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Abstract 

Estimating the origin-destination (OD) matrix based on traffic counts in a transportation 

network has received substantial attention in recent decades. Several studies have attempted to 

incorporate a stochastic user equilibrium (SUE) constraint into the OD estimation framework 

to deal with uncertainties. These studies have mainly adopted a multinomial logit (MNL) route 

choice model which has a restrictive assumption that does not allow for overlapping paths. This 

paper addresses the path overlapping problem by employing corrected logit route choice 

models, namely C-logit and path-size logit (PS-logit), that partially capture 

similarity/correlation among paths by a correction term in the MNL structure. A gradient 

algorithm (developed by Spiess) is also utilized to solve the SUE-based OD matrix estimation 

problem. Numerical experiments on the well-known Winnipeg network show that considering 

correlated/overlapping paths in the OD estimation process using C-logit or PS-logit route 

choice models results in more accurate OD matrices than the MNL-based procedure. 

Keywords: origin-destination matrix; stochastic user equilibrium; path overlapping; 

corrected logit route choice; gradient algorithm; C-logit; path-size logit. 
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1. Introduction 

Origin-destination (OD) matrix is crucial information for transportation planning and has a 

basic role in transportation network analysis. The principal method to obtain this demand 

matrix is a household travel survey, which is very costly. Thus, estimating techniques using 

readily available data (especially traffic counts) have been widely investigated over the past 

decades [1-4]. Earlier models were developed for uncongested networks based on proportional 

assignments in which route choice proportions were flow-independent. The most common 

estimation methods in this approach are entropy maximization or information minimization 

[5], maximum likelihood [6, 7], and generalized least squares [8, 9]. Although these models 

are relatively easy to solve, the assumption of uncongested conditions is usually violated in 

urban networks. 

In congested networks, the assumption of a predetermined route choice matrix is no longer 

valid. Researchers have attempted to simultaneously estimate link choice proportions and trip 

matrix since they are interdependent in general networks [10]. Most studies have addressed 

this problem by incorporating user equilibrium (UE) conditions in a bi-level optimization 

problem [11]. The advantage of the bi-level approach is that the resulting OD matrix will be 

consistent with the assumed route choice behavior [12]. Crucial elements of the bi-level OD 

estimation problem are prior OD, upper-level (OD estimation) formulation, lower-level (traffic 

assignment), solution algorithm, and extra constraints to limit the search space [13]. The main 

focus of the present study is the traffic assignment component, which implies the travelers’ 

route choice behavior. In addition, an upper-level formulation and a solution algorithm suitable 

for large-scale networks are selected. 

Trip makers' hypothesized route choice behavior is a key factor affecting the quality of the OD 

demand matrix derived from link counts [14]. Deterministic UE-based methods assume that all 



 

4 
 

motorists have complete information on network conditions and choose the best (shortest) route 

from an origin to a destination [15]. These presumptions are not necessarily correct and could 

be relaxed. According to the stochastic user equilibrium (SUE), travelers perceive travel costs 

differently and thus may choose a route different from the shortest one [15]. Gholi et al. have 

compared SUE-based OD estimation with UE-based estimation based on the different 

variances of users' perceptions in the Tehran network [16]. 

Researchers have incorporated the SUE condition into the OD estimation problem to model 

route choice behavior more accurately. At first, Shihsien and Fricker [17] developed a two-

stage heuristic method to estimate the OD trip table and the θ parameter in a logit-based 

stochastic assignment. However, the model ignores the congestion effect and requires traffic 

counts and travel costs of all links to calibrate the θ parameter. Maher et al. [18] presented a 

solution algorithm for the bi-level problem of trip matrix estimation with SUE assignment on 

congested networks. Unlike Liu and Flicker, this study addressed congestion, but the dispersion 

parameter (θ) was introduced to the model exogenously. Yang et al. [12] suggested a 

nonconvex optimization problem for estimating an OD matrix and the travel cost coefficient 

(θ) simultaneously for a congested network under the logit-based SUE condition. A successive 

quadratic programming algorithm employing the analytical derivatives of the SUE constraints 

was applied to solve the simultaneous estimation model. Lo and Chan [19] proposed a 

maximum likelihood estimator in a two-stage iterative procedure to simultaneously estimate 

an OD matrix and dispersion parameter (θ) from traffic counts and OD surveys. This procedure 

uses SUE traffic assignment to consider congestion effects, resulting in maximum likelihood 

estimates with established statistical properties. Wang et al. [20] used a generalized least square 

(GLS) estimator and an SUE assignment in a two-stage algorithm for simultaneous estimation 

of the OD matrix and link choice probabilities by incorporating a dynamic dispersion parameter 

(according to traffic flow profile by time of day) into the logit route choice model. Ma and 
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Qian [11] developed a generalized single-level formulation to estimate an OD matrix under an 

SUE constraint since the bi-level programming approach could be computationally intensive 

when applied to large networks. They showed that the single-level approach is much more 

computationally efficient for large-scale networks, and the model's accuracy is similar to the 

bi-level formulation. 

