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Abstract 

In this paper, we introduce estimators for the population coefficient of variation within a two-occasion, stratified, 

successive sampling framework, aiming to mitigate the impact of non-response and measurement errors. We derive 

calibrated weights for the strata and thoroughly examine the properties of the proposed estimator through 

comprehensive numerical and simulation studies. Furthermore, we provide valuable recommendations for survey 

statisticians, guiding them on effective applications in real-world survey scenarios. By addressing the challenges of 

non-response and measurement errors within a stratified sampling approach, our proposed estimators aim to enhance 

the accuracy and precision of coefficient of variation estimates, ensuring more precise and accurate results. 
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1 Introduction 

In the field of socio-economic research, accurate estimation of population parameters is essential for drawing 

meaningful inferences and making informed decisions. The coefficient of variation (CV) plays a pivotal role in this 

regard, measuring the relative variability of a population’s characteristics. Facilitating the comparison of variability 

across different units, the CV, when expressed as a percentage, quickly illustrates the extent of variability present in 

the data. Its utility extends beyond socio-economic research, being common in various applied probability fields such 

as renewal theory, queuing theory, and reliability theory. Despite its significance, recent estimation techniques for the 

coefficient of variation often rely on complete information from sampled units, as observed in the work of Tripathi et 

al. [1], Archana and Rao [2]. However, such assumptions disregard the reality of data in real-life surveys, which are 

susceptible to non-sampling errors. 

Non-response, the absence of data from certain respondents regarding specific variables, poses a significant challenge 

in data collection. Factors such as unavailability of respondents, reluctance to answer sensitive questions, or simply a 

lack of information contribute to non-response. For instance, in surveys targeting human populations, obtaining 

information from all selected units can be challenging, especially in mail surveys where respondents are asked to 

return completed questionnaires by a deadline. Non-response can manifest in various patterns and stem from diverse 
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causes, affecting the representativeness of the sample and, subsequently, the accuracy of CV estimation. In agricultural 

production surveys, non-response may occur due to crop loss or damage from natural disasters, leading to missing 

data for certain seasons. 

Measurement errors, discrepancies between recorded values and true values of variables under study, further 

complicate accurate estimation. Errors may arise from over-reporting, under-reporting, memory failures, interviewer 

biases, or defective measurement mechanisms. For instance, in surveys on household consumption, respondents may 

struggle to recall expenditure details accurately, leading to distorted data. Inaccurate measurements can skew 

variability and mean values, resulting in biased CV estimates, particularly problematic when comparing variability 

across different groups or over time. 

Estimating the CV faces additional challenges when dealing with non-response and measurement errors. Several 

authors Sisodia and Dwivedi [3], Das and Tripathi [4, 5], Patel and Rina [6], Singh et al. [7], Muneer et al. [8], Yunusa 

et al. [9], Audu et al. [10], Shahzad et al. [11, 12], Yadav et al.  [13], Rajyaguru and Gupta [14] and others have 

proposed estimators based on the simple random sampling scheme, which assumes accessibility to all sampling units 

and complete information without measurement errors. However, these assumptions are often unrealistic in real-life 

situations. 

In situations where populations undergo continuous change, a single survey provides insights into the characteristics 

of the surveyed population for that specific occasion only. However, this singular approach fails to offer information 

about the rate of change over different occasions or the average value of characteristics across all occasions. To address 

these limitations, successive sampling is employed, as seen in scenarios like monthly data collection on goods prices 

to determine the consumer price index or periodic political opinion surveys to gauge voter preferences. Despite the 

widespread use of successive sampling in scientific and socio-economic surveys, existing research has primarily 

concentrated on developing estimators for population mean or variance, overlooking the crucial aspect of the 

population coefficient of variation (CV). Our proposed work seeks to bridge this gap by suggesting suitable estimation 

procedures in successive sampling, specifically addressing the challenges posed by non-response and measurement 

errors. In this context, where samples are taken on two occasions—match samples and fresh samples—non-response 

and measurement errors can independently or simultaneously affect either sample, presenting a significant challenge 

in estimating population parameters, including the often-neglected CV. This research builds upon the foundational 

work by Jessen [15] and subsequent expansions by researchers such as Yates et al. [16], Eckler [17], Sen [18], Feng 

and Zou [19], Singh and Homa [20], Naz et al. [21], Younis and Shabbir [22], Abid et al. [23], Irfan et al. [24], 

Bhushan and Pandey [25], Sen [26] and others who have done recent work in this field, has primarily focused on 

developing estimators for population mean or variance in the presence of non-response or measurement errors. 

Notably, the population coefficient of variation has been largely overlooked in this body of work Allen et al. [27], 

Kumar et al. [28], Ahmed and Shabbir [29], Audu et al. [30], Shahzad et al. [31].   

Therefore, the aim of this research paper is to propose an improved estimation procedure for the population coefficient 

of variation (CV) under successive sampling, considering the presence of non-response and measurement errors, by 

utilizing calibrated weights. This introduces a fresh perspective on estimating the CV within a stratified successive 

sampling framework. While existing techniques primarily focus on mean or variance, our approach uniquely targets 

the CV, addressing a critical gap in the literature. The coefficient of variation (CV) is preferable to mean alone because 

it is unit-free, more stable in comparison to mean and variance, and facilitates comparisons between different 

populations, making it a valuable measure of dispersion across populations regardless of their scales or units of 

measurement. Incorporating CV estimation into stratified successive sampling provides a comprehensive 

understanding of variability within and between populations, offering valuable insights for decision-making and policy 

formulation. A significant aspect in the context of stratified successive sampling under non-response is the limited 

research conducted on the estimation of the coefficient of variation, which is particularly important given the 

challenges posed by non-response and measurement errors during data collection. Our proposed procedure combines 

existing methods for estimating the population CV with a model-based approach that accounts for non-response and 

measurement errors. 

Deming and Stephan [32] introduced a calibration approach using least squares adjustment, which was later adopted 

by statistical authorities in various organizations. The main goal of the calibration approach is to formulate unbiased 

estimation procedures with the least amount of dispersion using the information on auxiliary variables. In follow-up, 

Deville and Särndal [33] proposed a calibration estimation procedure that decreases the distance between the initial 

and final weights while still respecting the calibration equations and constraints. Subsequently, Farrell and Singh [34], 
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Särndal [35], Kim et al. [36], Kim and Park [37], Sud et al. [38], Singh et al. [39], Koyuncu and Kadilar [40], Nidhi 

et al. [41], Özgül [42], Shahzad et al. [43, 44], Pandey et al. [45-47], Clement [48] and others have produced notable 

calibrated estimation procedures. 

In the estimation of population variance using stratified successive sampling, calibration is a technique used to improve 

the accuracy of the estimates. By incorporating calibration into the estimation process, resulting estimates are more 

representative of the population and have reduced bias. This is especially important in stratified successive sampling, 

where the goal is to ensure that each stratum is well-represented in the final estimate. 

To demonstrate the practical relevance of our proposed method, we apply it to a real-life socio-economic example. 

Specifically, we consider the case of estimating the CV of household income in a developing country where non-

response and measurement errors are prevalent due to the absence of reliable income data. Our proposed method 

provides a more accurate estimation of the population CV and helps to better understand the income distribution in 

the population, which has important implications for socio-economic policies and decision-making. 

In the subsequent sections of this research paper, we will present the theoretical background and methodology of our 

proposed estimation procedure. We will then provide a detailed description of the application of our method to the 

real-life socio-economic example. Finally, we will discuss the results and implications of our research, highlighting 

the advantages and limitations of the proposed approach. 

2 Sample structure and notations 

Consider a finite population of size N divided into G non-overlapping strata, each containing kN (k=1, 2,...,G) units. 

Let us use X and Y to represent the study character on the first and second occasions. It is assumed that information 

regarding an auxiliary variable Z is accessible on both occasions, and the population variance of Z is known. 

Let us consider the kth strata, where k ranges from 1 to G., To begin with, we use simple random sampling without 

replacement (SRSWOR) to draw a preliminary sample of size 𝑛𝑘 from the population for the first occasion, where 1kr  

units do not respond. From the responding part of this sample, we draw a second stage SRSWOR sample of size 
''

k k km n = , where 
''

k  is the fraction of matched samples, and 2kr  units do not respond. We use this sample for the 

second occasion and collect information on the study variable Y. Additionally, we draw a fresh sample of size 
''

k k k k ku n m n u= − =  from the population using SRSWOR on Y again. Here, 3kr  units do not respond. The fractions 

of matched and fresh samples on the current (second) occasion are represented by
''

k and 
''

k , respectively, where 

'' '' 1k k + = . 

From now on, we will use the following notations:  

kX , kY : The population mean of study variables X and Y respectively in the kth strata.  

kZ : The population mean of the auxiliary variable Z in the kth stratum.  

kny , 
kmy , 

kuy ,
knx , 

kmx , 
kux : The sample means of the variables Y and X respectively based on the respective 

sample sizes shown in suffice.  

1

1 k

k

n

n kl

lk

z z
n =

=  , 
1

1 k

k

m

m kl

lk

z z
m =

=  and 
1

1 k

k

u

u kl

lk

z z
u =

=  : The sample means of the auxiliary variable in the kth 

stratum are determined based on a sample size of kn , km and ku , respectively.  

2

2

1

1
( )

1

k

k
N jk

N

NY k

jk

S Y Y
N =

= −
−
 , 

2

2

1

1
( )

1

k

k
N jk

N

NX k

jk

S X X
N =

= −
−
 : The population mean squares of the kth 

stratum of the study variables Y and X, respectively.  
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2

2

1

1
( )

1

k

k
N jk

N

NZ k

jk

S Z Z
N =

= −
−
 : The population mean squares of the kth stratum for the auxiliary variable Z. 

1

1
1

2

2

11

1
( )

1

k k

k k
n r lk k

n r

n rx k

lk k

s x x
n r−

−


−

=

= −
− −

 : Depending on the responding part of sample of size kn , the sample 

mean square of study variable X for the kth stratum.  

