 for real data, assuming
Z as a variable without measurement errors.

p, =0.05 p, =0.10 p, =0.15 p, =0.20
P, P, ARB PRE ARB PRE ARB PRE ARB PRE

0.05 | 0.05 | 0.0003814 | 132.1 | 0.0004163 | 126.9 | 0.0004486 | 122.6 | 0.0004787 | 119.1
0.05 | 0.10 | 0.0003814 | 131.9 | 0.0004163 | 126.6 | 0.0004486 | 122.4 | 0.0004787 | 118.9
0.05 | 0.15 | 0.0003814 | 131.7 | 0.0004163 | 126.4 | 0.0004486 | 122.1 | 0.0004787 | 118.6
0.05 | 0.20 | 0.0003814 | 131.5 | 0.0004163 | 126.2 | 0.0004486 | 121.9 | 0.0004787 | 118.4
0.10 | 0.05 | 0.0003814 | 133.2 | 0.0004163 | 127.7 | 0.0004486 | 123.1 | 0.0004787 | 119.5
0.10 | 0.10 | 0.0003814 | 133.0 | 0.0004163 | 127.5 | 0.0004486 | 122.9 | 0.0004787 | 119.2
0.10 | 0.15 | 0.0003814 | 132.8 | 0.0004163 | 127.3 | 0.0004486 | 122.8 | 0.0004787 | 119.1
0.10 | 0.20 | 0.0003814 | 132.7 | 0.0004163 | 127.1 | 0.0004486 | 122.6 | 0.0004787 | 118.9
0.15 | 0.05 | 0.0003814 | 134.5 | 0.0004163 | 128.6 | 0.0004486 | 123.9 | 0.0004787 | 119.9
0.15 | 0.10 | 0.0003814 | 134.3 | 0.0004163 | 128.5 | 0.0004486 | 123.7 | 0.0004787 | 119.8
0.15 | 0.15 | 0.0003814 | 134.2 | 0.0004163 | 128.3 | 0.0004486 | 123.5 | 0.0004787 | 119.6
0.15 | 0.20 | 0.0003814 | 134.1 | 0.0004163 | 128.2 | 0.0004486 | 123.4 | 0.0004787 | 1195
0.20 | 0.05 | 0.0003814 | 136.0 | 0.0004163 | 129.8 | 0.0004486 | 124.7 | 0.0004787 | 120.6
0.20 | 0.10 | 0.0003814 | 135.9 | 0.0004163 | 129.7 | 0.0004486 | 124.6 | 0.0004787 | 120.5
0.20 | 0.15 | 0.0003814 | 135.8 | 0.0004163 | 129.5 | 0.0004486 | 124.5 | 0.0004787 | 120.3
0.20 | 0.20 | 0.0003814 | 135.7 | 0.0004163 | 129.4 | 0.0004486 | 124.4 | 0.0004787 | 120.2

Table 11: Forcase I: Q, = 1.0, Q, = 1.0, Q, = 1.0, and Q, =1.0, the PREs of T with respecttoz for
simulated data, assuming Z as a variable with measurement errors and ARB.

p, =0.05 p, =0.10 p, =0.15 p, =0.20
P, P, ARB PRE ARB PRE ARB PRE ARB PRE
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0.05 | 0.05 | 0.0003799 | 132.3 | 0.0004148 | 127.0 | 0.0004470 | 122.7 | 0.0004768 | 119.1
0.05 | 0.10 | 0.0003799 | 132.1 | 0.0004148 | 126.7 | 0.0004470 | 122.4 | 0.0004768 | 118.9
0.05 | 0.15 | 0.0003799 | 131.8 | 0.0004148 | 126.5 | 0.0004470 | 122.2 | 0.0004768 | 118.7
0.05 | 0.20 | 0.0003799 | 131.6 | 0.0004148 | 126.3 | 0.0004470 | 122.0 | 0.0004768 | 118.5
0.10 | 0.05 | 0.0003799 | 133.4 | 0.0004148 | 127.8 | 0.0004470 | 123.2 | 0.0004768 | 119.5
0.10 | 0.10 | 0.0003799 | 133.2 | 0.0004148 | 127.6 | 0.0004470 | 123.0 | 0.0004768 | 119.3
0.10 | 0.15 | 0.0003799 | 133.0 | 0.0004148 | 127.4 | 0.0004470 | 122.8 | 0.0004768 | 119.1
0.10 | 0.20 | 0.0003799 | 132.8 | 0.0004148 | 127.2 | 0.0004470 | 122.7 | 0.0004768 | 118.9
0.15 | 0.05 | 0.0003799 | 134.7 | 0.0004148 | 128.8 | 0.0004470 | 124.0 | 0.0004768 | 120.0
0.15 | 0.10 | 0.0003799 | 134.6 | 0.0004148 | 128.6 | 0.0004470 | 123.8 | 0.0004768 | 119.8
0.15 | 0.15 | 0.0003799 | 134.4 | 0.0004148 | 128.4 | 0.0004470 | 123.6 | 0.0004768 | 119.7
0.15 | 0.20 | 0.0003799 | 134.3 | 0.0004148 | 128.3 | 0.0004470 | 123.5 | 0.0004768 | 119.5
0.20 | 0.05 | 0.0003799 | 136.3 | 0.0004148 | 130.0 | 0.0004470 | 124.9 | 0.0004768 | 120.7
0.20 | 0.10 | 0.0003799 | 136.1 | 0.0004148 | 129.8 | 0.0004470 | 124.7 | 0.0004768 | 120.5
0.20 | 0.15 | 0.0003799 | 136.0 | 0.0004148 | 129.7 | 0.0004470 | 124.6 | 0.0004768 | 120.4
0.20 | 0.20 | 0.0003799 | 135.9 | 0.0004148 | 129.6 | 0.0004470 | 124.5 | 0.0004768 | 120.3