The primary issue that is focused on in the present study is that almost all OD estimation models 

with SUE constraints have used the popular logit route choice model because of its 

straightforward structure. The widely known weakness of multinomial logit (MNL) is the 

inability to properly account for correlated or overlapping routes. This drawback is due to the 

property of independence from irrelevant alternatives (IIA) and may lead to unrealistic results 

[15]. The multinomial probit (MNP) model does not suffer from this weakness. However, the 

MNP-based model is computationally intensive. Some route choice models have been 

established in the stochastic assignment context to address the overlapping path problem while 

preserving closed-form expression for choice probability. Two major types of such models are: 

1) corrected logit route choice models, e.g., C-logit and path-size logit, and 2) generalized 

extreme value (GEV) models, e.g., cross nested logit (CNL), generalized nested logit (GNL), 

and paired combinatorial logit (PCL). A more detailed review of these types of route choice 

models can be found in [21] and [22]. Based on our best knowledge, many studies have 

acknowledged the inadequacy of MNL for route choice modeling. Still, SUE models that take 

overlapping routes into account have not been applied to estimate the OD demand matrix. This 

paper aims to apply well-known route choice models, i.e., C-logit and path-size logit [23], that 

consider correlated routes into the OD estimation framework and compare the results with a 

logit-based model. Furthermore, sensitivity analyses are conducted to evaluate the robustness 

of models. 

The secondary issue that is addressed is that most reviewed studies have developed models that 
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could not be efficiently applied to large networks [11]. Traffic assignment is the most time-

consuming part of the OD estimation problem [24]. The computation of derivatives is another 

challenging part of the OD estimation. Spiess [25] developed a gradient-based algorithm for 

solving a UE-based problem that is scalable to large-scale networks because of the simplicity 

of gradient computation. This gradient approach is general enough to accommodate different 

assignment models [25]. As far as we know, this model has not been implemented with SUE 

assignment models. In order to exploit both the Spiess method and the SUE approach, we 

propose an SUE-based gradient approach to estimate the OD matrix from traffic counts in a 

real-size network. 

Therefore, the contribution of the paper to the SUE-based OD matrix estimation problem 

(ODMEP) exploiting traffic counts is twofold: 

(1) Applying corrected logit route choice models with the ability to deal with overlapping 

paths in the SUE assignment (lower level), 

(2) Taking advantage of the Spiess gradient method to solve this problem in large-scale 

networks (upper level). 

The remainder of the paper is organized as follows. The next section presents the gradient 

approach for OD estimation, an SUE assignment model, and two route choice models (other 

than MNL). Next, the results of the proposed OD estimation formulation with three different 

route choice models are examined. Finally, conclusions and suggestions are summarized. 

2. Methodology 

In this section, the Spiess gradient approach to the OD matrix estimation problem (ODMEP) 

is described. Next, an algorithm used in this paper to solve the SUE assignment is presented. 

Then, two multinomial logit (MNL) modifications employed to model route choice behavior 

are explained. Figure 1 shows the steps of solving SUE-based ODMEP in this research. 
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<Figure 1> 

2.1 Spiess's gradient approach for solving ODMEP 

Let ),( ANG =  be a graph representing a road network composed of node set N and link set 

A. Each link Aa  has a flow-dependent, non-decreasing cost function )( aa vt . Assume that 

AAˆ  denotes a subset of links on which traffic flow ( v̂ ) is observed. Spiess [25] employed 

the convex minimization problem (1) for ODMEP: 
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where g is the estimated OD matrix, assign(.) indicates the traffic assignment model, and v is 

the vector of assigned volumes resulting from the assign(g). 

Since optimization problem (1) is highly underdetermined, extra information is required to find 

the best demand matrix among optimal solutions. This information is usually an outdated 

matrix that is called the target matrix, which contains crucial structural information on origin-

destination demands [25]. Most studies utilize a distance measure between the estimated and 

target matrix in the objective function to choose the best matrix. However, this method 

increases the complexity of the problem and makes it challenging to apply to large-scale 

networks. Spiess [25] suggested the gradient method, also referred to as the steepest descent 

method, which follows the direction of the largest yield in terms of minimizing the value of the 

objective function. Consequently, this method inherently finds a solution that will not deviate 

more than necessary from the initial solution (or target matrix). Despite this, since the distance 

between estimated and target matrices is not explicitly considered, deviation may grow as the 

number of iterations increases. 