2

2
2

2

2

12

1
( )

1

k k

k k
m r lk k

m r

m rx k

lk k

s x x
m r−

−


−

=

= −
− −

 : Depending on the responding part of sample of size km , the sample 

mean square of study variable X for the kth stratum.  

1

11

2

2

11

1
( )

1

k k

n r l k kk k

n r

y k n r

lk k

s y y
n r−

−



−

=

= −
− −

 : Depending on the responding part of sample of size kn , the sample 

mean square of study variable Y for the kth stratum.  

3

33

2

2

13

1
( )

1

k k

u r l k kk k

u r

y k u r

lk k

s y y
u r−

−



−

=

= −
− −

 : Depending on the responding part of sample of size ku , the sample 

mean square of study variable Y for the kth stratum.  
2

2

1

1
( )

1

k

k
n lk

n

nz k

lk

s z z
n



=

= −
−
 : Depending on the sample of size 𝑛𝑘, the sample mean square of auxiliary variable Z 

for the kth stratum.  
2

2

1

1
( )

1

k

k
m lk

m

mz k

lk

s z z
m



=

= −
−
 : Depending on the sample of size km , the sample mean square of auxiliary 

variable Z for the kth stratum. 

2

2

1

1
( )

1

k

k
u lk

u

uz k

lk

s z z
u



=

= −
−
 : Depending on the sample of size ku , the sample 

mean square of auxiliary variable Z for the kth stratum.  

3

3

3

u rk k

u rk k

k k

y

y

u r

s
c

y

−

−

−

= , 
2

2

2

m rk k

m rk k

k k

x

x
m r

s
c

x

−

−

−

= , 1

1

1

n rk k

n rk k

k k

y

y

n r

s
c

y

−

−

−

= , 
1

1

1

n rk k

n rk k

k k

x

x
n r

s
c

x

−

−

−

= , 
mk

mk

k

z

z
m

s
c

z
= , 

nk

nk

k

z

z
n

s
c

z
= , 

uk

uk

k

z

z
u

s
c

z
= : The sample coefficients of variation for the variables Y, X and Z respectively based on the respective 

sample sizes shown in suffice.  

Nk
XY , 

Nk
YZ , 

Nk
ZX : The population correlation coefficients between the variables shown suffice for the kth 

stratum.  
2

Nk
XS , 

2

Nk
YS ,

2

Nk
ZS : The population mean squares of the variables X, Y, and Z for the kth stratum respectively. 

Nk
XC , 

Nk
YC , 

Nk
ZC , 

Nk
XYC , 

Nk
YZC , 

Nk
ZXC : The coefficient of variation based on the variables in the suffices. 

3 Non-response probability model 

The kth stratum is considered using random non-response model Singh and Joarder [49]. Consider a sample 
knS of 

size kn  for which some data on X could not be collected due to random non-response. Let 1kr , where 1kr ranges from 
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0, 1, 2,...,( kn - 2), represent the number of such cases in 
knS . Similarly, for a sample

kmS of size km , let 2kr  represent 

the number of units for which Y information on the second occasion could not be acquired due to random non-

response, and 3kr represent the same for a sample of size ku . It is presumed that 1kr , 2kr , and 3kr  fall within their 

respective bounds. We assume that 10 ( 2)k kr n  − , 20 ( 2)k kr m  − and 30 ( 2)k kr u  − . If 1p , 2p , 

and 3p  probabilities of non-response among the ( 2)kn − , ( 2)km − , and ( 2)ku −  possible values of non-responses 

respectively, the discrete probability distributions for 1kr , 2kr , and 3kr are represented by  

1 1 21
1 1 1 1

11 1

2
( ) ; 0,1,2,..., 2

2
k k kk r n rk k

k k k

kk

nn r
P r p q r n

rn q p

− −
− −

= = − 
+  

 

2 2 22
2 2 2 2

22 2

2
( ) ; 0,1,2,..., 2

2
k k kk r m rk k

k k k

kk

mm r
P r p q r m

rn q p

− −
− −

= = − 
+  

 

and 3 3 23
3 3 3 3

33 3

2
( ) ; 0,1,2,..., 2

2
k k kk r u rk k

k k k

kk

uu r
P r p q r u

rn q p

− −
− −

= = − 
+  

, respectively. 

The number of ways to obtain lkr  (l = 1, 2, 3) non-responses from all potential non-response values for the three 

samples are represented by 

1

2k

k

n

r

− 
 
 

, 

2

2k

k

m

r

− 
 
 

, and 

3

2k

k

u

r

− 
 
 

. 

4 Proposed estimator 

After considering the aforementioned discussions and building upon the research conducted by Bahl and Tuteja [50], 

we propose the estimator 
kmT for the population coefficient of variation, derived from the sample mS of size m that is 

shared between both occasions.  

1

( )
k n mn r k kk k

m y k x xT c a c c
−

 = + −                                                                 (1) 

The scalar quantities ka may be determined by minimizing the mean square error of the estimators 
kmT . c

2

( )
m m r m Nk k k k k

x x z Zc c c C
−

 = + − and 
1

( )
n n r n Nk k k k k

x x z Zc c c C
−

 = + − . We also propose the estimators 
kuT for the 

population coefficient of variation. These estimators are based on a fresh sample uS  of size u, drawn on the current 

occasion. 

 
3

( )
k u r u Nk k k k

u y k z ZT c b c C
−

= + −                                                                 (2) 

Where the scalar quantities kb  may be determined by minimizing the mean square error of the estimators 
kuT . 

We use the estimators 
kmT and 

kuT , defined in Equations (1) and (2), to estimate the coefficient of variance. 

Additionally, we suggest using the estimators mT  and uT  to estimate the coefficient of variance for the matched 

sample and the fresh sample, respectively. 

 
1

k

G

m k m

k

T T

=

=                                                                               (3) 

and  

 
1

k

G

u k u

k

T T

=

=                                                                               (4) 
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Remark 1. We have observed that the structure remains consistent in large sample approximations. Specifically, if 

km , ku , and k kn N→ , then 
n Nk k

z Zc C→ , 
m Nk k

z Zc C→ , 
u Nk k

z Zc C→ , 
1n r Nk k k

y Yc C
−

→ , and 
3u r Nk k k

y Yc C
−

→ . 

By utilizing the identity, we may conclude that 
n Nk k

x Xc C→ , and also 
m Nk k

x Xc C→ . Therefore, it may be inferred 

that 
k Nk

m YT C→ and 
k Nk

u YT C→ . 

5 Suggested calibration technique 

The new calibrated weights for the estimator of the population variance 
1

k

G

m k m

k

T T

=

=  under stratified sampling 

are provided by the values acquired through the minimization of the chi-square distance function 

2

1

( )G
k k

k k k

W

Q W



=

 −
 , 

considering the following calibration constraints. 

1. 
1

1
G

k

k



=

 =  

2. 
1 1

log( ) log( )
k

G G

n kk k

k k

z W Z

= =

 =    

3. 
2 1

1 1
m r n rk k k k

G G

k x k x

k k

c W c
− −



= =

 =    

where 
2

2

2

m rk k

m rk k

k k

x

x
m r

s
c

x

−

−

−

= and 
1

1

1

n rk k

n rk k

k k

x

x
n r

s
c

x

−

−

−

= . 

The Lagrange function may be expressed by utilizing the chi-square distance measure and the calibration constraints 

mentioned earlier as follows: 

 

2 1

2

1 2

1 1 1 1

3

1 1

( )
2 ( 1) 2 ( log( ) log( ))

2 ( )

k k

m r n rk k k k

G G G G
k k

nm m k m k k

k k k kk k

G G

m k x k x

k k

W
L z W Z

Q W

c W c

 


− −


 

= = = =



= =

 −
= −  − −  −

−  −

   

 
                           (5) 

where 1m , 2m  and 3m are Lagrange multipliers. 

Upon differentiation of Equation (5) with respect to  k

 , we may determine the calibrated weights by setting the 

resulting expression equal to zero, as shown. 

 
2

1 2 3( log( ) )
k

m rk k
nk k m m m x k kW z c W Q  

−

 = + + +                                                (6) 

Put the value k

 in the above constraints, we get the matrix form as...  

1

2

3

am bm cm m dm

bm em fm m gm

cm fm hm m im

cal cal cal cal

cal cal cal cal

cal cal cal cal







     
     

=     
         

 

The solution of the above matrix provides the values of the Lagrange multipliers, as stated below: 
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1 2 3

det detdet
, ,&

det det det

m mm
m m m

m m m

   = = =                                                    (7) 

where 

2 2 2det 2m am em hm am fm bm hm bm cm fm em cmcal cal cal cal cal cal cal cal cal cal cal cal= − − + −                             (8) 

2det m dm em hm dm fm bm gm hm bm im fm

cm gm fm cm im em

cal cal cal cal cal cal cal cal cal cal cal

cal cal cal cal cal cal

 = − − +

+ −
                                        (9) 

2

det m am gm hm am im fm bm dm hm cm dm fm

bm cm im cm gm

cal cal cal cal cal cal cal cal cal cal cal cal

cal cal cal cal cal

 = − − +

+ −
                                     (10) 

2det m am em im am gm fm bm im bm cm gm

bm dm fm cm dm em

cal cal cal cal cal cal cal cal cal cal cal

cal cal cal cal cal cal

 = − − +

+ −
                                       (11) 

 

Now, let us define the term amcal , bmcal , cmcal , dmcal , emcal , fmcal , gmcal , hmcal , imcal  as follows: 

1

G

am k k

k

cal W Q
=

=               
1

log( )
k

G

nbm k k

k

cal W Q z
=

=       

2
1

m rk k

G

cm k k x

k

cal W Q c
−

=

=  
1

1
G

dm k k

k

cal W Q
=

= −  

2

1

(log( ))
k

G

nem k k

k

cal W Q z
=

=     
2

1

log( )
k

m rk k

G

nfm k k x

k

cal W Q z c
−

=

=   

1

(log( ) log( ))
k k

G

ngm k k

k

cal W Q Z z
=

= −   
2

2

1
xm rk k

G

hm k k

k

cal W Q c
−

=

=  

1 2
1 1

x xn r m rk k k k

G G

im k k

k k

cal W c W c
− −

= =

= −   
 

Now, the new calibrated weights for the estimator of the population variance, 
1

k

G

u k u

k

T T

=

=  , under stratified 

sampling are provided. The values are acquired through the minimization of the chi-square distance function 
2

1

( )G
k k

k k k

W

Q W



=

 −
 , taking into account the following calibration constraints.  