Table 12: For case II: Q, =3.80, Q, = 253, Q, =7.60,and Q, = 4.75, the PREs of T with respectto 7 for
simulated data, assuming Z as a variable with measurement errors and ARB.

p, =0.05 p, =0.10 p, =0.15 p, =0.20
P, P, ARB PRE ARB PRE ARB PRE ARB PRE

0.05 | 0.05 | 0.0003814 | 132.1 | 0.0004163 | 126.8 | 0.0004486 | 122.6 | 0.0004787 | 119.1
0.05 | 0.10 | 0.0003814 | 131.9 | 0.0004163 | 126.6 | 0.0004486 | 122.3 | 0.0004787 | 118.9
0.05 | 0.15 | 0.0003814 | 131.7 | 0.0004163 | 126.4 | 0.0004486 | 122.1 | 0.0004787 | 118.6
0.05 | 0.20 | 0.0003814 | 131.5 | 0.0004163 | 126.2 | 0.0004486 | 121.9 | 0.0004787 | 118.4
0.10 | 0.05 | 0.0003814 | 133.2 | 0.0004163 | 127.6 | 0.0004486 | 123.1 | 0.0004787 | 119.4
0.10 | 0.10 | 0.0003814 | 133.0 | 0.0004163 | 127.4 | 0.0004486 | 122.9 | 0.0004787 | 119.2
0.10 | 0.15 | 0.0003814 | 132.8 | 0.0004163 | 127.3 | 0.0004486 | 122.8 | 0.0004787 | 119.1
0.10 | 0.20 | 0.0003814 | 132.6 | 0.0004163 | 127.1 | 0.0004486 | 122.6 | 0.0004787 | 118.9
0.15 | 0.05 | 0.0003814 | 134.5 | 0.0004163 | 128.6 | 0.0004486 | 123.8 | 0.0004787 | 119.9
0.15 ] 0.10 | 0.0003814 | 134.3 | 0.0004163 | 128.4 | 0.0004486 | 123.7 | 0.0004787 | 119.8
0.15 ] 0.15 | 0.0003814 | 134.2 | 0.0004163 | 128.3 | 0.0004486 | 123.5 | 0.0004787 | 119.6
0.15 | 0.20 | 0.0003814 | 134.0 | 0.0004163 | 128.2 | 0.0004486 | 123.4 | 0.0004787 | 119.5
0.20 | 0.05 | 0.0003814 | 136.0 | 0.0004163 | 129.8 | 0.0004486 | 124.7 | 0.0004787 | 120.6
0.20 | 0.10 | 0.0003814 | 135.9 | 0.0004163 | 129.6 | 0.0004486 | 124.6 | 0.0004787 | 120.4
0.20 | 0.15 | 0.0003814 | 135.8 | 0.0004163 | 129.5 | 0.0004486 | 124.5 | 0.0004787 | 120.3
0.20 | 0.20 | 0.0003814 | 135.7 | 0.0004163 | 129.4 | 0.0004486 | 124.4 | 0.0004787 | 120.2

Table 13: For case I11: Q; =0.3324468, Q, =0.3315064, Q, =0.3321156, and Q, =0.3316337, the PREs of T
with respect to 7 for simulated data, assuming Z as a variable with measurement errors and ARB.

