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Abstract: Mutation dynamics of the cancer growth is modelled here analytically considering the 

chemotherapy injection as its controlling input. Controlling the metastasis of cancer cells without 

considering the mutation challenge, results in drug resistance and failure of the treatment. In order to 

implement the required corrections on the injection dosage of the input, the model of the closed loop system 

of the cancer growth is required considering the mutation phenomenon. Thus the analytic model of the 

cancer mutation for which the chemotherapy can be employed as its controlling input is extracted in this 

paper. Considering the fact that the model of a biological system is always an approximate of the real 

system, robust sliding mode controller is designed then and implemented as its controlling strategy. It is 

shown that by the aid of the proposed model and controlling strategy, not only the cancer cells can be 

converted to zero, but also its probable mutation risk will be blocked and the treatment process consequently 

will be accomplished in a stable mode. Verification of the developed model is performed by comparing the 

results with previous studies and the efficiency of the designed controller is evaluated by conducting some 

comparative simulation scenarios in MATLAB.   
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1. Introduction 

Millions of people yearly die as the result of cancer and tumor growth. Although some progress 

are achieved toward the treatment of this disease, complete restrain of this challenge is not yet 

possible. The main popular remedies toward decelerating the cancer growth consist chemotherapy, 

radiotherapy, immunotherapy, surgery and etc. However, it is inevitable that these treatments have 

not been completely successful so far. The main obstacle toward the fundamental eradication of 

this phenomenon is drug resistance. This is contributed to the fact that most of the cancer cells are 

able to start a genetic mutation process. A cancer tumour has two main characteristics. The first 

one is known as metastasis which is the progressive and unstable division of the cells and 

subsequently drastically growth of the tumour. This effect is significantly controllable by the aid 

of the mentioned custom treatments. However, the main obstacle toward restraining the cancer 

growth which is called drug resistance is related to the second characteristics of the cancer which 
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is the mutation of its corresponding cell genome. Mutation of cancer cell causes that the 

predetermined chemotherapy drug becomes ineffective on the tumour which consequently results 

to  relapse of the disease and sudden metastasis of the tumour.  This challenge however has not 

been resolved properly so far. The reason is contributed to this fact that the future types of mutation 

related to the cancer cell is not predictable. It should be noted that extracting the mathematical 

model of the cancer and its related mutation process is the key point to solve this puzzle. The 

model can be derived mathematically or using a numerical  tool. This model not only should consist 

the dynamic of the cancer metastasis, but also has to define its related mutation. As a result, both 

the metastasis and mutation characteristics of the cancer can be modeled simultaneously by the aid 

of a general state space by which the mutation process is predictable and thus the proper injection 

input of the chemotherapy can be determined as a function of time. This time dependent 

chemotherapy injection can avoid the drug resistance and block the mutation phenomenon. 

The first studies related to this field initiated by simple models of the cancer tumor. Solyanik et al. 

have analyzed the mathematical model of the kinetic of the cancer cell growth as a function of the 

whole cells consisting the proliferating and stunted cells (in terms of division) or early growth with 

a mathematical model. Proliferating and stunted cells (in terms of division) or early growth with a 

mathematical model. The proposed model considers the cell division model, their death and their 

transmission processes. This model also can be employed for predicting and measuring the re-

growth of the tumor cells after different stages of their initial growth and extreme hypoxie [1]. 

According to the research of Bortolussi et al. a systematic approach was delivered for mathematical 

modelling the population of the cancer cells at different stages of the prostate cancer progression. 

In this approach, the proper hormone therapy can be determined for each cancer. However the 

challenge of this model was the observable noise of the recorded data which were not properly 

justifiable [2].Mirzaei et al. have proposed a mathematical model describing the progress of breast 

cancer [3]. Here Linear Quadratic Regulator (LQR) method is employed to analyze the parameters 

and predict the states’ response. In [4] the fractional order model is opted to model the patient’s 

tumor and the system parameters are estimated using the Least Square Regression. Ali et al. have 

developed a novel mathematical model of tumor using Partial Differential Equations (PDEs) in 