1. 
1

1
G

k

k



=

 =  

2. 
1

uk

G

k Zz
k

c C

=

 =  

where 
uk

uk

k

z

z
u

s
c

z
= and Z

Z

s
C

Z
= . 

The Lagrange function may be expressed by utilizing the chi-square distance measure and the calibration constraints 

mentioned earlier as follows: 
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2

1 2

1 1 1

( )
2 ( 1) 2 ( )

uk

G G G
k k

u u k u k Zz
k k kk k

W
L c C

Q W
 


 

= = =

 −
= −  − −  −                                (12) 

where 1u  and 2u are Lagrange multipliers. 

Upon differentiation of Equation (12) with respect to k

 , we may determine the calibrated weights by setting the 

resulting expression equal to zero, as shown. 

 1 2( )
uk

k k u u k kz
W c W Q  = + +                                                       (13) 

Put the value k

  in the above constraints, we get the matrix form as... 

1

2

au bu u cu

bu du u eu

cal cal cal

cal cal cal





     
=     

     
 

The solution of the above matrix provides the values of the Lagrange multipliers, as stated below: 

1 2

detdet
,&

det det

uu
u u

u u

 = =                                                              (14) 

where 

2detu au du bucal cal cal= −                                                           (15) 

det u cu du bu eucal cal cal cal = −                                                     (16) 

det u au eu bu cucal cal cal cal = −                                                     (17) 

 

Now, let us define the term aucal , bucal , cucal , ducal , eucal as follows:  

1

G

au k k

k

cal W Q
=

=            
1

uk

G

bu k k z
k

cal W Q c
=

=  

1

1
G

cu k

k

cal W
=

= −               
2

1
uk

G

du k k z
k

cal W Q c
=

=  

1
uk

G

eu Z k z
k

cal C W c
=

= −  
 

5.1 Properties of the proposed estimators 

We have derived the bias and mean square errors of the proposed estimators using the following transformations, 

under the assumptions of a large sample size and up to the first order of approximations:  

1 0(1 )
k

k k
Nn ry Y − = +  

2 1(1 )
kk k Nm rx X − = +  1 2(1 )

kk k Nn rx X − = +  

3 3(1 )
k

k k
Nu ry Y − = +  4(1 )

k km Nz Z = +  5(1 )
k kn Nz Z = +  

6(1 )
k ku Nz Z = +  

1

2 2

7(1 )
n r Nk k k

y YS S 
−

= +  
2 2

8(1 )
m Nk k

z Zs S = +  
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2 2

9(1 )
n Nk k

z Zs S = +  
1

2 2

10(1 )
n r Nk k k

x XS S 
−

= +  
3

2 2

11(1 )
u r Nk k k

y YS S 
−

= +  

2 2

12(1 )
u Nk k

z Zs S = +  
2

2 2

13(1 )
m r Nk k k

x XS S 
−

= +   

Such that ( ) 0iE  =  and | | 1, 0,1,2,...,13i i   = . Using these conditions, we may obtain the following 

expectations:  

2 2

0 1( )
Nk

k YE f C =  
2 2

1 6( )
Nk

k XE f C =  
2 2

2 1( )
Nk

k XE f C =  

2 2

3 2( )
Nk

k YE f C =  
2 2

4 5( )
Nk

k ZE f C =  
2 2

6 3( )
Nk

k ZE f C =  

2

7 1 400( ) ( 1)k kE f = −  
2

8 5 004( ) ( 1)k kE f = −  
2

9 4 004( ) ( 1)k kE f = −  

2

10 1 040( ) ( 1)k kE f = −  
2

11 2 400( ) ( 1)k kE f = −  
2

12 3 004( ) ( 1)k kE f = −  

2

13 6 040( ) ( 1)k kE f = −  0 1 1( )
Nk

k XYE f C  =  0 2 1( )
Nk

k XYE f C  =  

0 4 1( )
Nk

k YZE f C  =  0 5 4( )
Nk

k XYE f C  =  0 7 1 300( )
Nk

k Y kE f C  =  

0 8 1 003( )
Nk

k Y kE f C  =  0 9 4 003( )
Nk

k Y kE f C  =  0 10 1 030( )
Nk

k Y kE f C  =  

0 13 1 030( )
Nk

k Y kE f C  =  
2

1 2 1( )
Nk

k XE f C  =  1 4 5( )
Nk

k XZE f C  =  

1 5 4( )
Nk

k XZE f C  =  1 7 1 210( )
Nk

k X kE f C  =  1 8 5 012( )
Nk

k X kE f C  =  

1 9 4 012( )
Nk

k X kE f C  =  1 10 1 030( )
Nk

k X kE f C  =  1 13 6 030( )
Nk

k X kE f C  =  

2 4 1( )
Nk

k XZE f C  =  2 5 4( )
Nk

k XZE f C  =  2 7 1 210( )
Nk

k X kE f C  =  

2 8 1 012( )
Nk

k X kE f C  =  2 9 4 012( )
Nk

k X kE f C  =  2 10 1 030( )
Nk

k X kE f C  =  

2 13 1 030( )
Nk

k X kE f C  =  3 6 3( )
Nk

k YZE f C  =  3 11 2 300( )
Nk

k Y kE f C  =  

3 12 3 102( )
Nk

k Y kE f C  =  
2

4 5 4( )
Nk

k ZE f C  =    4 7 1 201( )
Nk

k Z kE f C  =    

4 8 5 003( )
Nk

k Z kE f C  =  4 9 4 003( )
Nk

k Z kE f C  =  4 10 1 021( )
Nk

k Z kE f C  =    

4 13 5 021( )
Nk

k Z kE f C  =  5 7 4 201( )
Nk

k Z kE f C  =  5 8 4 003( )
Nk

k Z kE f C  =  

5 9 4 003( )
Nk

k Z kE f C  =  5 10 4 021( )
Nk

k Z kE f C  =  5 13 4 021( )
Nk

k Z kE f C  =  

6 11 3 201( )
Nk

k Z kE f C  =  6 12 3 003( )
Nk

k Z kE f C  =  7 8 1 202( ) ( 1)k kE f  = −  

7 9 4 202( ) ( 1)k kE f  = −  7 10 1 220( ) ( 1)k kE f  = −  7 13 1 220( ) ( 1)k kE f  = −  

8 9 4 004( ) ( 1)k kE f  = −  8 10 1 022( ) ( 1)k kE f  = −  8 13 5 022( ) ( 1)k kE f  = −  

9 10 4 022( ) ( 1)k kE f  = −   9 13 4 022( ) ( 1)k kE f  = −  10 13 1 040( ) ( 1)k kE f  = −  

11 12 3 202( ) ( 1)k kE f  = −    

 

where 
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1

1 1

1 1
( )

2
k

k k

f
n q p N

= −
+

,             2

3 3

1 1
( )

2
k

k k

f
u q p N

= −
+

,               3

1 1
( )k

k k

f
u N

= −  

4

1 1
( )k

k k

f
n N

= − ,                    5

1 1
( )k

k k

f
m N

= −                         6

2 2

1 1
( )

2
k

k k

f
m q p N

= −
+

 

and 

1
200 020 002

1
, ( ) ( ) ( )

1

k

l l l

N
k

k k kk k k k k

lkk k k

Y Y X X Z Z
N

   

   


 

   =

= = − − −
−
  

Note. If there is no non-response, then 1p , 2p , and 3p  are all zero, and as a result, 1q , 2q , and 3q  are all one. In 

this case, the above values are identical to the standard results. 

 

By applying these transformations to 
nk

xc
and 

mk
xc , we obtain: 

2 2
2 210 10 2 10 9 9 5 9

2 2 5 5(1 ) ( )
2 8 2 2 8 2n Nk k

x Xc C
       

    = − + + − − − + − + − − −                              (18) 

2 2
2 213 13 1 13 8 8 4 8

1 1 4 4(1 ) ( )
2 8 2 2 8 2m Nk k

x Xc C
       

    = − + + − − − + − + − − −                              (19) 

By substituting Equations (18) and (19) into Equation (1), we get: 
2

27 7 0 7

0 0

2 2 2 2

1 2 10 13 2 1 13 10 1 13 2 10

2 2 2 2

9 8 4 5 8 9 5 4 4 8 5 9

(1 )
2 8 2

1 1 1
( ( ) ( ) ( ))

2 8 2

1 1 1
( ( ) ( ) ( ) ( ) ( ))
2 8 2

k Nk

Nk

m Y

X

k

T C

C

a

   
 

           

           

= − + + − − −

 
− + − + − + − + −  

+  
 + − + − + − + − + −
  

                  (20) 

Using Equations (20) and (3), we obtain: 

  

2

27 7 0 7

0 0

1 1

2 2 2 2

1 2 10 13 2 1 13 10 1 13 2 10

1 2 2 2 2

9 8 4 5 8 9 5 4 4 8 5 9

( )
2 8 2

1 1 1
( ( ) ( ) ( ))

2 8 2

1 1 1
( ( ) ( ) ( ) ( ) ( ))
2 8 2

N Nk k

Nk

G G

m k Y k Y

k k

XG

k k

k

T C C

C

a

   
 

           

           

 

= =



=

=  +  − + − − −

 
− + − + − + − + −  

+   
 + − + − + − + − + −
  

 



         (21) 

Considering the close proximity of the calibrated weight k

 to the strata weight kW , we may reasonably assume 

that:  

1 1
N Nk k

G G

k Y k Y Y

k k

C W C C

= =

  =   

To transform Equation (21) accordingly,  
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2

27 7 0 7

0 0

1

2 2 2 2

1 2 10 13 2 1 13 10 1 13 2 10

1 2 2 2 2

9 8 4 5 8 9 5 4 4 8 5 9

( )
2 8 2

1 1 1
( ( ) ( ) ( ))