The basic formula of the gradient method for estimating the OD demand matrix from traffic 



 

8 
 

flows is written as follows: 
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in which iĝ  is the prior (or target) demand for OD pair i, 
l

ig  is the estimated demand for OD 

pair i at iteration l, and lλ  is the step length for iteration l. The following equations are used to 

calculate the gradient matrix 
ig

gZ



 )(
 and the step length lλ  in equation (2). See Spiess’s 

original paper for details on how these expressions are derived [25]. 
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where I denotes the set of OD pairs, Ki is the set of working paths for OD pair i, hk and pk 

represent the flow and the probability of path k, respectively. Whenever link a is contained 

within path k, akδ  equals one; otherwise, it equals zero. Selecting large values for the step length 

can increase the objective function value, and the algorithm's convergence would be lost. Thus, 

in order to be feasible, the optimal step length needs to be bounded by the following inequality: 

0with,1
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g
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The steps of the gradient algorithm for solving the ODMEP (relation 1) can be outlined as 

follows [26]: 

Step 1: Set ii gg ˆ=  for all Ii , and the iteration counter 0=l . 
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Step 2: Assign matrix g to the network to find link flows (v), as well as path flows (h) and path 

sets (K) for each origin-destination pair. 

Step 3: Compute 
ig

gZ



 )(
 by equations (3) and (4) and lλ  by equations (5) and (6). If possibility 

condition (7) does not hold, adjust lλ  using the following equation [27]: 
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where 
lλ  and 

lλ  are the lower and upper bounds defined as: 
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Step 4: For each OD pair i, set 
1+l

ig  using equation (2) and increment l by 1 (l = l+1). 

Step 5: If the stopping criterion is met, terminate the procedure; otherwise, go to step 2. 

The stopping criterion in step 5 is defined as the similarity between assigned and observed 

flows as below: 
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In step 2, a stochastic user equilibrium (SUE) model is used to solve the lower level of the 

problem, as explained in the subsequent section. 
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2.2 Stochastic user equilibrium assignment 

A stochastic user equilibrium model considers perceived rather than measured travel cost. A 

random error term is included in perceived travel cost functions to represent the variations in 

the motorists' perception. As a result, paths with a higher actual cost than the shortest path may 

also be used. The perceived travel cost on route k, which connects origin r and destination s, 

can be expressed as [15]: 

,, k,r,sξcC rs

k

rs

k

rs

k +=  (10) 

where 
rs

kc  is the actual travel cost at a designated flow, and 
rs

kξ  is the random error term. The 

choice probability of route k in OD pair (r, s) is [15]: 
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Different discrete choice models have been developed based on the probability distribution 

selected for the random components (
rs

kξ ) to calculate route choice probabilities and, thus, route 

flows. The well-known multinomial logit model assumes that error components have 

independent and identical distributions of extreme value type I (Gumbel) [28]. Given the 

measured travel costs (
rs

kc ), the closed-form of logit route choice probability is written as [15]: 
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in which θ is a positive dispersion parameter inversely proportional to the variance of perceived 

travel cost (
2

2

6
)var(

θ

π
C rs

k = ) [28]. Traffic flows on each route are computed by the following 

equation, which characterizes stochastic user equilibrium conditions: 
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where rsq  is the travel demand between origin-destination r and s. This paper employs a path-
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based algorithm developed by Damberg et al. [29] to perform an SUE assignment. This 

algorithm extends the disaggregate simplicial decomposition (DSD) algorithm introduced by 

Larsson and Patriksson [30] for solving the UE-based traffic assignment problem. Briefly, the 

DSD algorithm is as follows [29]. A restricted master problem based on a subset of all routes 

is solved. Given its solution, link flows and link costs are updated. Subsequently, shortest paths 

are found for all OD pairs using a column (or route) generation strategy. The route set for each 

OD pair is augmented with the new shortest path if it does not already exist in the corresponding 

route set. Next, a new restricted master problem is solved using the new route sets. The 

procedure is then repeated until convergence is achieved. The steps of the DSD algorithm for 

solving the SUE assignment can be summarized as follows [29]: 

Step 1 (initialization): Form the initial route set for all OD pairs and compute the initial route 

flows (
0

kf ). Put m = 1. 

Step 2 (restricted master problem): Put n = 0 and repeat the following until convergence: 

(2.1) Update route cost for all routes in the route sets. 

(2.2) Compute auxiliary route flow (
n

kh ) by a stochastic network loading model.  

(2.3) Set the new route flow: ))(
1

(1 n

k

n

k

n

k

n

k fh
n

ff −+=+  

(2.4) If the convergence criterion is met, go to step 3; otherwise, go to 2.1. 

