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Abstract 

The optimal daily operation of multi-energy microgrid (MEM) systems is a tremendous challenge due to the mutual impact of 

different energies, non-constant efficiency and partial loads of several internal equipment, various energy purchasing prices, and 

different energy demands at the MEM output. In addition, the uncertainties of various renewable energy sources, energy purchasing 

prices, and energy demands may create serious risks for the MEM’s operating costs. This paper presents a comprehensive risk-

based decision-making framework for MEMs to address the mentioned challenges. In the proposed framework, the effects of the 

responsibility of cooling, thermal and electrical energy demands, and different kinds of energy storage, particularly ice storage, as 

well as the integration of several renewable energy sources, are investigated. The well-known CVaR method and the 2m+1 Point 

Estimate Method (PEM), which is a fast uncertainty analysis method based on the Taylor series, are employed to evaluate the risks 

associated with the system uncertainties. Moreover, to solve the complex non-linear problem of risk-based daily scheduling of 

MEM, a new self-adaptive optimization method based on the Wavelet theory named Self-adaptive Modified Slime Mould 

Algorithm (SMSMA) is introduced  to ensure moving toward the global optimum. The proposed risk-based framework is 

implemented on a MEM system. 
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Nomenclature 

Parameters 

𝑎𝑏𝑜𝑖𝑙 𝑏𝑏𝑜𝑖𝑙                               Partial boiler coefficients.  

𝑎⬚
𝑐ℎ𝑝

, 𝑏⬚
𝑐ℎ𝑝

, 𝑐⬚
𝑐ℎ𝑝

, 𝑑1
𝑐ℎ𝑝

, 𝑑2
𝑐ℎ𝑝

    Partial CHP coefficients. 

𝜙𝑆𝑂𝐶,𝑚𝑎𝑥
𝑇𝑆𝑆                               The maximum charging/discharging limits for the ramp value of the TSS unit (KW). 

𝑃𝐶ℎ/𝑑𝑐ℎ,𝑚𝑎𝑥
𝐸𝑆𝑆                           The maximum charge/discharge limit of the ESS unit (KW). 

Variables 

Le,in
𝑡 /Lh,in

𝑡 /Lg,in
𝑡                     Electrical/Thermal/Gas power exchange with upstream grid (KW)/(KW)/ (m3/hour). 

Le,out
𝑡 /Lh,out

𝑡 /Lc,out
𝑡                Electrical/Thermal/Cooling energy demand at the outside of the MEM (KW). 

Ƥ𝑡
𝑤𝑖𝑛𝑑                                      Available electrical power by wind turbine unit (KW). 

Ƥ𝑡
𝑃𝑉                                        Available electrical power by the solar unit (KW). 

Ƥ𝑐ℎ/𝑑𝑐ℎ,𝑡
𝐸𝑆𝑆                                  The charge/discharge value by ESS unit (KW). 

𝛷𝑡
𝐸𝑐𝑏/𝛷𝑡

𝐺𝑐𝑏                             Amount of generated thermal power by the electrical/gas consumed boiler (KW). 

𝜛𝐸
𝑡 /𝜛𝐺

𝑡/𝜛𝐻
𝑡                          Electricity/Gas/Heat energy exchange price with upstream grid ($). 

1. Introduction  

 The traditional power system consists of collaborating large-scale power units located in distant places from the 

load demands. These power systems are mainly managed by centralized operators and use fossil fuels as their primary 

source. When the electrical demands have been increased in power systems, these centralized power units result in 

higher greenhouse gas emissions, a higher level of power losses, and challenge creation for the system reliability. To 

overcome these important problems, distributed energy resources and microgrids incorporating renewable energy 

sources are employed [1]. Reference [2] investigates the use of a flexible solar panel for generating energy on curved 

surfaces. The research utilized the practical application of flexible solar energy conversion, incorporating 
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environmental assessment and techniques focused on pilot projects. 