2 8 2

1 1 1
( ( ) ( ) ( ) ( ) ( ))
2 8 2

Nk

Nk

G

m Y k Y

k

XG

k k

k

T C C

C

a

   
 

           

           



=



=

= +  − + − − −

 
− + − + − + − + −  

+   
 + − + − + − + − + −
  





         (22) 

After performing some rearrangement and taking expectations on both sides of Equation (22), the Bias and MSE of  

mT , considering the first-order approximation, may be expressed as follows: 

3002 400

1

1

0302 040

1 6

1 0032 004

4 5

( 1)
( ) ( )

8 2

( 1)
( )( )

8 2

( 1)
( )( )

8 2

Nk

N Nk k

Nk

N Nk k

Nk

Nk

G
Y kk

m k k X Y

k

X kk

X k k XG

k k

k Z kk

k k Z

C
Bias T f C C

C
C f f C

a
C

f f C









=



=

−
=  − −

 −
− − − 

 
+   

− 
+ − − −  





                                          (23) 

and 

 

2 2 2 400

1 300

1

2 040 1 040

1 6

2 2

1 6 030

2 004 004

4 5

2 2

4 5 003 41

( 1)
( ) ( )

4

( 1) ( 1)
( )( )

4 2

( )( )

( 1) ( 1)
( )( )

4 2

( ) 2

N N Nk k k

Nk

N N Nk k k

Nk

Nk

G
k

m k k Y X X k

k

k k k

X k k

X k k X k X

k k

k k Z
G

k k
k k Z kk

MSE T f C C C

f
C f f

C f f C C

f f C

a
f f C f




 



 





=



=

−
=  + −

− −
+ −

+ − −

− −
+ + + −

+ 
+ − −



 2

012

4 5

021022

201 003 202
2 1 4

1

1 4

)

2 ( )(
2

( 1)
)

4 2

( 1)
( )( )

2 2 2 4

Nk

Nk

N Nk k

Nk

N Nk k

Nk

N Nk k

k Z

X k

X k k XZ

Z kk

Z k Y k kG
k k

k k Y

k

k YZ k XY

C

C
C f f C

C

C C
f f

a C

f C f C





  


=

 
 
 
 
 
 
  
 
 
 
 + − −
 
 

− − +
  

 −
− + − 

+   
 − +
 

                                 (24) 

By applying the same transformations to Equation (2), we obtain: 
2 2

2 23 11 6 1211 11 12 12

3 3 6 6(1 ) ( )
2 8 2 2 8 2k Nk

u Y kT C b
      

   = − + − + − − + − − + − −                             (25)

 
Using Equations (4) and (25), we obtain: 
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2

2 3 1111 11

3 3

1 1

2

2 6 1212 12

6 6

1

( )
2 8 2

( )
2 8 2

N Nk k

G G

u k Y k Y

k k

G

k k

k

T C C

b

  
 

  
 

 

= =



=

=  +  − + − − − −

+  − + − − − −

 



                                                          (26) 

Considering the close proximity of the calibrated weight k

 to the strata weight kW , we may reasonably assume 

that:  

1 1
N Nk k

G G

k Y k Y Y

k k

C W C C

= =

  =   

To transform Equation (26) accordingly, 

 

2

2 3 1111 11

3 3

1

2

2 6 1212 12

6 6

1

( )
2 8 2

( )
2 8 2

Nk

G

u Y k Y

k

G

k k

k

T C C

b

  
 

  
 



=



=

= +  − + − − − −

+  − + − − − −





                                                                             (27) 

After performing some rearrangement and taking expectations on both sides of Equation (27), the Bias and MSE of 

uT , considering the first-order approximation, may be expressed as follows:  

3002 400

2

1

0032 004

3

1

( 1)
( ) ( )

8 2

( 1)
( )

( )8 2

Nk

N Nk k

Nk

Nk

G
Y kk

u k k Y Y

k

Z kG k

Z
k k k

k

C
Bias T f C C

C
C

b f







=



=

−
=  − −

−
− −

+ 





                                                                     (28) 

and 

 

2 2 2 400

2 300

1

201 1022 202

3

1

2 2 2 004

3 003

1

( 1)
( ) ( )

4

( 1)
2 ( )

4 2 2

( 1)
( )

4

Y N NN k kk

N Nk k

N Nk k

N Nk k

G
k

u k k Y Y k

k

G
Z k Y kk

k k k Y YZ

k

G
k

k k k Z Z k

k

MSE T f C C C

C C
b f C C

b f C C




 






=



=



=

−
=  + −

−
+  − − +

−
+  + −







                                      (29) 

Thus, we may obtain the bias and MSE of estimator T by combining the biases and MSEs of two non-overlapping 

samples uT and mT , as shown below:  

( ) ( ) (1 ) ( )u mBias T Bias T Bias T = + −                                         (30) 

and  
2 2( ) ( ) (1 ) ( )u mMSE T MSE T MSE T = + −                                      (31) 

Where Equations (23), (28), (24), and (29) provide the expressions for ( )mBias T , ( )uBias T , ( )mMSE T , and 

( )uMSE T , respectively. As uT and mT are based on non-overlapping samples of sizes u and m, respectively, the 

covariance term may be ignored as it is of order 
1N −

, and ( , ) 0u mc T T = . 
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5.2 The estimator’s minimum mean squared error (MSE) 

MSEs of mT  and uT  depend on ka and kb . To find the best ka and kb , we minimize the MSEs in Equations (24) 

and (29). We get optimal ka and kb  values. 

201 003202

1 4 1 4

2 21 6 040 1 040

1 6 030

012 021022

1 5

1
( )( )

4 2 2

( )( 1) ( 1)
( ( )( ))

4 2

1
2 ( )( )

2 4 2

N Nk k

N N Nk k k

opt

N N Nk k k

N Nk k

N Nk k

Z k Y kk

Y k k k YZ k XY

k

k k k k k

X k k X k X

X k Z kk

X k k XZ

C C
C f f f C f C

a
f f f

C f f C C

C C
C f f C

 

 


 

 − 
− − − + − 

  
=

+ − −
− + − −

−
+ − − − + − 4 004

2 2004

4 5 4 5 003 4

( 1)

2

1
( )( ) ( ) 2

4N N Nk k k

k k

k

k k Z k k Z k k Z

f

f f C f f C f C






 
 
 
 −
 
 

− 
+ + + + − − 
 

         (32) 

and 

201 102202

2 004

003

1

2 4 2

1

4

N Nk k

N Nk k

opt

N Nk k

Z k Y kk

Y YZ

k

k

Z Z k

C C
C C

b

C C

 




 − 
− − + 

  
=

−
+ −

                                       (33) 

Using 
optka from Equation (32) in Equation (24) and 

optkb from Equation (33) in Equation (29) gives the minimum 

MSE of mT and uT . 

2 2 2 400

1 210

1

2

201 003202
2 1 4

1 4
2

1 2 1 6 040 1 040

1 6 030

1
( ) ( )

4

1
( )( )

4 2 2

( )( 1) ( 1)
(

4 2

( )(

N N Nk k k

N Nk k

Nk

N Nk k

Nk

Nk

G
k

m k k Y X X k

k

Z k Y kk

k k

Y

G k YZ k XY

k

k k k k k k

X

k k X k

MinMSE T f C C C

C C
f f

C

f C f C

f f f
C

f f C C




 

 





=



=

−
=  + −

 −
− − − 

 
 + −
 

− 
+ − −

−

+ − −





2

012 021022

1 5

24 004 004

4 5

2

4 5 003 4

))

1
2 ( )( )

2 4 2

( 1) 1
( )( )

2 4

( ) 2

Nk

N Nk k

N Nk k

Nk

N Nk k

X

X k Z kk

X k k XZ

k k k

k k Z

k k Z k k Z

C C
C f f C

f
f f C

f f C f C

 

 



 
 
 
 
 
 −
+ − − − + 
 

− − 
− + + + 
 
+ − − 
 

             (34) 

and 
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2 004

2 300

2

201 1022 2 202

3
1

2 004

003

1
( )

4

1
( )

2 4 2

1

4

N Nk k

N Nk k

Nk Nk

N Nk k

k

k Y Y k

G
Z k Y kk

u k Y k YZ
k

k

Z Z k

f C C

C C
MinMSE T C f C

C C




 






=

− 
+ − 

 
  − =   − − + 
   
− 

−
 + −
 

                             (35) 

MSE of T depends on  . To find the best , we minimize the MSE. The optimal  is 

( )

( ) ( )

m

opt

m u

MinMSE T

MinMSE T MinMSE T
 =

+
                                            (36) 

We may use this value to get the best MSE of T, which is 

( ) ( )
( )

( ) ( )

m u

opt

m u

MinMSE T MinMSE T
MSE T

MinMSE T MinMSE T
=

+
                                     (37) 

Equations (34) and (35) give the expressions for ( )mMinMSE T and ( )uMinMSE T , respectively. 

6 Effects of measurement error 

Let kx , ky , and kz  represent the true values of variables X, Y, and Z, respectively. The corresponding observed values 

are denoted as kx
, ky

, and kz
. We define the measurement errors for X, Y, and Z as k k ku x x= − , k k kv y y= − , 

and k k kw z z= − . These errors are assumed to follow normal distributions: 
2(0, )k uu U N S , 

2(0, )k vv V N S , and 
2(0, )k ww W N S . The variables X, Y, Z, U, V, and W are pairwise uncorrelated. 

We consider two cases in this analysis. 

Case I: Assuming Z as a variable without measurement errors 

In this case, we assume that the auxiliary variable Z is free from measurement errors, meaning that 0kw = . 