[5]. Ghafari et al then delivered a new mathematical model by which the relation between the 

cancer cells and the ordinary ones can be extracted according to the environmental parameters and 

the life style.  They showed that in order to achieve an acceptable treatment for the cancer, it is 

required to change their corresponding dynamics instead of decreasing the population of the cancer 

cells  [6]. Afterwards, the same authors proposed another model of the tumor growth considering 

the drug resistance. Here the optimal control based on chemotherapy and radiotherapy was 

extracted using the State Dependent Riccati Equation (SDRE) approach. Employing the mentioned 

optimal control, the minimum drug delivery was realized [7].  Mathematical tools are also 

employed in [8,9] for predicting the dynamics of cancerous cells and study the effect of treatments 

such as radiotherapy on them. If the cancer cells could not be properly inhibited, these cells can 

destroy their adjacent cells resulting in metastasis. At the stated studies, just the first aspect of the 

cancer cells is modelled which is metastasis while as explained, ignoring the mutation process will 

result in drug resistance and even relapsing the disease [10]. Thus some researches have tried to 

model this phenomenon. In [11] two kinds of cellular populations are considered. It is 
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explained here that the stem cells can be infinitely divided while the cancer cells cannot be 

divided and have low life duration. Thus it is concluded accordingly that not stimulating 

the cancer stem cells individually nor banding their divisions cannot be efficient by 

themselves. In [12] a new model of tumor is investigated in which an independent state is 

considered for drug resistant cells. Here also the mutation rate is engaged in the mentioned 

modelling and the related numerical solution is delivered.   

 In [13] a mutation model is presented in which the aggregation of the mutant cells and ordinary 

cells can be studied. Here the roll of the cancer stem cells on the disease progression is explained 

and it is shown that the more mutant cells aggregation results in faster development of metastasis. 

In 2016, a mathematical model was delivered by [14] for analysing the mutation behavior of KRAS 

related to colon cancer which is supposed to be treated by the aid of moAb. Two kinds of mutant 

cells including KRAS and wild-type are considered in this study. However, this model is just 

applicable for patients with strong immune system. In [15] a mathematical model is delivered for 

studying the multi drug resistance of cancer. It is shown here that this phenomenon is also 

dependent to mutation.  In 2008, Ashkenazi et al. delivered a mathematical model for starting and 

progressing of the cancer. This model explains symmetric and asymmetric divisions while the 

stems cells and mutation is also considered [16]. The mentioned research just focuses on modelling 

the metastasis or mutation while controlling the cancer cells are missed. Following studies have 

proposed some remedies to control the growth of the cancer cells. One of the earliest drug model 

was proposed as the chemotherapy in 1964 by Skipper et al. In this model a mathematical equation 

was delivered to estimate the required chemotherapy based injection as a function of tumor size 

[17]. Villasana et al. then proposed a new method to optimize the chemotherapy process using the 

drugs which are efficient in one specific stage of cell cycle. This model is dependent to a 

mathematical equation related to tumor growth by which the efficient protocols can be extracted 

for input prescription. This process is performed here in a way that the tumor can be blocked and 

the immune of the system could be maintained at its high level [18]. Another therapy is 

immunotherapy for which in [19] a related model is delivered.  In this study by the aid of a series 

of numerical experiments it is shown that an optimal control by the aid of this method contrary to 

chemotherapy can stabilize the cancer growth. A new approach is chemotherapy using fuzzy logic 

control method. In [20] this method is proposed considering the related limitations of the treatment. 

Required drug input for the instantaneous state of the tumor can be calculated here using fuzzy 

controller. In [21] nonlinear and fuzzy controllers are designed for controlling the tumor cells of a 

cancer model and the performance and efficiency of the proposed controllers if different situations 

are investigated. A cancer model of order 4 is developed in [22] in which an independent state is 

considered for drug resistant cells. Afterwards, nonlinear controller is implemented in order to 

block the progress of cancerous cells in the presence of parametric uncertainties. In [23,24] fuzzy 

and optimal controllers are employed toward detection and restrain of the cancer. In [25] a new 

back stepping model is proposed for which a sliding mode controller is applied to stabilize the 

response of the system. A new composite controller based on back–stepping method with sliding 

approach is also added to increase the convergence of the system response. This model is robust 

against uncertainties. The superiority of the proposed model and controller is verified in this paper 

by applying it for an immunotherapy on an integer-order model of a tumor.  It is shown that the 
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settling time of the proposed controller is less than integer-order models with ordinary fuzzy back 

stepping controllers. A new nonlinear mathematical model is presented in [26] for which the 

cancerous cells are controlled using optimal controller. Numerical approach of Lagrange and 

repetitive optimal controller are used here to perform the related simulations. 

In [27] by the aid of new mathematical model and implementation of sliding mode control, the 

cancerous cells are decreased. Four controlling strategies are employed in [28] in order to cure 

prostate cancer using hormone therapy. It is shown that using the proposed method, the androgen 

can be decreased which leads to decrease the cancerous cells consequently.  