p, =0.05 p, =0.10 p, =0.15 p, =0.20
R ARB PRE | ARB PRE | ARB PRE | ARB PRE

0.05 | 0.05 | 0.1244457 | 122.5 | 0.1244677 | 120.6 | 0.1244414 | 119.0 | 0.1243613 | 117.4
0.05 | 0.10 | 0.1244457 | 122.3 | 0.1244677 | 120.5 | 0.1244414 | 118.8 | 0.1243613 | 117.2
0.05 | 0.15 | 0.1244457 | 122.2 | 0.1244677 | 120.3 | 0.1244414 | 118.6 | 0.1243613 | 117.1
0.05 | 0.20 | 0.1244457 | 122.0 | 0.1244677 | 120.2 | 0.1244414 | 118.5 | 0.1243613 | 116.9
0.10 | 0.05 | 0.1244457 | 123.5 | 0.1244677 | 121.6 | 0.1244414 | 119.8 | 0.1243613 | 118.1
0.10 | 0.10 | 0.1244457 | 123.4 | 0.1244677 | 121.4 | 0.1244414 | 119.6 | 0.1243613 | 118.0
0.10 | 0.15 | 0.1244457 | 123.2 | 0.1244677 | 121.3 | 0.1244414 | 119.5 | 0.1243613 | 117.8
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0.10 | 0.20 | 0.1244457 | 123.1 | 0.1244677 | 121.1 | 0.1244414 | 119.3 | 0.1243613 | 117.7
0.15 | 0.05 | 0.1244457 | 124.7 | 0.1244677 | 122.7 | 0.1244414 | 120.8 | 0.1243613 | 119.0
0.15 | 0.10 | 0.1244457 | 124.6 | 0.1244677 | 122.5 | 0.1244414 | 120.6 | 0.1243613 | 118.9
0.15 | 0.15 | 0.1244457 | 124.5 | 0.1244677 | 122.4 | 0.1244414 | 120.5 | 0.1243613 | 118.7
0.15 | 0.20 | 0.1244457 | 124.4 | 0.1244677 | 122.3 | 0.1244414 | 120.4 | 0.1243613 | 118.6
0.20 | 0.05 | 0.1244457 | 126.1 | 0.1244677 | 123.9 | 0.1244414 | 121.9 | 0.1243613 | 120.1
0.20 | 0.10 | 0.1244457 | 126.0 | 0.1244677 | 123.8 | 0.1244414 | 121.8 | 0.1243613 | 119.9
0.20 | 0.15 | 0.1244457 | 125.9 | 0.1244677 | 123.7 | 0.1244414 | 121.6 | 0.1243613 | 119.8
0.20 | 0.20 | 0.1244457 | 125.8 | 0.1244677 | 123.6 | 0.1244414 | 121.5 | 0.1243613 | 119.7

Table 14: For case I: Q, =1.0, Q, =1.0,and Q; =1.0, the PREs of T with respectto 7 for real data, assuming Z
as a variable with measurement errors and ARB.

p, =0.05 p, =0.10 p, =0.15 p, =0.20
P, P, ARB PRE ARB PRE ARB PRE ARB PRE

0.05 | 0.05 | 0.1256676 | 131.1 | 0.1259374 | 128.4 | 0.1261225 | 125.8 | 0.1262125 | 123.6
0.05 | 0.10 | 0.1256676 | 130.9 | 0.1259374 | 128.1 | 0.1261225 | 125.6 | 0.1262125 | 123.3
0.05 | 0.15 | 0.1256676 | 130.6 | 0.1259374 | 127.8 | 0.1261225 | 125.3 | 0.1262125 | 123.0
0.05 | 0.20 | 0.1256676 | 130.4 | 0.1259374 | 127.6 | 0.1261225 | 125.1 | 0.1262125 | 122.8
0.10 | 0.05 | 0.1256676 | 132.2 | 0.1259374 | 129.3 | 0.1261225 | 126.6 | 0.1262125 | 124.2
0.10 | 0.10 | 0.1256676 | 132.0 | 0.1259374 | 129.1 | 0.1261225 | 126.4 | 0.1262125 | 124.0
0.10 | 0.15 | 0.1256676 | 131.8 | 0.1259374 | 128.8 | 0.1261225 | 126.2 | 0.1262125 | 123.8
0.10 | 0.20 | 0.1256676 | 131.6 | 0.1259374 | 128.6 | 0.1261225 | 125.9 | 0.1262125 | 123.5
0.15 | 0.05 | 0.1256676 | 133.5 | 0.1259374 | 130.4 | 0.1261225 | 127.6 | 0.1262125 | 125.1
0.15 ] 0.10 | 0.1256676 | 133.3 | 0.1259374 | 130.2 | 0.1261225 | 127.4 | 0.1262125 | 124.8
0.15 ] 0.15 | 0.1256676 | 133.1 | 0.1259374 | 130.0 | 0.1261225 | 127.2 | 0.1262125 | 124.6
0.15 | 0.20 | 0.1256676 | 132.9 | 0.1259374 | 129.8 | 0.1261225 | 127.0 | 0.1262125 | 124.4
0.20 | 0.05 | 0.1256676 | 134.9 | 0.1259374 | 131.7 | 0.1261225 | 128.7 | 0.1262125 | 126.1
0.20 | 0.10 | 0.1256676 | 134.7 | 0.1259374 | 131.5 | 0.1261225 | 128.5 | 0.1262125 | 125.9
0.20 | 0.15 | 0.1256676 | 134.5 | 0.1259374 | 131.3 | 0.1261225 | 128.3 | 0.1262125 | 125.7
0.20 | 0.20 | 0.1256676 | 134.4 | 0.1259374 | 131.1 | 0.1261225 | 128.2 | 0.1262125 | 125.5