Consequently, the joint moment about the mean is expressed as:   

1

1
( )

1

sG
p q

pqsk k k k

kk

u v z Z
N


=

= −
−
                                                          (38) 

Considering the influence of measurement errors U and V, we derive the expression for the minimum mean square 

error (MSE) of the proposed estimators   as follows:  

( ) ( )
( )

( ) ( )I

m I u I

opt

m I u I

MinMSE T MinMSE T
MSE T

MinMSE T MinMSE T
=

+
                                     (39) 

where 
2

1. ( )2

. ( )

1 2. ( )

( )
G

m I

m I k o m I

k m I

A
MinMSE T A

A



=

 
=  − 

  
  

2 2 2

2 2 2400

. ( ) 1 3002 2 2

1

4

N N Nk k k

N N Nk k k

k k k

U U Uk

o m I k Y Y Y k

N N N

S S S
A f C C C

Y Y Y




   −  = + + + − +
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2 2

2012 2202 003

1 42 2

1. ( )

1 4

1
( )

4 2 2

N N Nk k k

N Nk k

k k

N Nk k

U Z k Uk k

Y k k Y

N Nm I

k YZ k XY

S C S
C f f C

A Y Y

f C f C

 
  

−  + − − − +
  =

  
 − −
 

 

2 2

0212 2 012 022

1 52 2

2 2004 004

4 5 4 5 003 4

2 22. ( )

2 2

1 6 0302 2

1
2 ( )

2 4 2

1 1
( )( ) ( ) ( 2 )

4 2

( )

N N Nk k k

N N Nk k k

k k

N N Nk k k

N Nk k

N Nk k

k k

V V Z kk k

X k k X XZ

N N

k k

k k Z k k Z k k Z

m I
V V

X k k X k

N N

S S C
C f f C C

X X

f f C f f C f C

A
S S

C f f C
X X

 

 




 
− + − + − − +

 
 

− −
+ + + + − − −

=

+ + − + −

2

2 1 040

2

2

2 040

1 62

( 1)

2

1
( )

4

Nk

Nk

k

Nk

Nk

k

V k k

X

N

V k

X k k

N

S f
C

X

S
C f f

X





 
 
 
 
 
 
 
  

−  − −  
  
 
  − 
 + + +       

      

    

2 2

2 2400

2 3002 2

2

2 2012 202

2 2

2
1 23

2 102

2

2 004

003

1
( )

4

1

2 4( )

2

1

4

N Nk k

N Nk k

k k

Nk

NN kk

Nk

k

Nk

Nk

k

N Nk k

U Uk

k Y Y k

N N

Z k k
G

YZU

u I k Y

k kN
U k

Y

N

k

Z Z k

S S
f C C

Y Y

C
CS

MinMSE T C
fY S

C
Y

C C




 








=


− + + − +



  −
  − − 

 =  +  
    

  + +
 
 −

−
+ −



















 

 

Case II: Assuming Z as a variable with measurement errors 

In this case, we consider that the auxiliary variable Z is characterized by measurement errors. Thus, the joint 

moment about the mean is given by:  

1

1

1

G
p q s

pqsk k k k

kk

u v w
N


=

=
−
                                                                     (40) 

Taking into account the effects of measurement errors U, V, and W, we obtain the expression for the minimum 

mean square error (MSE) of the proposed estimators  as follows: 

( ) ( )
( )

( ) ( )II

m II u II

opt

m II u II

MinMSE T MinMSE T
MSE T

MinMSE T MinMSE T
=

+
                                      (41) 

where 
2

1. ( )2

. ( )

1 2. ( )

( )
G

m II

m II k o m II

k m II

A
MinMSE T A

A



=

 
=  − 
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2 2 2

2 2 2400

. ( ) 1 3002 2 2

1

4

N N Nk k k

N N Nk k k

k k k

U U Uk

o m II k Y Y Y k

N N N

S S S
A f C C C

Y Y Y




   −  = + + + − +
  

  

 

2 2 2

2 2 2202 201 003

1 42 2 2

1. ( )

1 4

1
( )

4 2 2

N N Nk k k

N N Nk k k

k k k

N Nk k

U W Uk k k

Y k k Z Y

N N Nm II

k YZ k XY

S S S
C f f C C

A Y Z Y

f C f C

  
  

−  + − − + − +
  =

  
 − −
 

 

2 2

2 2 012 022

1 52 2

2 2 2

2 2 2 1 040

1 6 0302 2 2

2

2 004

2. ( ) 4 5 2

1
2 ( )

2 4

( 1)
( )

2

( )(

N Nk k

N N Nk k k

k k

N N Nk k k

N N Nk k k

k k k

Nk

Nk

k

V V k k

X k k X XZ

N N

V V V k k

X k k X k X

N N N

W

m II k k Z

N

S S
C f f C C

X X

S S S f
C f f C C

X X X

S
A f f C

Z

 






 
− + − + − −

 
 

   −  + + − + − − −
  

   

= + + + +

2

2
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7 Empirical study 

Before employing an estimator in practical situations, it is crucial to assess its performance based on its inherent 

properties. In light of this, an empirical analysis has been carried out in this section utilizing both real and simulated 
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data to evaluate the suggested estimator. To accomplish this, we will conduct a comparison between the suggested 

estimator T and an alternative estimator , which is also designed to handle random non-response and measurement 

errors and is defined in the same manner. The purpose of this comparison is to evaluate how well the suggested 

estimator T performs under conditions of random non-response and measurement errors. 
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 and (0 1)   are unknown, and the constant 

 needs to be determined by minimizing the Mean Squared Error (MSE) of estimator . 

The minimum Mean Squared Error (MSE) of estimator , up to the first order of approximations, may be expressed 

as: 
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The proposed estimator T may be evaluated in terms of its Absolute Relative Bias (ARB) and Percentage Relative 

Efficiency (PRE) with respect to the estimator  respectively. This may be calculated using the following formula:  

| ( ) |
,Y

Y

E T C
ARB

C

−
=                                                             (43) 

( )
100

( )opt

MSE
PRE

MSE T


=                                                          (44) 

where ( )optMSE T and ( )MSE  are defined in Equations (37) and (42), respectively. 

The following kQ values have been considered: 

Case I: 1.0kQ =  This case assigns equal importance to each stratum, treating them equally in the calibration 

process. 

Case II: 
1

k

k

Q
W

= Here, the importance of each stratum is inversely proportional to its initial weight kW , implying 

that strata with lower initial weights are given higher importance during calibration. 

Case III: 
1

k
k

Q
Z

= In this case, the importance of each stratum is inversely proportional to its mean auxiliary 

variable value, suggesting that strata with higher mean auxiliary variable values are given more weight in the 

calibration process. 

 

7.1 Simulation study 

Using the statistical computing software R, we simulated data based on our theoretical findings. To generate data for 

both the study and auxiliary variables, following a normal distribution with specific parameters and correlation 

coefficients, we utilized the mvrnorm function from the MASS package. The population parameters for the generated 

data are presented in Table 1. We conducted simulations to analyze the impact of the controlling parameter kQ under 

conditions of random non-response and measurement error.  
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7.2 Study based on real data 

In this section, we examine the application of a proposed class of estimators to address a real-world problem 

concerning prostate cancer. Prostate cancer is a major cause of cancer-related deaths among men (Source: Ellsworth 

Pamela 2020). Developing effective screening tools for early detection of prostate cancer is crucial. The prostate-

specific antigen (PSA) test, along with other diagnostic tests, is commonly employed for this purpose. Elevated PSA 

levels in the blood often indicate prostate cancer in patients. Individuals diagnosed with prostate cancer are advised to 

undergo regular PSA tests to monitor disease progression or detect its recurrence. 

However, the PSA test suffers from a significant limitation - a high false-positive rate. Overdiagnosis may result in 

unnecessary invasive medical procedures, such as biopsies. One way to overcome this challenge is to establish age-

specific cutoff values for PSA levels, which necessitates a study of age-related variations in PSA levels. 

To explore this further, we consider data from a study involving men who were about to undergo a radical 

prostatectomy. The study analyzed the correlation between PSA levels and several clinical measures (Source: Stamey 

et al. 1989). The data utilized to illustrate the application of the proposed class of estimators is obtained from Section 

4 and may be found under the name ‘prostate’ in the ‘faraway’ package in R (Faraway 2016). 

The study incorporates the following variables: 

Y: Logarithm of PSA 

X: Logarithm of cancer volume 

Z: Logarithm of prostate weight 

To examine age-specific cutoff values for PSA range, the individuals participating in the study are divided into 

strata based on their ages: 

Stratum 1: Individuals below the age of 60 

Stratum 2: Individuals aged between 60 and 69 

Stratum 3: Individuals aged 70 and above 

Although complete data are available for this study, it is important to note that this is not always the case. In scenarios 

where some data on the study variable are missing, the goal is to estimate the coefficient of variance as accurately as 

possible. Table 2 provides statistical information about the population. Further tables present the PRE under non-

response and measurement error for both cases, as well as the PRE in the absence of non-response and in the presence 

of measurement errors. 

7.3 Discussion and results 

Based on the simulation study and the study based on real data presented above: 

1. Tables 3 and 4 show that calibrated strata weights are similar to original weights. Instead of calibration 

weights for both simulated and real data. Instead of calibration weights, we may also use 

1

k

G

k

k

n

n
=


because it 

is an estimator of 
kN

N
. The estimator effectively reduces the  negative impact of non-responses, and the bias 

is negligible for all kQ choices. 

2. Tables 5-7 reveal that the proposed estimator significantly outperforms the standard estimator, exhibiting 

higher Percent Relative Efficiency (PRE). This indicates that the proposed method is more effective in the 

presence of random non-response and assuming Z as a variable without measurement errors, as evidenced 

by its lower Mean Squared Error (MSE). The results validate the robustness of the proposed estimator, 

making it a more reliable choice when addressing non-response issues (simulated data). 
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3. Tables 8-10 demonstrate that the proposed estimator consistently outperforms the standard estimator, as 

indicated by higher PRE values. This performance advantage is particularly evident in scenarios with random 

non-response and assuming Z as a variable without measurement errors, underscoring the estimator's 

robustness and effectiveness in practical applications (real data). 

4. The analysis in Tables 11-13 reveals that the Absolute Relative Bias (ARB) of the proposed estimator due to 

random non-response is minimal, approximately around 
410−

, suggesting that the proposed method 

effectively reduces non-response bias and enhances performance compared to the standard estimator. The 

results for the simulated data show that as 3p  increases, the bias rises while the PRE decreases. For fixed 1p

and 3p , increasing 2p
results in a constant bias but a decrease in PRE. Conversely, increasing 1p

 while 

keeping 2p
 and 3p constant maintains a constant bias but increases the PRE. Additionally, as the non-

response rate of 1p
 increases, the PRE also increases, further highlighting the estimator's ability to maintain 

accuracy even in the presence of random non-response and measurement errors. These findings underscore 

significant patterns in the simulated data. 