Step 3 (column or route generation): For each OD pair, generate new routes and add them to 

the working route sets if they are not already contained. If no new routes are found or 

a predetermined number of iterations (m) is reached, stop; otherwise, put m = m+1 and 

go to step 2. 

Finally, route flows are employed to compute link flows as below: 
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aδfx
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In this paper, the algorithm applied to solve the restricted master problem (step 2) is the widely 

known method of successive averages (MSA) that employs a predetermined step length. 

However, other step-size schemes, such as self-regulated averaging (SRA) and self-adaptive 

Armijo (SAA), are used in the literature to accelerate the convergence of the algorithm [31]. 

The convergence criterion in step 2 is defined as similarity in link flows ( ax ) in successive 

iterations: 
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Initial path flows in step 1 and auxiliary path flows in step 2.2 are computed by the stochastic 

network loading model. In this model, travel costs are assumed to be independent of flow. 

Given a route set for an OD pair, route choice probabilities are obtained (e.g., by equation (12) 

for the MNL route choice model), and then route flows are computed using equation (13). 

Step 2 solves a restricted problem based on a given subset of the complete set of routes. Next, 

the route choice set needs to be updated based on the new costs to add the most likely utilized 

routes to the existing choice set. The route generation procedure in step 3 is performed through 

the shortest path problems based on perceived travel costs. In order to calculate perceived costs, 

randomized link costs are drawn from a random distribution. The number of random draws 

obviously affects the outcome of this strategy. Based on Damberg et al.'s recommendation [29], 

perceived costs are derived by a single drawing from a truncated normal distribution with actual 

travel costs as the average. 

This paper uses two route choice models besides the MNL model in the SUE assignment. These 

models are extensions to basic MNL that make them capable of considering the issue of path 

overlapping while keeping the logit model's closed-form function. In the next section, these 
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two models, namely C-logit and PS-logit models, are discussed. 

2.3 Corrected logit route choice models 

These models somewhat relax the logit’s assumption by applying a correction factor to the cost 

function. The following are two well-known models from this family. 

2.3.1 C-logit model 

Cascetta et al. [32] developed the C-logit model, which has the following functional form: 

,
)(

)(
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−−
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l
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l

k
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k

e

e
P  (16) 

in which kcf  is the commonality factor of route k and represents the part of route k that is 

common with other routes in the route set of OD pair r and s. Different ways have been 

proposed to specify the commonality factor [21]. According to Cascetta et al. [32], the formula 

is as follows: 
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where klL  is the common length of routes k and l. kL  and lL  are the total length of routes k 

and l, respectively. β and γ are positive parameters that require calibration. 

2.3.2 Path-size logit model 

Ben-Akiva and Bierlaire [33] developed the PS-logit model with the following functional form: 

,
)ln(

)ln(


+−

+−

=

l

Sθc
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rs

k
k

rs
l

k
rs
k

e

e
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where kS  is the size of route k. The route size equals one and does not need utility adjustment 

if no overlapping links exist. Different forms have been adopted to specify the route size. Ben-

Akiva and Bierlaire [33] suggested the following formula: 
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where kL  is the overall length of route k, al  is the length of link a, kΓ  is the set of links 

included in route k, and ajδ  is the link-path incidence variable that is one if route j contains link 

a, and zero otherwise. C-logit and PS-logit have similar functional forms but with different 

interpretations regarding the correction factor to the utility function of the MNL model. The 

commonality factor in the C-logit formula is greater than or equal to one and thus decreases 

the route utility if any similarity (overlapping) is found. The path size factor in the PS-logit 

formula represents the fraction of a route that could be a complete alternative [21]. 

3. Results and Discussion 

This section reports and discusses the results of the proposed SUE-based OD estimation model. 

Three variations of the stochastic user equilibrium (i.e., with MNL, C-logit, and PS-logit route 

choice models) are employed as the lower level of the Spiess OD estimation algorithm. These 

models are coded in Python, run on a PC with a Dual Core 2.5 GHz CPU and 8 GB RAM, and 

implemented on the well-known Winnipeg network (Manitoba, Canada). 

The Winnipeg network used for the analysis includes 1,052 nodes, of which 147 are centroids, 

2,836 links, and 4,345 OD pairs with non-zero travel demand. The total demand is 64,775 trips. 

The volume-delay function for each link is according to the typical formula established by the 

Bureau of Public Roads (BPR) with specific parameters for each link. The information is 

obtained from https://github.com/bstabler/Transportation Networks. 