 As can be seen, controlling the dynamics of the cancer growth considering the mutation 

phenomenon is not properly studied. Thus in this article, the dynamic model of the cancer tumour 

considering the mutation is represented and the effect of the chemotherapy and its related 

controlling input on the corresponding state space is extracted.  In this model the mutation 

challenge is considered by assuming a separate state space. Afterwards, a robust nonlinear control 

of sliding mode is designed and implemented on the tumour. At the next section, the analytic model 

of the cancer growth considering the mutation is represented and its dynamic is extracted in the 

presence of chemotherapy input. In section three two controlling methods of State Vector 

Feedback Control (SVFC) and Sliding Mode Control (SMC) are designed and implemented on the 

cancer. At section four, the correctness of the proposed model is verified by the aid of previous 

research and the efficiency of the proposed controlling strategy is proved by the aid of some 

analytic and comparative simulation scenarios in MATLAB. It is shown that sliding mode provides 

a better performance for biological dynamic systems in which the model is not completely 

determined and there are some parametric uncertainties. Also it is shown that the proposed 

controller can successfully control the growth of the cancer cells as well as blocking the mutation 

process and drug resistance.  

2. Modelling of the Mutation with chemotherapy 

2.1. Metastasis model 

According to [16] the cell behaviour and its related number of population can be presented as a 

differential equation. Here the stem cells and their corresponding divisions are also added to the 

mentioned model. As we know, the stem cells can be divided symmetrically or asymmetrically 

According to Fig 1.  

As it can be seen, in asymmetrical division, a stem cell will be divided into a stem cell and an 

ordinary one, while in symmetric division, the production of the division is of a similar type which 

can be stem cell or ordinary one. According to the mentioned division process, the general cell 

division model can be stated as the following mathematical equation without considering the effect 

of mutation: 
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Here S is the number of the stem cells, 𝛼𝑆 is the rate of the symmetrically self-renewing stem cells, 

𝛼𝑑 is the rate of the symmetrically differentiating stem cells and 𝛼𝑎 is the rate of the 

asymmetrically self-renewing stem cells. Also 𝛿𝑆 is the rate of the death of the stem cells, 𝐶0 is the 

result of stem cell divisions, which is considered as generation 0 (zero), 𝛽0  and 𝜇0 are the rate of 

the division and death of the first generation of the stem cells respectively and N,  n denote the 

number of the divisions in the equations that, N shows the last division of the equation. 

2.2. Model of mutation 

Here considering [16] the model of the cell divisions is improved considering the mutation 

phenomenon. According to the supposed assumption in this article, three generations of mutation 

are considered for which two first generations are healthy while the third one is cancerous. In order 

to provide the possibility of controlling the metastasis and also stabilizing the mutation process, 

the model is promoted so that the effect of chemotherapy input can be studied. To cover this goal, 

the input is implemented on the extracted modified model, according to the Pinho model [29]. 

Moreover, here in order to observe the density of the delivered drug in the blood, the proposed 

model of Li is employed [30]. Consequently, the finalized model of the natural stem cells and their 

corresponding mutated ones can be developed as equation 2. 
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In the above equations, it is supposed that the mutant divisions in the stem cells are taking place 

with the probability of  Sm , while the natural divisions take places with the probability of ( )1 Sm−  

The parameters of 
( ) ( ) 1 1

, , ,Si SIS I a i
   

− −
 are the modified rate of the new symmetrically self-

renewing divisions,  ,dI di   are the modified rates of symmetrically differentiation and  ,dI di   

are the modified rate of asymmetrically divisions. The index i shows the generation of mutation. 
( 1)iS −  denotes the stem cell in its previous mutation. In controlling term, 10p  indicates the rate of 

death of healthy cells by the aid of the employed chemotherapy injection while 20p  is the rate of 
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death of cancerous ones. 1a  and 2a  are in turn the saturation rate of the healthy and cancerous cells. 

Finally, M denotes the density of the chemotherapy drug in the blood.  

Thus the related differential equations of the natural and mutated progenitors can be presented as 

equation 3. 
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In the above equations ( )

0

iC  and ( )

0

IC  denote the cells with no division. The equations of the cells’ number 

resulted from the first division is as equation 4.  
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In this equation ( 1)
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related to the last division (N) can be extracted as bellow in which the mutation is also considered: 
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the density of the chemotherapy in the blood as the physical input of the system, the following 

ODE equation can be defined: 
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Here it is supposed that the injected chemotherapy drug during the time is proportional to its related 

density which is M− Leaves the body. The biological meaning of   in this equation is the rate 

of decreasing the drug in the body. Also it should be noted that in this article it is supposed that 

the number of the cells just changes as the result of division or fatality. In addition, ( )Mu t  is external 

injection of chemotherapy. 