5. Tables 14-16 demonstrate that the Absolute Relative Bias (ARB) of the proposed estimator remains minimal 

(approximately 
210−

even in the presence of random non-response, highlighting its effectiveness in 

mitigating non-response bias and maintaining accuracy and reliability in real-world conditions. The findings 

further indicate that increasing 3p  results in a rise in bias and a reduction in PRE, while keeping 1p
and 3p

constant and increasing 2p
leads to a constant bias but reduced PRE. Conversely, increasing 1p

with 2p
 

and 3p  fixed results in a constant bias and an increase in PRE. Additionally, as the non-response rate of 1p

grows, the PRE also increases. These observations underscore the estimator's robustness and the key trends 

identified in the real data. 

6. Tables 17 and 18 show that the proposed estimator has negligible ARB and a higher PRE than the standard 

estimator, even in the absence of non-response and measurement errors. This indicates that the proposed 

method is more effective, even without non-response and measurement errors for simulated as well as real 

data. 

7. We may observe in a simulation study that as we increase the value of the correlation coefficient, the value 

of the PRE will increase and the bias will decrease. Conversely, as we decrease the value of the correlation 

coefficient, the PRE will decrease and the bias will increase. 

The study assessed the feasibility of employing calibrated weights to combat non-response in stratified successive 

sampling, aiming to improve the accuracy of coefficient of variation estimation at the population level. Our evaluation 

included both simulation studies, as detailed in section 7.1, and analyses of real data, outlined in section 7.2. The 

developed estimator exhibited significant efficacy in mitigating random non-response in stratified two-occasion 

successive sampling, particularly when auxiliary information on positively correlated variables was available. This 

method not only reduced bias but also enhanced accuracy in CV estimation, demonstrating commendable performance 

across various scenarios of non-response rates, correlation coefficients, and error structures. Survey statisticians are 

encouraged to consider adopting this approach in similar contexts. 

8 Conclusions 

In summary, our research highlights the critical empirical outcomes of incorporating calibrated weights to address 

non-response in the context of stratified successive sampling. The proposed estimator offers substantial advantages, 

particularly when auxiliary information is available, enhancing its applicability in practical survey scenarios. 
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Validation through comprehensive numerical and simulation studies demonstrates the remarkable reduction in bias 

and improved precision in coefficient of variation (CV) estimation across diverse simulated and real-life scenarios. 

Notably, our approach proves highly feasible, showcasing its effectiveness in refining CV estimation at the population 

level, as evidenced by superior performance observed in both simulated data and its application to estimate the 

coefficient of variation for the logarithm of PSA in prostate cancer datasets. Survey statisticians are urged to integrate 

this estimator into their methodologies, given its established track record in improving precision and accuracy, 

especially in the face of challenges posed by non-response and measurement errors. Furthermore, the demonstrated 

effectiveness of our approach in mitigating random non-response in the context of stratified two-occasion successive 

sampling emphasizes its relevance and practical value for survey statisticians encountering similar challenges in real-

world scenarios. 
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Table 10: For case III: 1Q =0.296, 2Q = 0.274, and 3Q = 0.261, the PREs of T with respect to  for real data, 

assuming Z as a variable without measurement errors. 

Table 11: For case I: 1Q  = 1.0, 2Q =  1.0,  3Q =  1.0, and 4 Q =  1.0, the PREs of T with respect to  for 

simulated data, assuming Z as a variable with measurement errors and ARB. 

Table 12: For case II: 1Q =3.80, 2Q =  2.53,  3Q = 7.60, and 4 Q =  4.75, the PREs of T with respect to  for 

simulated data, assuming Z as a variable with measurement errors and ARB. 

Table 13: For case III: 1Q =0.3324468, 2Q = 0.3315064,  3Q = 0.3321156, and 4 Q = 0.3316337, the PREs of T 

with respect to  for simulated data, assuming Z as a variable with measurement errors and ARB. 

Table 14: For case I: 1Q  = 1.0, 2Q =  1.0, and 3Q =  1.0, the PREs of T with respect to  for real data, assuming Z 

as a variable with measurement errors and ARB. 

Table 15: For case II: 1Q =4.85, 2Q = 1.62, and 3Q = 5.71, the PREs of T with respect to  for real data, assuming 

Z as a variable with measurement errors and ARB. 

Table 16: For case III: 1Q =0.296, 2Q = 0.274, and 3Q = 0.261, the PREs of T with respect to  for real data, 

assuming Z as a variable with measurement errors and ARB. 

Table 17: In the absence of non-response and measurement errors, ARB and PRE are observed from simulated data 

when 1 2 3 0p p p= = = . 

Table 18: In the absence of non-response and measurement errors, ARB and PRE are observed from real data when 

1 2 3 0p p p= = = . 

 

 

 

Stratum kN  kn  1kr  km  2kr  ku  XY  YZ  ZX  

Strata 1 10000 3000 500 2000 400 1000 0.9 0.9 0.9 

Strata 2 15000 3000 500 2000 400 1000 0.8 0.8 0.8 
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Stratum kN  kn  1kr  km  2kr  ku  XY  YZ  ZX  

Strata 3 5000 2000 400 1200 300 800 0.8 0.8 0.8 

Strata 4 8000 800 50 500 50 300 0.7 0.7 0.7 

                              Table 1: The statistical parameters corresponding to the simulated data. 
                                           

Stratum kN  kn  1kr  km  2kr  ku  XY  YZ  ZX  

Strata 1 20 11 2 6 1 5 0.85 0.47 0.48 

Strata 2 60 45 12 25 5 20 0.64 0.35 0.15 

Strata 3 17 10 2 5 2 4 0.69 0.61 0.31 

                                      Table 2: The statistical parameters corresponding to the real data. 

 

Case Stratum kW  k

  k

  

I 1 0.2631579 0.1389900 0.10775276 

 2 0.3947368 0.5512098 0.75216865 

 3 0.1315789 0.1816670 0.05387638 

 4 0.2105263 0.1281332 0.08620221 

II 1 0.2631579 0.1195100 0.14401396 

 2 0.3947368 0.5193507 0.75216865 

 3 0.1315789 0.2121448 0.01243501 

 4 0.2105263 0.1489945 0.09138238 

III 1 0.2631579 0.1389244 0.10758672 

 2 0.3947368 0.5511026 0.75216865 

 3 0.1315789 0.1817695 0.05387086 

 4 0.2105263 0.1282034 0.08637377 

                                                Table 3: Calibrated strata weights for simulated data. 

 

Case Stratum kW  k

  k

  

I 1 0.2061856 0.26446760 0.3126980 

 2 0.6185567 0.37455840 0.4659243 

 3 0.1752577 0.36097410 0.2213777 

II 1 0.2061856 0.34605130 0.1694016 

 2 0.6185567 0.34189170 0.6420778 

 3 0.1752577 0.31205710 0.1885206 

III 1 0.2061856 0.28186790 0.3497671 

 2 0.6185567 0.50458530 0.5310217 

 3 0.1752577 0.21354680 0.1192113 

                                               Table 4: Calibrated strata weights for real data. 

 

  𝑝3 

𝑝1 𝑝2 0.05 0.10 0.15 0.20 

0.05 0.05 153.1851 141.6388 133.2162 126.8583 

0.05 0.10 152.9561 141.4076 132.9828 126.6227 

0.05 0.15 152.7422 141.1916 132.7647 126.4026 

0.05 0.20 152.5418 140.9894 132.5606 126.1965 

0.10 0.05 155.4660 143.2761 134.3790 127.6585 

0.10 0.10 155.2714 143.0795 134.1804 127.4579 

0.10 0.15 155.0926 142.8990 133.9980 127.2737 

0.10 0.20 154.9279 142.7326 133.8299 127.1039 

0.15 0.05 158.0574 145.1688 135.7562 128.6415 
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0.15 0.10 157.8970 145.0068 135.5924 128.4759 

0.15 0.15 157.7532 144.8614 135.4455 128.3274 

0.15 0.20 157.6234 144.7303 135.3129 128.1935 

0.20 0.05 161.0059 147.3563 137.3818 129.8371 

0.20 0.10 160.8801 147.2291 137.2531 129.7070 

0.20 0.15 160.7711 147.1189 137.1416 129.5942 

0.20 0.20 160.6757 147.0224 137.0441 129.4955 

Table 5: For case I: 1Q =  1.0, 2Q =  1.0,  3Q = 1.0, and 4 Q =  1.0, the PREs of T with respect to  for simulated 

data, assuming Z as a variable without measurement errors. 

 

  
3p  

1p  2p  0.05 0.10 0.15 0.20 

0.05 0.05 153.8399 141.9968 133.4138 126.9665 

0.05 0.10 153.6085 141.7633 133.1780 126.7285 

0.05 0.15 153.3923 141.5450 132.9577 126.5061 

0.05 0.20 153.1897 141.3405 132.7513 126.2977 

0.10 0.05 156.1804 143.6734 134.6042 127.7872 

0.10 0.10 155.9825 143.4735 134.4023 127.5833 

0.10 0.15 155.8005 143.2897 134.2166 127.3958 

0.10 0.20 155.6326 143.1202 134.0454 127.2229 

0.15 0.05 158.8355 145.6074 136.0098 128.7908 

0.15 0.10 158.6707 145.4409 135.8415 128.6208 

0.15 0.15 158.5226 145.2913 135.6903 128.4680 

0.15 0.20 158.3888 145.1561 135.5537 128.3299 

0.20 0.05 161.8519 147.8381 137.6642 130.0066 

0.20 0.10 161.7203 147.7050 137.5296 129.8705 

0.20 0.15 161.6060 147.5894 137.4127 129.7523 

0.20 0.20 161.5057 147.4880 137.3102 129.6486 

Table 6: For case II: 1Q = 3.80, 2Q = 2.53,  3Q =  7.60, and 4 Q =  4.75, the PREs of T with respect to  for 

simulated data, assuming Z as a variable without measurement errors. 