The existing OD matrix is considered the network's true matrix (i.e., the matrix the model seeks 

to approximate). Since no outdated matrix is available, the target (or primary) matrix is 

acquired by manipulating the true matrix [34]. Assuming that demand has grown over time, 

the true matrix has been disturbed to reduce total demand in the prior matrix. Two scenarios 
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are applied to generate the target (prior) matrix. In the first scenario, the total demand is reduced 

by 10% by randomly decreasing most matrix elements (and increasing some others). In the 

second one, the total demand is reduced by 30% by randomly reducing all matrix elements. 

Similar scenarios could be created, but these seem sufficient for this study. Scenarios are: 

(1) Disturbing the true OD matrix elements by multiplying them with the randomly 

generated uniform numbers in (0.7, 1.1). Thus, the total demand is reduced by 10%, 

(2) Disturbing the true OD matrix elements by multiplying them with the randomly 

generated uniform numbers in (0.5, 0.9). Thus, the total demand is reduced by 30%. 

Since there are no link flow observations, flows resulting from the assignment of the true matrix 

to the network are regarded as traffic counts. In order to equitably compare three different route 

choice models (i.e., MNL, C-logit, and PS-logit) at the lower level of ODMEP, an assignment 

method other than them is utilized to produce link counts. The MNL and Multinomial probit 

(MNP) models were applied in the earlier developments of stochastic assignments [15]. Unlike 

MNL, MNP lacks a closed-form expression and thus requires considerable computational 

effort in large-scale networks. However, it does not suffer from the IIA assumption of MNL 

and hence can deal with the issue of overlapping (or correlated) paths. Therefore, the MNP-

SUE assignment is employed to obtain observed link flows. Also, a link-based algorithm 

presented by Sheffi [15] is used for the MNP-based stochastic assignment. 

The value of the dispersion parameter θ (in equations (12), (16), and (18)) is supposed to be 

known. For each route choice model, the θ value is determined using a line search method to 

minimize the root mean square error (RMSE) between the resulting link flows and traffic 

counts. Moreover, the RMSE measure, besides the coefficient of determination (R2), is used to 

evaluate the quality of estimations. For this purpose, these evaluation criteria are exploited: 

RMSE and R-squared between the elements of true and estimated OD matrix, and RMSE and 
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R-squared between observed and estimated link flows. The RMSE is calculated as follows [10]: 

,)(
1

1

2
=

−=
N

n

n

obs

n

est yy
N

RMSE  (20) 

where N is the number of observations, and yobs and yest are observed/ true and estimated flows, 

respectively. Besides metrics based on discrepancies between individual OD flows, metrics 

developed for structural comparison of OD matrices (such as MSSIM, GSSI, etc.) can also be 

used [35]. The convergence tolerance k in equation (9) is set to 0.001, and the gradient 

algorithm for ODMEP (section 2.1) is stopped when the convergence criterion becomes less 

than k or iteration counter (l) hits 20. MSA algorithm in step 2 of the SUE assignment (section 

2.2) is stopped as soon as the stopping criterion becomes less than 0.00001 (k = 10-5 in equation 

(15)). Furthermore, the maximum number of iterations (m in step 3 of the SUE) is fixed at 5. 

3.1 SUE-based ODMEP using the complete set of link flows 

The results of ODMEP under an SUE constraint (with each MNL, C-logit, and PS-logit route 

choice models) and based on the complete network link flows as traffic counts and for the two 

scenarios mentioned above are presented in Tables 1 and 2. All reported outputs are acquired 

after 20 iterations of the Spiess method (section 2.1). As explained above, the value of the 

dispersion parameter of the route choice models is determined exogenously. In this example, 

the estimated values of θ are 0.30, 0.33, and 0.35 for MNL, C-logit, and PS-logit, respectively. 

Based on the closeness of estimated and observed link flows, all three models have performed 

almost similarly in terms of R2 (LF). It is likely because all models explicitly consider link flow 

deviation at the upper level of ODMEP. Nonetheless, in terms of RMSE (LF), the model with 

MNL has performed somewhat better (up to 5%) than models with C-logit and PS-logit. 

<Table 1> 

<Table 2> 

A comparison regarding the fitness between estimated and true OD matrices indicates that OD 
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estimation based on C-logit and PS-logit is more accurate than OD estimation based on MNL 

in terms of both R2 (OD) and RMSE (OD) (Tables 1 and 2). Nevertheless, the MNL-based 

model estimates are slightly more accurate than the other two models regarding the sum of the 

OD matrix elements. It can be seen that R2 (OD) for models with C-logit and PS-logit that take 

the overlapping paths problem into account are almost similar but superior to the model with 

MNL that is not able to address this problem. Besides, using the C-logit and PS-logit models 

in the OD estimation reduces RMSE (OD) by about 9.5 to 13.5 percent compared to the MNL-

based model (Table 2). These results show that employing route choice models that account 

for the issue of path overlapping could significantly affect the OD demand estimates. In other 

words, incorporating this issue through route choice models like C-logit and PS-logit could 

result in a more accurate estimate of the OD matrix. 