As was seen, in the proposed controlling model, all of the mutating generations achieve a specific 

dosage of chemotherapy drug according to its mutation level. If the mutation model would not be 

considered for controlling the cancer system, the chemotherapy input will be designed for the first 

generation and other states related to the mutant states will not gain the drug input. This condition 

which is called drug resistance can be described by the following state space and as will be seen 

in simulation section, can be compensated by the aid of the proposed model of equation 1: 
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Here the cancer plant itself is of order 16 for which M that is the density of chemotherapy is 

considered as the related controlling input. However, the controlling system itslef has a first order 

dynamics in which the relation between the chemotherapy density and chemotherapy injection 𝑢𝑀 

can be estimated by the aid of equation 6. Thus here the M will be determined using the proposed 

controlling steratgies and it will be realised by the aid of the proper dosage of chemotherapy 

injection by the aid of the equation 6. 
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2.3. Analysis of equilibrium points 

In physiology, homeostatic means to maintain the materials of the body in a stable level. All of the 

limbs of the body tries to meet the condition of the homeostatic. This phenomenon is also valid 

for the stem cells of the body and this is equal to 0
dS

dt
=  and here, s is considered equal to 900000. 

The employed Parameters for normal and mutant cells are as Table 1.  

Since the operating point of the body is its Now considering the values of Table (1) the equilibrium 

points of the state space in which the mutation is modelled can be extracted as follow: 
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Linearization around the above equilibrium points can be conducted as follow: 
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Considering the above Taylor equation, one can conclude the following linearized state space 

about the mentioned equilibrium points: 

6 4

4 4

0 0

5 4 3

1 0 1

4

2 1 2

(1) 6 (1) 5

(1) 7

0

1 10 1.2 10 0.9014

0.9 9.07 10 1.068 10 48.9987

1.81 10 14.47 1.2 10 1.6227 10

28.77 0.07 1.2 10 0.002

1 10 0.225 9.1926 10 1.7094

9 10

S S M

C S C M

C C C M

C C C M

S S S M

C

− −

−

−

−

− −

−

= −  −  −

= −  −  +

=  − −  + 

= − −  +

=  + −  +

=  (1) (1) 5

0

(1) (1) (1) 5

1 0 1

(1) 5 (1) (1) 5

2 1 1 2

(2) 4 (1) (2) 5 4

(2)

0

0.72 19.13 1.6778 10 0.0172

56.3 23.8 3.3323 10 0.001

2 10 47.54 0.014 7.311 10 1.6686

1.2 10 0.41 1.1988 10 7.0579 10

S S C M

C C C M

C C C C M

S S S M

C

−

−

− −

− − −

+ − −  −

= − −  +

=  + − −  −

=  + −  + 

5 (1) (2) (2) 9

0

(2) (1) (2) (2) 9 3

1 0 0 1

(2) (1) (2) (2) 5 4

2 1 1 2

(3) (2) (

7.2 10 0.5 28.5 3.0993 10 0.0016

0.004 56.36 33.16 7.5116 10 3.2961 10

0.005 65.65 0.005 6.6355 10 9.229 10

0.014 0.22

S S C M

C C C C M

C C C C M

S S S

− −

− −

− −

=  + + −  +

= + − −  + 

= + − −  − 

= + 3) 6 6

(3) (2) (3) (3) 8 6

0 0

(3) (2) (3) (3) 7 6

1 0 0 1

(3) (2) (3) 4 (3)

2 1 1 2

3.044 10 4.1507 10

0.005 1.01 37.85 8.7979 10 1.243 10

0.57 75.7 42.5 1.7342 10 1.7851 10

0.66 85.1 8.3 10 0.0184 0.20

M

C S S C M

C C C C M

C C C C M

− −

− −

− −

−

−  − 

= + − −  − 

= + − −  − 

= + −  − − 94

0.9 MM M u= − +
 

)10 ( 
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The required feedback signals for the above mentioned controlling treatment can be estimated 

using surface acoustic waves and MZI-IDA sensors. The former measurement tool detects the 

point mutations in cancer-related DNA [34]. Mass and viscosity signals can be measured by this 

sensor [34]. Moreover, as described in reference [35], the MZI-IDA sensor system can be 

employed to detect mutations accurately and efficiently in clinical specimens. 