 

  
3p  

1p  2p  0.05 0.10 0.15 0.20 

0.05 0.05 153.1566 141.6193 133.2024 126.8484 

0.05 0.10 152.9276 141.3881 132.9690 126.6127 

0.05 0.15 152.7136 141.1721 132.7510 126.3926 

0.05 0.20 152.5133 140.9699 132.5468 126.1865 

0.10 0.05 155.4360 143.2557 134.3645 127.6480 

0.10 0.10 155.2414 143.0590 134.1659 127.4474 

0.10 0.15 155.0626 142.8785 133.9835 127.2632 

0.10 0.20 154.8978 142.7121 133.8154 127.0934 

0.15 0.05 158.0257 145.1472 135.7409 128.6304 

0.15 0.10 157.8653 144.9852 135.5771 128.4648 

0.15 0.15 157.7215 144.8398 135.4302 128.3163 

0.15 0.20 157.5917 144.7086 135.2976 128.1823 

0.20 0.05 160.9724 147.3335 137.3656 129.8254 

0.20 0.10 160.8466 147.2062 137.2369 129.6952 

0.20 0.15 160.7375 147.0960 137.1254 129.5824 
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0.20 0.20 160.6421 146.9995 137.0278 129.4837 

Table 7: For case III: 1Q = 0.3324468, 2Q = 0.3315064,  3Q = 0.3321156, and 4 Q = 0.3316337, the PREs of T 

with respect to  for simulated data, assuming Z as a variable without measurement errors. 

 

  
3p  

1p  2p  0.05 0.10 0.15 0.20 

0.05 0.05 124.2784 122.2180 120.3446 118.6380 

0.05 0.10 124.1082 122.0459 120.1706 118.4620 

0.05 0.15 123.9496 121.8855 120.0084 118.2979 

0.05 0.20 123.8015 121.7357 119.8568 118.1447 

0.10 0.05 125.4450 123.2509 121.2538 119.4326 

0.10 0.10 125.2943 123.0983 121.0994 119.2763 

0.10 0.15 125.1547 122.9570 120.9564 119.1316 

0.10 0.20 125.0250 122.8257 120.8235 118.9971 

0.15 0.05 126.7816 124.4531 122.3316 120.3951 

0.15 0.10 126.6434 124.3130 122.1898 120.2514 

0.15 0.15 126.5161 124.1841 122.0592 120.1191 

0.15 0.20 126.3986 124.0650 121.9386 119.9969 

0.20 0.05 128.2934 125.8302 123.5840 121.5317 

0.20 0.10 128.1594 125.6943 123.4462 121.3920 

0.20 0.15 128.0369 125.5701 123.3203 121.2643 

0.20 0.20 127.9244 125.4560 123.2047 121.1471 

Table 8: For case I: 1Q =  1.0, 2Q = 1.0, and 3Q = 1.0, the PREs of T with respect to  for real data, assuming Z 

as a variable without measurement errors. 

 

  
3p  

1p  2p  0.05 0.10 0.15 0.20 

0.05 0.05 133.5361 130.4289 127.6419 125.1352 

0.05 0.10 133.2576 130.1458 127.3543 124.8429 

0.05 0.15 132.9993 129.8832 127.0874 124.5717 

0.05 0.20 132.7590 129.6390 126.8392 124.3194 

0.10 0.05 134.7752 131.4922 128.5437 125.8880 

0.10 0.10 134.5302 131.2430 128.2902 125.6301 

0.10 0.15 134.3043 131.0131 128.0564 125.3922 

0.10 0.20 134.0952 130.8005 127.8400 125.1720 

0.15 0.05 136.1819 132.7252 129.6168 126.8133 

0.15 0.10 135.9623 132.5015 129.3890 126.5813 

0.15 0.15 135.7611 132.2966 129.1803 126.3688 

0.15 0.20 135.5761 132.1082 128.9884 126.1733 

0.20 0.05 137.7503 134.1221 130.8557 127.9062 

0.20 0.10 137.5475 133.9153 130.6450 127.6913 

0.20 0.15 137.3632 133.7274 130.4533 127.4959 

0.20 0.20 137.1948 133.5557 130.2783 127.3174 
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Table 9: For case II: 1Q = 4.85, 2Q = 1.62, and 3Q = 5.71, the PREs of T with respect to for real data, assuming 

Z as a variable without measurement errors. 

 

  
3p  

1p  2p  0.05 0.10 0.15 0.20 

0.05 0.05 110.5138 110.1408 109.7955 109.4762 

0.05 0.10 110.1174 109.7405 109.3914 109.0682 

0.05 0.15 109.7497 109.3692 109.0165 108.6897 

0.05 0.20 109.4076 109.0237 108.6676 108.3376 

0.10 0.05 110.1999 109.7928 109.4152 109.0651 

0.10 0.10 109.8419 109.4311 109.0496 108.6958 

0.10 0.15 109.5114 109.0971 108.7122 108.3548 

0.10 0.20 109.2053 108.7877 108.3995 108.0389 

0.15 0.05 110.0815 109.6407 109.2309 108.8503 

0.15 0.10 109.7501 109.3055 108.8920 108.5076 

0.15 0.15 109.4458 108.9978 108.5807 108.1929 

0.15 0.20 109.1654 108.7142 108.2939 107.9028 

0.20 0.05 110.1562 109.6823 109.2410 108.8305 

0.20 0.10 109.8384 109.3606 108.9154 108.5009 

0.20 0.15 109.5486 109.0673 108.6185 108.2004 

0.20 0.20 109.2831 108.7985 108.3464 107.9250 

Table 10: For case III: 1Q = 0.296, 0.274, and 3Q = 0.261, the PREs of T with respect to  for real data, assuming 

Z as a variable without measurement errors. 

 

  
3 0.05p =  3 0.10p =   3 0.15p =  3 0.20p =  

1p  2p  ARB PRE ARB PRE ARB PRE ARB PRE 

0.05 0.05 0.0003814 132.1 0.0004163 126.9 0.0004486 122.6 0.0004787 119.1 

0.05 0.10 0.0003814 131.9 0.0004163 126.6 0.0004486 122.4 0.0004787 118.9 

0.05 0.15 0.0003814 131.7 0.0004163 126.4 0.0004486 122.1 0.0004787 118.6 

0.05 0.20 0.0003814 131.5 0.0004163 126.2 0.0004486 121.9 0.0004787 118.4 

0.10 0.05 0.0003814 133.2 0.0004163 127.7 0.0004486 123.1 0.0004787 119.5 

0.10 0.10 0.0003814 133.0 0.0004163 127.5 0.0004486 122.9 0.0004787 119.2 

0.10 0.15 0.0003814 132.8 0.0004163 127.3 0.0004486 122.8 0.0004787 119.1 

0.10 0.20 0.0003814 132.7 0.0004163 127.1 0.0004486 122.6 0.0004787 118.9 

0.15 0.05 0.0003814 134.5 0.0004163 128.6 0.0004486 123.9 0.0004787 119.9 

0.15 0.10 0.0003814 134.3 0.0004163 128.5 0.0004486 123.7 0.0004787 119.8 

0.15 0.15 0.0003814 134.2 0.0004163 128.3 0.0004486 123.5 0.0004787 119.6 

0.15 0.20 0.0003814 134.1 0.0004163 128.2 0.0004486 123.4 0.0004787 119.5 

0.20 0.05 0.0003814 136.0 0.0004163 129.8 0.0004486 124.7 0.0004787 120.6 

0.20 0.10 0.0003814 135.9 0.0004163 129.7 0.0004486 124.6 0.0004787 120.5 

0.20 0.15 0.0003814 135.8 0.0004163 129.5 0.0004486 124.5 0.0004787 120.3 

0.20 0.20 0.0003814 135.7 0.0004163 129.4 0.0004486 124.4 0.0004787 120.2 

Table 11: For case I: 1Q =  1.0, 2Q =  1.0,  3Q =  1.0, and 4 Q = 1.0, the PREs of T with respect to  for 

simulated data, assuming Z as a variable with measurement errors and ARB. 

 

  
3 0.05p =  3 0.10p =   3 0.15p =  3 0.20p =  

1p  2p  ARB PRE ARB PRE ARB PRE ARB PRE 
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0.05 0.05 0.0003799 132.3 0.0004148 127.0 0.0004470 122.7 0.0004768 119.1 

0.05 0.10 0.0003799 132.1 0.0004148 126.7 0.0004470 122.4 0.0004768 118.9 

0.05 0.15 0.0003799 131.8 0.0004148 126.5 0.0004470 122.2 0.0004768 118.7 

0.05 0.20 0.0003799 131.6 0.0004148 126.3 0.0004470 122.0 0.0004768 118.5 

0.10 0.05 0.0003799 133.4 0.0004148 127.8 0.0004470 123.2 0.0004768 119.5 

0.10 0.10 0.0003799 133.2 0.0004148 127.6 0.0004470 123.0 0.0004768 119.3 

0.10 0.15 0.0003799 133.0 0.0004148 127.4 0.0004470 122.8 0.0004768 119.1 

0.10 0.20 0.0003799 132.8 0.0004148 127.2 0.0004470 122.7 0.0004768 118.9 

0.15 0.05 0.0003799 134.7 0.0004148 128.8 0.0004470 124.0 0.0004768 120.0 

0.15 0.10 0.0003799 134.6 0.0004148 128.6 0.0004470 123.8 0.0004768 119.8 

0.15 0.15 0.0003799 134.4 0.0004148 128.4 0.0004470 123.6 0.0004768 119.7 

0.15 0.20 0.0003799 134.3 0.0004148 128.3 0.0004470 123.5 0.0004768 119.5 

0.20 0.05 0.0003799 136.3 0.0004148 130.0 0.0004470 124.9 0.0004768 120.7 

0.20 0.10 0.0003799 136.1 0.0004148 129.8 0.0004470 124.7 0.0004768 120.5 

0.20 0.15 0.0003799 136.0 0.0004148 129.7 0.0004470 124.6 0.0004768 120.4 

0.20 0.20 0.0003799 135.9 0.0004148 129.6 0.0004470 124.5 0.0004768 120.3 

Table 12: For case II: 1Q = 3.80, 2Q =  2.53,  3Q = 7.60, and 4 Q =  4.75, the PREs of T with respect to   for 

simulated data, assuming Z as a variable with measurement errors and ARB. 
 