Figure 2 (a-b) displays the logarithm of the objective function value in each iteration for both 

scenarios. Three models with MNL, C-logit, and PS-logit at the lower level of ODMEP perform 

practically similarly in minimizing the objective function. The reason could be that all models 

use the same algorithm to minimize the objective function. However, the MNL-based model is 

slightly better than models with C-logit and PS-logit. 

<Figure 2> 

As noted in section 2.1, the objective function does not explicitly consider the discrepancy 

between estimated and true demand. Figure 3 (a-b) shows that all models worsen as iterations 

proceed, based on RMSE (OD). All models function almost similarly in the early stages. 

However, as iterations move forward, the MNL-based model deteriorates further than the other 

two models, resulting in a less precise OD matrix. As a result, there is no guarantee that the 

MNL-based model will produce an accurate OD matrix, even though it minimizes the objective 

function. Note that the Spiess algorithm explicitly uses path probabilities to correct the OD 

matrix at each step. Consequently, different OD demand estimates can be derived from the 
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SUE-based ODMEP with different underlying route choice models. 

<Figure 3> 

Table 3 shows the average time required to solve the SUE-based ODMEP with the Spiess 

gradient algorithm according to the specifications mentioned above. Thus, the proposed 

method could be applied to real networks in a reasonable time. A Clogit or PS-logit-based 

model requires more time to calculate than an MNL-based model because of the need to 

calculate an extra parameter (commonality factor in Clogit and route size in PS-logit). 

<Table 3> 

 

3.2 An analysis of counting locations coverage 

In section 3.1, all network links were supposed to be counted. This part analyzes the impact of 

observing an incomplete set of links. In this regard, traffic volumes on 50, 25, and 10 percent 

of links intercepting with most OD pairs are considered the observed link flows. In other words, 

following an SUE-MNL assignment with true demand, links are sorted according to how many 

ODs are intercepted. Then, the first 50, 25, or 10 percent of links are selected. Intercepting with 

more OD pairs brings about more OD demands to be adjusted since only those OD pairs with 

counting locations between them are updated in the Spiess algorithm. In addition, path 

overlapping is more likely to occur on such links. 

Table 4 presents the results of OD estimation based on each of the three incomplete sets of 

network link flows. The predominance of models considering path correlation over the MNL 

is preserved when the number of counted links changes. Utilizing C-logit or PS-logit improves 

RMSE(OD) compared to the MNL-based model by about 5 to 15 percent (Table 4). Therefore, 

the results are stable with respect to the location of observed links. According to total demand, 

no significant difference between models in different situations is observable. However, as the 

number of counting locations decreases, the total demand becomes more distant from the true 
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value because fewer OD pairs are adjusted when the number of observed links decreases. 

<Table 4> 

 

3.3 An analysis of the choice set size 

An important factor affecting SUE results is the size of the path choice set. This factor is 

controlled by the number of iterations in the column generation step of the SUE assignment. 

The results presented above are derived through five iterations of column generation. In this 

part, models are also implemented with 10 and 15 iterations. According to figure 4 (a-b), in 

both scenarios, ΔRMSEMNL(OD) increases when iterations of column generation are fixed at 

10 (except C-logit in scenario 2) but decreases at 15. Indeed, as column generation iterates 

more, the size of the path choice set increases as a consequence. The difference between path 

flows diminishes as the number of active paths increases beyond a limit since all active paths 

should receive flow for calculating auxiliary path flows in the SUE procedure. Hence, OD flow 

breaks between many paths, resulting in similar auxiliary path flows. Figure 4 shows that the 

PS-logit provides more robust results than the C-logit for the evaluated range of iterations. 

<Figure 4> 

4. Conclusions and suggestions 

In this paper, an origin-destination matrix estimation problem (ODMEP) with stochastic user 

equilibrium (SUE) constraint and using link traffic counts is developed employing three 

underlying route choice models: multinomial logit (MNL), C-logit, and path-size logit (PS-

logit). The proposed approach has two main characteristics: 

• We apply corrected logit route choice models, namely C-logit and PS-logit, to address 

the path overlapping issue in the SUE framework. 

• We utilize the Spiess gradient algorithm (which can be adapted to large-scale networks) 
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in which SUE assignment is used at the lower level to account for different user 

perceptions. 