Table 15: For case II: Q; =4.85, Q, =1.62, and Q, =5.71, the PREs of T with respectto 7 for real data,
assuming Z as a variable with measurement errors and ARB.

p, =0.05 p, =0.10 p, =0.15 p, =0.20
p, | p, | ARB | PRE ARB PRE ARB PRE ARB PRE

0.05 | 0.05 | 0.100534 | 110.1 | 0.1005059 | 109.8 | 0.1004329 | 109.5 | 0.1003104 | 109.2
0.05 | 0.10 | 0.100534 | 109.7 | 0.1005059 | 109.4 | 0.1004329 | 109.1 | 0.1003104 | 108.8
0.05 | 0.15 | 0.100534 | 109.4 | 0.1005059 | 109.0 | 0.1004329 | 108.7 | 0.1003104 | 108.4
0.05 | 0.20 | 0.100534 | 109.0 | 0.1005059 | 108.7 | 0.1004329 | 108.4 | 0.1003104 | 108.1
0.10 | 0.05 | 0.100534 | 109.8 | 0.1005059 | 109.4 | 0.1004329 | 109.1 | 0.1003104 | 108.8
0.10 | 0.10 | 0.100534 | 109.4 | 0.1005059 | 109.1 | 0.1004329 | 108.7 | 0.1003104 | 108.4
0.10 | 0.15 | 0.100534 | 109.1 | 0.1005059 | 108.7 | 0.1004329 | 108.4 | 0.1003104 | 108.1
0.10 | 0.20 | 0.100534 | 108.8 | 0.1005059 | 108.4 | 0.1004329 | 108.1 | 0.1003104 | 107.7
0.15 | 0.05 | 0.100534 | 109.7 | 0.1005059 | 109.3 | 0.1004329 | 108.9 | 0.1003104 | 108.5
0.15] 0.10 | 0.100534 | 109.3 | 0.1005059 | 108.9 | 0.1004329 | 108.5 | 0.1003104 | 108.2
0.15] 0.15 | 0.100534 | 109.0 | 0.1005059 | 108.6 | 0.1004329 | 108.2 | 0.1003104 | 107.9
0.15 ] 0.20 | 0.100534 | 108.7 | 0.1005059 | 108.3 | 0.1004329 | 107.9 | 0.1003104 | 107.6
0.20 | 0.05 | 0.100534 | 109.7 | 0.1005059 | 109.3 | 0.1004329 | 108.9 | 0.1003104 | 108.5
0.20 | 0.10 | 0.100534 | 109.4 | 0.1005059 | 109.0 | 0.1004329 | 108.5 | 0.1003104 | 108.2
0.20 | 0.15 | 0.100534 | 109.1 | 0.1005059 | 108.7 | 0.1004329 | 108.3 | 0.1003104 | 107.9
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[ 0.20 | 0.20 [ 0.100534 | 108.8 | 0.1005059 | 108.4 | 0.1004329 | 108.0 | 0.1003104 | 107.6 |
Table 16: For case I11: Q, =0.296, Q, =0.274, and Q, =0.261, the PREs of T with respect to 7 for real data,
assuming Z as a variable with measurement errors and ARB.

Stratum | ARB PRE
Case | 0.00002797887 | 226.1336
Case Il | 0.00003177613 | 230.9878

Case 111 | 0.00002800443 | 226.0122
Table 17: In the absence of non-response and measurement errors, ARB and PRE are observed from simulated data

when p, =p,=p;=0.

Stratum | ARB PRE
Case | 0.05789603 | 125.3921
Case Il | 0.05533376 | 140.9515

Case Il | 0.03252067 | 119.7129
Table 18: In the absence of non-response and measurement errors, ARB and PRE are observed from real data when

p1:p2:p320-
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