  
3 0.05p =  3 0.10p =   3 0.15p =  3 0.20p =  

1p  2p  ARB PRE ARB PRE ARB PRE ARB PRE 

0.05 0.05 0.0003814 132.1 0.0004163 126.8 0.0004486 122.6 0.0004787 119.1 

0.05 0.10 0.0003814 131.9 0.0004163 126.6 0.0004486 122.3 0.0004787 118.9 

0.05 0.15 0.0003814 131.7 0.0004163 126.4 0.0004486 122.1 0.0004787 118.6 

0.05 0.20 0.0003814 131.5 0.0004163 126.2 0.0004486 121.9 0.0004787 118.4 

0.10 0.05 0.0003814 133.2 0.0004163 127.6 0.0004486 123.1 0.0004787 119.4 

0.10 0.10 0.0003814 133.0 0.0004163 127.4 0.0004486 122.9 0.0004787 119.2 

0.10 0.15 0.0003814 132.8 0.0004163 127.3 0.0004486 122.8 0.0004787 119.1 

0.10 0.20 0.0003814 132.6 0.0004163 127.1 0.0004486 122.6 0.0004787 118.9 

0.15 0.05 0.0003814 134.5 0.0004163 128.6 0.0004486 123.8 0.0004787 119.9 

0.15 0.10 0.0003814 134.3 0.0004163 128.4 0.0004486 123.7 0.0004787 119.8 

0.15 0.15 0.0003814 134.2 0.0004163 128.3 0.0004486 123.5 0.0004787 119.6 

0.15 0.20 0.0003814 134.0 0.0004163 128.2 0.0004486 123.4 0.0004787 119.5 

0.20 0.05 0.0003814 136.0 0.0004163 129.8 0.0004486 124.7 0.0004787 120.6 

0.20 0.10 0.0003814 135.9 0.0004163 129.6 0.0004486 124.6 0.0004787 120.4 

0.20 0.15 0.0003814 135.8 0.0004163 129.5 0.0004486 124.5 0.0004787 120.3 

0.20 0.20 0.0003814 135.7 0.0004163 129.4 0.0004486 124.4 0.0004787 120.2 

Table 13: For case III: 1Q = 0.3324468, 2Q = 0.3315064,  3Q = 0.3321156, and 4 Q = 0.3316337, the PREs of T 

with respect to for simulated data, assuming Z as a variable with measurement errors and ARB. 
 

  
3 0.05p =  3 0.10p =   3 0.15p =  3 0.20p =  

1p  2p  ARB PRE ARB PRE ARB PRE ARB PRE 

0.05 0.05 0.1244457 122.5 0.1244677 120.6 0.1244414 119.0 0.1243613 117.4 

0.05 0.10 0.1244457 122.3 0.1244677 120.5 0.1244414 118.8 0.1243613 117.2 

0.05 0.15 0.1244457 122.2 0.1244677 120.3 0.1244414 118.6 0.1243613 117.1 

0.05 0.20 0.1244457 122.0 0.1244677 120.2 0.1244414 118.5 0.1243613 116.9 

0.10 0.05 0.1244457 123.5 0.1244677 121.6 0.1244414 119.8 0.1243613 118.1 

0.10 0.10 0.1244457 123.4 0.1244677 121.4 0.1244414 119.6 0.1243613 118.0 

0.10 0.15 0.1244457 123.2 0.1244677 121.3 0.1244414 119.5 0.1243613 117.8 
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0.10 0.20 0.1244457 123.1 0.1244677 121.1 0.1244414 119.3 0.1243613 117.7 

0.15 0.05 0.1244457 124.7 0.1244677 122.7 0.1244414 120.8 0.1243613 119.0 

0.15 0.10 0.1244457 124.6 0.1244677 122.5 0.1244414 120.6 0.1243613 118.9 

0.15 0.15 0.1244457 124.5 0.1244677 122.4 0.1244414 120.5 0.1243613 118.7 

0.15 0.20 0.1244457 124.4 0.1244677 122.3 0.1244414 120.4 0.1243613 118.6 

0.20 0.05 0.1244457 126.1 0.1244677 123.9 0.1244414 121.9 0.1243613 120.1 

0.20 0.10 0.1244457 126.0 0.1244677 123.8 0.1244414 121.8 0.1243613 119.9 

0.20 0.15 0.1244457 125.9 0.1244677 123.7 0.1244414 121.6 0.1243613 119.8 

0.20 0.20 0.1244457 125.8 0.1244677 123.6 0.1244414 121.5 0.1243613 119.7 

Table 14: For case I: 1Q = 1.0, 2Q = 1.0, and 3Q = 1.0, the PREs of T with respect to  for real data, assuming Z 

as a variable with measurement errors and ARB. 

 

  
3 0.05p =  3 0.10p =   3 0.15p =  3 0.20p =  

1p  2p  ARB PRE ARB PRE ARB PRE ARB PRE 

0.05 0.05 0.1256676 131.1 0.1259374 128.4 0.1261225 125.8 0.1262125 123.6 

0.05 0.10 0.1256676 130.9 0.1259374 128.1 0.1261225 125.6 0.1262125 123.3 

0.05 0.15 0.1256676 130.6 0.1259374 127.8 0.1261225 125.3 0.1262125 123.0 

0.05 0.20 0.1256676 130.4 0.1259374 127.6 0.1261225 125.1 0.1262125 122.8 

0.10 0.05 0.1256676 132.2 0.1259374 129.3 0.1261225 126.6 0.1262125 124.2 

0.10 0.10 0.1256676 132.0 0.1259374 129.1 0.1261225 126.4 0.1262125 124.0 

0.10 0.15 0.1256676 131.8 0.1259374 128.8 0.1261225 126.2 0.1262125 123.8 

0.10 0.20 0.1256676 131.6 0.1259374 128.6 0.1261225 125.9 0.1262125 123.5 

0.15 0.05 0.1256676 133.5 0.1259374 130.4 0.1261225 127.6 0.1262125 125.1 

0.15 0.10 0.1256676 133.3 0.1259374 130.2 0.1261225 127.4 0.1262125 124.8 

0.15 0.15 0.1256676 133.1 0.1259374 130.0 0.1261225 127.2 0.1262125 124.6 

0.15 0.20 0.1256676 132.9 0.1259374 129.8 0.1261225 127.0 0.1262125 124.4 

0.20 0.05 0.1256676 134.9 0.1259374 131.7 0.1261225 128.7 0.1262125 126.1 

0.20 0.10 0.1256676 134.7 0.1259374 131.5 0.1261225 128.5 0.1262125 125.9 

0.20 0.15 0.1256676 134.5 0.1259374 131.3 0.1261225 128.3 0.1262125 125.7 

0.20 0.20 0.1256676 134.4 0.1259374 131.1 0.1261225 128.2 0.1262125 125.5 

Table 15: For case II: 1Q = 4.85, 2Q = 1.62, and 3Q = 5.71, the PREs of T with respect to    for real data, 

assuming Z as a variable with measurement errors and ARB. 
 

  
3 0.05p =  3 0.10p =   3 0.15p =  3 0.20p =  

1p  2p  ARB PRE ARB PRE ARB PRE ARB PRE 

0.05 0.05 0.100534 110.1 0.1005059 109.8 0.1004329 109.5 0.1003104 109.2 

0.05 0.10 0.100534 109.7 0.1005059 109.4 0.1004329 109.1 0.1003104 108.8 

0.05 0.15 0.100534 109.4 0.1005059 109.0 0.1004329 108.7 0.1003104 108.4 

0.05 0.20 0.100534 109.0 0.1005059 108.7 0.1004329 108.4 0.1003104 108.1 

0.10 0.05 0.100534 109.8 0.1005059 109.4 0.1004329 109.1 0.1003104 108.8 

0.10 0.10 0.100534 109.4 0.1005059 109.1 0.1004329 108.7 0.1003104 108.4 

0.10 0.15 0.100534 109.1 0.1005059 108.7 0.1004329 108.4 0.1003104 108.1 

0.10 0.20 0.100534 108.8 0.1005059 108.4 0.1004329 108.1 0.1003104 107.7 

0.15 0.05 0.100534 109.7 0.1005059 109.3 0.1004329 108.9 0.1003104 108.5 

0.15 0.10 0.100534 109.3 0.1005059 108.9 0.1004329 108.5 0.1003104 108.2 

0.15 0.15 0.100534 109.0 0.1005059 108.6 0.1004329 108.2 0.1003104 107.9 

0.15 0.20 0.100534 108.7 0.1005059 108.3 0.1004329 107.9 0.1003104 107.6 

0.20 0.05 0.100534 109.7 0.1005059 109.3 0.1004329 108.9 0.1003104 108.5 

0.20 0.10 0.100534 109.4 0.1005059 109.0 0.1004329 108.5 0.1003104 108.2 

0.20 0.15 0.100534 109.1 0.1005059 108.7 0.1004329 108.3 0.1003104 107.9 
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0.20 0.20 0.100534 108.8 0.1005059 108.4 0.1004329 108.0 0.1003104 107.6 

Table 16: For case III: 1Q = 0.296, 2Q = 0.274, and 3Q = 0.261, the PREs of T with respect to   for real data, 

assuming Z as a variable with measurement errors and ARB. 

 

Stratum ARB PRE 

Case I 0.00002797887 226.1336 

Case II 0.00003177613 230.9878 

Case III 0.00002800443 226.0122 

Table 17: In the absence of non-response and measurement errors, ARB and PRE are observed from simulated data 

when  1 2 3 0p p p= = = . 

Stratum ARB PRE 

Case I 0.05789603 125.3921 

Case II 0.05533376 140.9515 

Case III 0.03252067 119.7129 

Table 18: In the absence of non-response and measurement errors, ARB and PRE are observed from real data when 

1 2 3 0p p p= = = . 
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