3. Controlling the mutation model using chemotherapy 

In order to control the dynamic of the cancer growth, it is first required to show the controllability 

of the system. This controllability is verified here for the linearized state space of the cancer model 

around its stability condition. Thus the system is rewritten in the format and the controllability 

matrix of equation x Ax Bu= +  is established. The system is controllable if the columns of this 

matrix span the space of order of n which means that the matrix is full rank. Here the matrices A 

and B are as: 

6

1,1 2.1

4

2,2

5

3,2 3,3

4,3 4,4

6

5,1 5,5

7

6,1 6,5 6,6

7,6 7,7

5

8,3 8,7 8,8

9,5

1 10 ; 0.9

9.07 10

1.81 10 ; 14.47

28.77; 0.07

1 10 ; 0.225

9 10 ; 0.72; 19.13

56.3; 23.8

2 10 ; 47.54; 0.014

1.2

A A

A

A A

A A

A A

A A A

A A

A A A

A

−

−

−

−

−

= −  =

= − 

=  = −

= = −

=  =

=  = = −

= = −

=  = = −

=  4

9,9

5

10,5 10,9 10,10

11,6 11,10 11,11

12,7 12,11 12,12

13,9 13,13

14,9 14,13 14,14

15,10 1

10 ; 0.41

7.2 10 ; 0.5; 28.5

0.004; 56.36; 33.16

0.005; 65.65; 0.005

0.014; 0.22

0.005; 1.01; 37.85

0.57;

A

A A A

A A A

A A A

A A

A A A

A A

−

−

=

=  = =

= = = −

= = = −

= =

= = = −

= 5,14 15,15

4

16,11 16,15 16,16

75.7; 42.5

0.66; 85.1; 8.3 10

A

A A A −

= = −

= = = −   

4

1,1

4

2,1

4

3,1

4

4,1

5

5,1

5

6,1

5

7,1

5

8,1

5

9,1

9

10,1

9

11,1

5

12,1

13,1

1.2 10

1.068 10

1.2 10

1.2 10

9.1926 10

1.6778 10

3.3323 10

7.311 10

1.1988 10

3.0993 10

7.5116 10

6.6355 10

B

B

B

B

B

B

B

B

B

B

B

B

B

−

−

−

−

−

−

−

−

−

−

−

−

= − 

= − 

= − 

= − 

= − 

= − 

= − 

= − 

= 

= − 

= − 

= − 

6

8

14,1

7

15,1

16,1

3.044 10

8.7979 10

1.7342 10

0.0184

B

B

B

−

−

−

= − 

= − 

= − 

= −  

)11) 

Calculating the Rank of the controllability matrix around its stability point results in 16 which 

means the system is full rank and consequently controllable. 

3.1. SVF control by pole placement gain tuning 

In order to decrease the cancer cells and prevent the mutation process from reaching to its third 

generation which is cancerous here, two controlling strategies are employed and implemented on 

the system and their related performance are compared and analysed. For the former controller 

which is SVFC, the system should be first linearized. Afterward, it is possible to tune the related 
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gains using pole placement method to achieve negative Eigen values for all of the states and 

provide the stability condition of the system. Since the system is linearized about its stable point, 

it is possible to use pole placement to tune the related feedback gains. Considering the fact that 

SVFC approach is used to calculate the controlling input, it is possible to place the poles of all of 

the states. The linearized state space will be as follow: 

 

x Ax Bu= +  )12 ( 

where x is the related states, u is the controlling input, A is the state gain matrix, B is the input gain 

matrix, and for the presented cancer state space of this paper, the values of A and B are given in 

equation 11. 

This matrix has 16 16   size and the rest of elements are zero. .  Matrix B is also as  above which is a 

16 element vector. Now the controlling input according to SVFC algorithm can be defined as 

follow: 

u kx= −  )13 ( 

k is the controlling gains which are tuned here using pole placement method. Here -1 is opted as 

the desired pole of all of the states since its real value is negative and thus guarantees the stability 

of all of the states. Also the imaginary part is set to be zero to ensure the exponential response of 

the states. Thus we have: 

( )
16

1SI A Bk S− + = +  )8 ( 

Thus one can conclude that: 

16 15 14 13 12 11

16 15 14 13 12 11

10 9 8 7 6 5

10 9 8 7 6 5

4 3 2 1 16

4 3 2 1 tan

m S m S m S m S m S m S

m S m S m S m S m S m S

m S m S m S m S m Cons t S

 +  +  +  +  + 

+  +  + +  +  +  + 

+  +  +  +  +  =

 )9 ( 

where m to m16 are constant values. Thus the proper controlling gain vector can be calculated as 

follow: 

6

6

1 1

4

8438.857,850438007.4594,2.329, 1.343 10 , 296.621,10356.635,

727.4526, 2.8735 10 ,186420.8587,6024953.3165, 888589.5202,

0.0316162,61350443.71259, 2665511177.9622,261372845.3094,

9.16955

[ , , ]