Three OD estimation models (i.e., ODMEP with each SUE-MNL, SUE-C-logit, and SUE-PS-

logit as a constraint) are applied to the Winnipeg network under two scenarios for generating a 

prior (target) matrix. The MNP assignment is used to obtain flows on observed links and 

compare the results of these models. In addition to the complete set of network links, three 

incomplete sets of links are considered: 50, 25, and 10 percent of network links intercepted by 

most OD pairs, and thus, more correlated paths are expected on them. Also, models are 

executed for various column generation iterations that show the impact of path choice set size. 

The study reveals the following relevant findings: 

• Although the three models perform almost identical in reproducing link counts and total 

OD demands, the estimated OD matrix estimated by the model with SUE-MNL is 

significantly less accurate (up to about 15%) than those estimated by models with SUE-

C-logit and SUE-PS-logit. In other words, employing route choice models that address 

overlapping paths can provide an OD matrix closer to the true demand matrix than the 

model that does not. However, these models require more time to execute because of 

the need to compute further parameters to relax the IID assumption partially. 

• When traffic counts are limited to the subset of links intercepted by most OD pairs, the 

superiority of models dealing with path overlapping (C-logit and PS-logit in this study) 

over the MNL-based model is almost preserved. Consequently, the results are robust in 

relation to the observed links. 

• As the number of active paths exceeds a certain limit, the estimated matrices of the 

three models approach each other. Because increasing the path choice set's size reduces 

the difference between path flows produced by different route choice models. 
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• The adapted approach (i.e., Spiess’s gradient algorithm) to solve SUE-based ODMEP 

is successfully applied to the Winnipeg network, which shows that it can be used in 

real-size networks. 

According to the findings of this study on a medium-sized network with moderate congestion, 

SUE-based OD estimation models would be more accurate if correlated routes were taken into 

account. The methodology is general enough to be applied to any other network. Thus, more 

tests on large-scale networks should be conducted to draw more generalized conclusions. 

Although the Spiess gradient method is suitable to apply to large-scale networks, it may get 

trapped in local optima because of the non-convexity of the problem. Recently, Shahbandi and 

Babazadeh [36] have proposed a novel hybrid approach, named GPSO, which integrates 

particle swarm optimization (PSO) and gradient methods to combine the effective global search 

ability of PSO and good local convergence properties of the gradient. Utilizing this hybrid 

method in the SUE-based ODMEP could provide more accurate solutions than the gradient 

approach. Also, to enhance the quality of OD estimates, other detailed information that may be 

easily available from emerging data sources such as GPS, Bluetooth, and mobile phones can 

be used [37]. 

In the present study, the rule to select a subset of links for traffic counts was the intersection of 

links with most OD pairs. Another study could examine the role of counting locations by 

investigating other rules such as links with the heaviest traffic, heaviest traffic on different 

roads, and random selection (for instance, see [38] on estimating freight tour flows). 

Furthermore, we have used simulated link counts. It is suggested that real link counts be used 

to determine whether the above findings are valid in real-life conditions. Moreover, dispersion 

parameters of the route choice models have been estimated exogenously and considered fixed 

during the estimation process. For future studies, it is recommended that this parameter be 

estimated simultaneously with the OD matrix in an integrated framework. 
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In this study, we have employed two modifications of the MNL model that handle the problem 

of path overlapping through the deterministic component of the utility function. However, 

models of the generalized extreme value (GEV) family [28] that apply tree structure can also 

be used to capture the similarity among paths through the random component of the utility 

function. A recursive logit model proposed by Knies et al. [39] can also overcome the 

correlation between paths. Further, a traffic equilibrium assignment based on the network 

generalized extreme value (NGEV) model with the ability to capture path correlation without 

explicit path enumeration has been recently proposed [40].  

The identical perception variance is another disputable limitation of the MNL model stemming 

from IIA. Multinomial Weibit (MNW), which was introduced by Castillo et al. [41], relaxes 

the assumption of the same variance among choice alternatives. In addition, Xu et al. [42] 

developed a multiplicative hybrid (MH) model that releases both MNL and MNW assumptions. 

Future works may focus on integrating these variants of route choice models into the OD 

estimation system. 

Correction terms used for C-logit and PS-logit are based upon length/free-flow travel time, 

which may cause inaccuracy since a short path can have a large flow-dependent travel cost and 

vice versa. Zhou et al. [43] and Xu et al. [44] presented an SUE-C-logit formulation with 

commonality factors that capture the route similarity based on flow-dependent costs. Duncan 

et al. developed this extension for PS-logit [45] and GEV models [23]. Incorporating these 

SUE formulations based on generalized, flow-dependent costs into the ODMEP would be 

beneficial. 
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Figure 1 Flowchart of solving SUE-based ODMEP  

(SUE: stochastic user equilibrium; ODMEP: OD matrix estimation problem) 

Figure 2 Convergence of the proposed algorithm using the complete set of link counts on the 