[

k k

−

−

− −  −

− − 

=

−

− −

410 ]−

 )10 ( 

3.2. Sliding Mode Controller 

Since the SVFC is just applicable for linear systems, and also it is not robust against the parametric 

uncertainties especially for such biological systems, the above designed controller is just valid 
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around the operating point of the equilibrium zone with an exact model. Thus for the case that the 

cancer is in critical stage and its states are far from its corresponding stable condition, this 

controller is not efficient. Moreover, we know that the exact estimation of the model of the 

biological systems is not ideally possible. Thus a proper controller should be robust enough to 

neutralize the destructive effect of model uncertainty. Therefor sliding mode controller is designed 

and implemented as the modified controller here.  This controller is an efficient approach for 

controlling the nonlinear systems, which is also robust against the parametric uncertainties. Thus 

sliding mode is employed here since it is robust against the parametric uncertainties and 

disturbances. This method as mentioned can compensate the parametric uncertainties related to the 

challenges of modeling a biological system and also other environmental disturbing effects which 

can play the role of input besides the chemotherapy injection. However, considering the drawback 

of this method which is chattering, a filter such as tanh can be employed to dissipate the chattering. 

Here it is first required to determine the sliding surface and afterward the corresponding controlling 

input should be calculated accordingly. The sliding surface is considered here as follow: 

(1) (1) (1) (1) (2)

1 2 0 3 1 4 2 5 6 0 7 1 8 2 9

(2) (2) (2) (3) (3) (3) (3)

10 0 11 1 12 2 13 14 0 15 1 16 2 17    

s k S k C k C k C k S k C k C k C k S

k C k C k C k S k C k C k C k M

= + + + + + + + +

+ + + + + + + +
 )11 ( 

The controlling input should be defined in a way that the following Lyapunov function which is 

a function of sliding surface would be stable: 

21

2
V s=  )12 ( 

Thus the derivation of this function should be negative: 

( )

(1) (1) (1) (1)

1 2 0 3 1 4 2 5 6 0 7 1 8 2

(2) (2) (2) (2) (3) (3) (3) (3)

9 10 0 11 1 12 2 13 14 0 15 1 16 2

17

(

            

            ( ) )eq

V ss s k S k C k C k C k S k C k C k C

k S k C k C k C k S k C k C k C

k y u t

= = + + + + + + +

+ + + + + + + +

+ − +
 

)13 ( 

To assure the asymptotical stability of the system this condition 0V ss=   should be satisfied. 

Now the nonlinear terms can be linearized globally by the aid of the following controlling input:  

( )eq rU u t u= +  )14 ( 

By equalizing the V to zero, the corresponding equ can be achieved by which the Lyapunov stability 

can be assured: 

(1) (1) (1) (1)

1 2 0 3 1 4 2 5 6 0 7 1 8 2

17

(2) (2) (2) (2) (3) (3) (3) (3)

9 10 0 11 1 12 2 13 14 0 15 1 16 2 17

17

( )

            

eq

k S k C k C k C k S k C k C k C
u t

k

k S k C k C k C k S k C k C k C k y

k



 + + + + + + +
= − 

 

 + + + + + + + −
− 
   

)21 ( 

While ru  which assures the finite time convergence onto the surface, should be set as bellow: 
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( )r su k Sign s= −  )15 ( 

Thus the final controlling input based on the sliding mode is as follow for which s can be 

substituted by the aid of equation 17: 

( )eq sU u K sign s= −  )16 ( 

Block diagram of the proposed controlling method for the cancer mutation according to 

chemotherapy can be seen as Fig. 2. 

 

The stability of sliding mode method is approved in [36]. Since the origin is on the selected surface, 

it is provable that all of the states converge to zero through the selected surface.  

4. Simulation and Verification 

Correctness of the improved model and efficiency of the designed controller are investigated in 

this section.  

4.1. Verification of the model: 

In order to verify the correctness of the modeling, the profile of the stem cell numbers without 

mutation with two divisions is depicted and compared with the same parameter of paper [16]. This 

profile is for the system with not chemotherapy input. Firstly, according to Fig. 3, as was expected 

the number of the cells diverges since no injecting input is employed. Moreover, the same trend 

of these profiles shows the correctness of the present modeling. 

The third generation of the mutant cells which are cancerouse can be seen as Fig. 4. Here the state 

13 is related to ( (3)S Cells), state 14 shows ( (3)

0C Cells), stated 15 represents ( (3)

1C Cells) and state 

16 is ( (3)

2C Cells). All of the state responces is corresponding to open loop tumore behaviour in 

which no chemotherapy input is employed.  

As can be seen the number of cells are exponentially increasing to instability which shows that the 

censer will overcome if no proper input would be injected.  

 

4.2. Drug resistance verification: 

As stated, the main purpose of modeling the mutation is to eliminate the effect of drug resistance 

in the cancer treatment process. For a model in which the mutation is not considered, a unique 

input chemotherapy input usually results in drug resistance and the states related to mutant cells 

diverges to instability condition. Here in order to show the necessity of modeling the mutation 

dynamics, the proposed model that is a more realistic model for which the phenomenon of the 

mutations is also engaged, is imposed to two controlling strategies. The first one is a unique 

chemotherapy input which is estimated considering a simple model in which the mutation is not 



14 

 

considered while the second one is related a controller which evaluates different controlling input 

for each mutation generation. Actually, the plant for both approaches is the same which is a 

realistic model with mutation but at the former system the controller is designed based on a simple 

model with metastasis states while in the latter vase the controller is also based on the proposed 

improved model of the cancer with consideration of mutation. For the former case the response of 

the states is extracted as Fig. 5 and Fig. 6. 

It can be seen that as expected, the states related to the first mutation are stabilized and controlled 

while the other states diverge to instability. This is shown that the condition of drug resistance is 

realized and thus a more realistic model is required for the feedforward portion of the control 

block. At bellow it is shown that employing the proposed model and providing the proper 

chemotherapy input for each mutation can compensate the above mentioned syndrome.   

4.3. Efficiency of the designed SMC controller: 

Afterwards, constant chemotherapy input of 12.5 drug dosage is injected for all of the mutating 

generations with various controlling gains and as can be seen as follow, the states are controlled 

and stabilized around their related equilibrium point. Here the employed controlling gain of the 

first 16 gains are the same as equation 16 in order to provide a better comparative study between 

the proposed controllers and also we have   𝑘𝑠 = 𝑘17 = −1 . 

Two feedback based controllers of SVFC and sliding mode that are designed in the previous 

section are also implemented and their corresponding performance are studied and compared in 

Fig. 7. 

As can be observed, the state 13, which is related to the cancerous stem cells in its third mutation, 
(3)S  is stabilized and converged to zero using these controlling inputs. However, the settling time 

of SVFC is less than constant input while the best response is related to sliding mode by which 

66% improvement is occurred respect to SVFC and 95% improvement can be seen respect to 

constant input. State 15 shows the cell division of the cancerous stem cells of the third mutation in 

first generation ( (3)

0C ).State 16 shows the divisions of the cancerous stem cells in the third mutation 

in first generation 
(3)

1C . And finally profile of state 16 is related to the divisions of the cancerous 

stem cells in the third mutation in second generation 
(3)

2C  According to these data, it can be 

concluded that the best control on the cancer is realized using Sliding mode and the settling time 

is decreased somewhere up to about 91% respect to constant input and by about 87% respect to 

SVF controller. 

Comparing the required chemotherapy injection for these three cases can be observed in Fig. 8. 

Thus it can be concluded that using the mentioned controlling strategy it is possible to control the 

tumor metastasis within 50 days and consequently the cancerous mutation is accordingly blocked. 

According to the profile of chemotherapy input and its comparison for different controlling 

strategy, it can be seen that the required chemotherapy input is not vanishes after the stabilizing 

the disease which is related to the necessity of continuation of the treatment. This is contributed to 

the fact that using these therapies, the disease can just be controlled during the therapy and it won’t 
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be disappeared without using the chemotherapy since the mutation phenomenon will restart the 

metastasis after stopping the therapy. However, it is noticeable that contrary to the two first 

controlling strategies, the sliding mode is able to completely block the mutation after 400 days and 

its required injection decreases to zero after this time period. This improvement is related to the 

robust nature of the presented sliding mode controller.   

4.4. Robustness analysis of the proposed closed loop model of tumor against uncertainties: 

As explained, a biological model cannot be perfectly modeled without any uncertainty. Here in 

order to show the robustness of the proposed sliding mode controller against the parametric 

uncertainties, the response of the tumor is simulated in the presence of some parametric 

uncertainties while it is controlled by the aid of the designed robust controller: The employed 

biological parameters, their considered values and the rate of their uncertainty are as Table 2. 

The responses of the cancer cells for the similar scenario of the previous section are compared 

between the two designed controllers in Fig. 9. Here the model suffers from the above mentioned 

uncertainties. 

As can be seen, in the third generation of mutation in which the cells are cancerous, the SVFC is 

not able to control the metastasis in the presence of parametric uncertainties and the cells numbers 

diverges to infinity. However, the designed robust controller of SMC has successfully controlled 

the tumour growth and its mutation which shows the superiority of the proposed robust controller 

for the tumor. Related comparison of the required chemotropic input injection for these two 

controllers can be seen in Fig. 10. 

Here it can be seen that the required increase of chemotherapy drug has been implemented by the 

aid of SMC to neutralize the destructive effect of the presence of uncertainties while this 

improvement is missed for the SVFC. Thus it can be concluded that for a biological system such 

as tumor especially with mutation syndrome a robust controller such as SMC is a better choice.  