Winnipeg network (Log: logarithm; MNL: multinomial logit) 

Figure 3 Performance comparison between three models regarding RMSE (OD)  

(RMSE: root mean square error; OD: origin-destination; MNL: multinomial logit) 

Figure 4 Variations in ΔRMSEMNL(OD) versus iterations of column generation  

(ΔRMSEMNL(OD): root mean square error of OD demand matrix compared with that of 

MNL) 

Table 1: Results of ODMEP using SUE with three route choice models 

Table 2: Models output compared to MNL-based model 

Table 3: Average running time of the Spiess algorithm on the Winnipeg network 

Table 4: Results of SUE-based ODMEP based on different sets of counted links 
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Figure 1 Flowchart of solving SUE-based ODMEP  

(SUE: stochastic user equilibrium; ODMEP: OD matrix estimation problem) 

 

 

 
(a) scenario 1 

 
(b) scenario 2 

Figure 2 Convergence of the proposed algorithm using the complete set of link counts on the 

Winnipeg network (Log: logarithm; MNL: multinomial logit) 

 

 

 
(a) scenario 1 

 
(b) scenario 2 

Figure 3 Performance comparison between three models regarding RMSE (OD)  

(RMSE: root mean square error; OD: origin-destination; MNL: multinomial logit) 
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(a) scenario 1 

 
(b) scenario 2 

Figure 4 Variations in ΔRMSEMNL(OD) versus iterations of column generation 

(ΔRMSEMNL(OD): root mean square error of OD demand matrix compared with that of MNL) 

 

 

Table 1: Results of ODMEP using SUE with three route choice models 

Performance measures 
scenario 1 scenario 2 

MNL C-logit PS-logit MNL C-logit PS-logit 

OD demand R2 (OD) 0.761 0.795 0.804 0.759 0.805 0.792 

 RMSE (OD) 8.945 8.050 7.849 8.838 7.647 7.995 

 Total demand 64,043 63,596 63,345 62,714 61,835 61,914 

Link flows R2 (LF) 0.965 0.962 0.964 0.965 0.963 0.965 

 RMSE (LF) 103.752 108.464 106.539 105.389 108.430 105.396 

Total true demand = 64,775 

(Note: RMSE: root mean square error; OD: origin-destination (demand); LF: link flow; MNL: 

multinomial logit; SUE: stochastic user equilibrium; ODMEP: OD matrix estimation 

problem) 

 

 

Table 2: Models output compared to MNL-based model 

Performance measures 
scenario 1 scenario 2 

C-logit PS-logit C-logit PS-logit 

OD demand ΔR2 (OD) 0.034 0.043 0.046 0.033 

 ΔRMSE (OD) (%) -10.00 -12.25 -13.48 -9.54 

 ΔTotal demand (%) -0.7 -1.1 -1.4 -1.3 

Link flows ΔR2 (LF) -0.003 -0.001 -0.002 0.000 

 ΔRMSE (LF) (%) 4.54 2.69 2.89 0.01 

Total true demand = 64,775 

(Note: RMSE: root mean square error; Δ: variation; OD: origin-destination 

(demand); LF: link flow; MNL: multinomial logit) 
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Table 3: Average running time of the Spiess algorithm on the Winnipeg network 

Route choice model MNL Clogit PS-logit 

Running time (minutes) 12.1 13.5 13.5 

 

 

Table 4: Results of SUE-based ODMEP based on different sets of counted links 

  Scenario 1 Scenario 2 

Counted 

links (%) 

SUE 

model 

RMSE

(OD) 

ΔRMSEMNL

(OD) (%)* 

Total 

demand** 

RMSE

(OD) 

ΔRMSEMNL

(OD) (%) 

Total 

demand 

50 

MNL 8.853 - 63,139 8.813 - 60,811 

C-logit 7.747 -12.49 62,512 7.891 -10.46 60,368 

PS-logit 7.705 -12.97 62,371 7.703 -12.59 60,410 

25 

MNL 7.926 - 61,221 8.428 - 58,101 

C-logit 7.561 -4.61 61,160 7.558 -10.33 57,631 

PS-logit 6.892 -13.05 61,006 7.200 -14.57 57,635 

10 

MNL 7.224 - 58,957 8.418 - 54,256 

C-logit 6.347 -12.15 58,847 7.892 -6.26 54,137 

PS-logit 6.157 -14.78 58,606 7.504 -10.86 54,299 
* RMSE(OD) compared with that of MNL 
** Total true demand = 64,775 

(Note: RMSE: root mean square error; Δ: variation; OD: origin-destination (demand); MNL: 

multinomial logit; SUE: stochastic user equilibrium; ODMEP: OD matrix estimation 

problem) 
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