The robustness of SMC can be observed in Fig. 11 in which the response of the closed loop system 

with SMC is compared for the simple system and uncertain one. It can be observed that the closed 

loop system equipped by robust controller of SMC has a little delay to stabilize the tumor. This 

delay is contributed to the required time for the controller to compensate the uncertainty and adapt 

the system according to the real system. 

The related comparison for the drug injection can be also seen in Fig. 12. 

It is illustrated in Fig. 12 that as expected, the robust controller of SMC has automatically increased 

its input to compensate the uncertainty of the system and is more trustable for cancer system with 

mutation syndrome. 

5. Conclusion 

In this paper, a new dynamic model was delivered for mutation process of cancer cells for which 

chemotherapy input can be employed as its related controlling input. It was explained that since 

the mutation is involved in cancer growth, this phenomenon was added to the dynamic of the 
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cancer metastasis to provide the possibility of stabilizing the performance of the treatment 

according to [16]. Also since the cancer growth is supposed to be restrained by the aid of 

chemotherapy injection, the effect of the input on the extracted state space was developed. 

Considering the fact that the extracted state space as the result of its biological nature, has 

definitely some parametric uncertainties, a robust control was then designed according to a sliding 

surface and was implemented on the extracted mutation dynamics. It was shown by the aid of 

simulation in MATLAB that the biological system of tumour diverges to instability if no 

controlling input would be employed which shows the correctness of modelling the mutation. Also 

the drug resistance phenomenon was observable for the cancer system in which the chemotherapy 

input is just adjusted for the first mutation. It was seen that the third generation of cancer cells 

diverges to instability if the input would be calculated for the first generation. Afterwards a 

constant chemotropic injection was used for all of the mutating generations and it was seen that 

the growth of the cancer cells is stopped and the mutation of the cells to the third generation of 

cancerous mode is blocked which shows the validation of the input embedding on the proposed 

state space. The efficiency of the designed robust controller was examined then by comparing the 

rate of convergence of the cancer cells to zero between the chemotherapy which is according to 

the designed sliding mode controller and the treatment which is based on a constant dosage of 

chemotherapy injection and SVFC. It was observed that the settling time of the closed loop system 

is decreased by about 94.28% respect to the constant input and 80% respect to SVFC. Also in order 

to show the robustness of the proposed treatment, a predetermined parametric uncertainty about 

50% was considered at the tumour plant and the performance of the designed robust controller was 

compared with simple SVF controller. It was seen that the robust sliding mode can control the 

tumour and its mutation in the presence of implemented uncertainty by increasing the injection by 

about 20% while SVF controller fails to stabilize the disease condition. In all of the mentioned 

simulations, the reduction of cancer growth was the result of prevention of triggering the third 

mutation process which shows the importance of mutation modelling. As the result, it can be 

concluded that by the aid of the proposed state space, the mutation process can be predicted and 

by the aid of the designed robust controller its triggering and subsequently the cancer cell growth 

can be properly blocked.  
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Table 1 

 

Parameters 

 

Biological meaning 

 

Numerical 

values 

 

Unit 

S  Stem cells 900000 Cell 

S  Probability of symmetrically self-renewing 

stem cells 
0.2 [32] % 

a  Probability of asymmetrically self-renewing 

stem cells 
[32] 0.6 % 

d  Probability of symmetrically differentiating 

stem cells 
0.15 [32] % 

S  Probability of stem-cell death 0.05 [33] % 

Cm  Probability of mutated divisions of 

progenitors 
10-6 % 

Sm  Probability of mutated divisions in stem cells 10-6 % 

0  The division rate in this population 9.697 Per day 

1  Stem cells division rates in the first generation 14.388 Per day 

0  The death rate in this population 0.1006 Per day 

1  Mortality rate in the first generation 0.083 Per day 

2  Second generation mortality rate 0.00658 Per day 

10p  Rate of destruction of healthy cells by 

chemotherapy drug 
1.2*10-7 Per day 

20p  Rate of cancer cells death by chemotherapy 

drug 
0.2051 Per day 

1a  Proliferation rate of the normal cells 1.1 Per day 

2a  Proliferation rate of the cancer cells 4.6205 Per day 
  Rate of chemotherapy drug decay 0.9 [31] Per day 
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Table 2 

Parameters 
Biological 

meaning 
Numerical values 

Changed value 

1S  

Probability of 

symmetrically self-

renewing stem cells 

in first generation 

0.4 0.6 

2d  

Probability of 

asymmetrically 

self-renewing stem 

cells in second 

generation 

0.5 0.7 

Cm  
Probability of 

mutated divisions 

of progenitors 

610−  410−  

0  
The death rate in 

this population 
0.1006 0.15 

0  The division rate in 

this population 
9.697 8.2 
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