 Recently, the demand for cooling, thermal, and electrical energies has increased manifold. With the advancement 

in poly-generation units such as Combined  Cooling, Heat, and Power (CCHP) units, natural gas is utilized to 

simultaneously meet cooling, thermal and electrical demands in distribution systems. Incorporating the natural gas, 

cooling, thermal and electrical energies in the energy supply enhances the system’s reliability and efficiency. 

Reference [3] examines a medium-term timeframe to explore the topic of the imminent future. In this context, the 

economic impacts and enhancement of a blend of natural gas and diesel fuel were analyzed. The research utilized two 

modeling approaches and a multi-criteria decision-making method to evaluate the operational characteristics and 

emissions of a dual-fuel engine running on diesel and gasoline. The study employed the response surface method to 

analyze three factors - injection angle, injection start time, and compression ratio to investigate pollution emissions. 

The energy hub is a new concept for utilizing multi-carrier energy systems that connects different energy carriers  with 

each other. The Multi-Energy Microgrid (MEM) is an energy hub that consists of various energy storage units and 

energy conversion equipment to supply electrical, cooling, and thermal energy demands. Moreover, the microgrids 

are integrated with different renewable energy sources [4]. 

According to the US Department of Energy, approximately 35% of electricity consumption is in the construction 

and commercial sectors. Of this 35%, about 12% is dedicated to air cooling and conditioning systems [5]. To reduce 

electricity consumption, ice storage technology has recently been used to provide cooling loads. Ice storage technology 

transfers electrical loads from peak consumption to off-peak times [6]. Ice storage basically consists of a chiller and 

an ice tank. A chiller is used in ice-making conditions, and the created ice is stored in the tank, and stored ice is used 

during peak load times. This system is very effective in reducing peak electrical consumption. Therefore, the chiller 

is turned off during peak hours, and the stored ice supplies the required cooling load. Among the benefits of cooling 

ice storage, the following can be mentioned: 1) Transferring the chiller electricity consumption to off-peak hours, 

correcting the electricity load curve and reducing electricity consumption, 2) Reducing the capacity of chillers and 

cooling towers, reducing the volume of piping facilities, 3) Reducing electrical equipment and related costs, 4) 

Increase chiller efficiency due to changing their working hours to off-peak consumption hours with entire load 

operation, 5) Ideal for projects that require CCHP [7].  

One of the critical issues influencing the secure utilization of MEM systems is the integration of these systems with 
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renewable energies. Analysis of such integrated MEM systems, along with renewable energies, is doubly complicated. 

This complexity is due to the power generation uncertainties of such renewable energy sources. On the other hand, in 

such systems, due to the existence of different energy loads, including electrical, cooling, thermal, or gas loads, there 

are uncertainties in the exact value determination of different types of system loads. Therefore, the existence of 

uncertainties in the MEM system may create serious risks for the microgrid operator [8]. In [9], the uncertainty of 

renewable energy sources and load demand forecasting for the unit of consumption are considered. Initially, real data 

is used to solve the non-homogeneous Markov model for the wind energy source and the homogeneous Markov model 

for the solar energy source. Subsequently, the microgrid system is implemented. However, the effects of different 

energy storage methods are not considered in this study.  

There is valuable literature in the field of the optimal management of energy systems. When an energy system 

contains just one energy carrier, the optimal system operation is less complex as it does not take into account the 

interdependency between different forms of energy. In [10], an algorithm is investigated for the optimal scheduling 

of a grid-connected micro-grid, including a micro-turbine, a wind turbine, a diesel generator, a battery bank, and a 

fuel cell. In this work, the Genetic Algorithm (GA) is employed to perform the scheduling and economic optimization 

of the microgrid. In [11], a non-linear energy management strategy has been presented for a residential building with 

a battery bank and a rooftop photovoltaic system.  

Gidel and et al. [12] were pioneers in introducing the definitions and concepts of the energy hub. In [13], the authors 

have presented a general energy flow model for multi-carrier energy systems such as integrated heat, natural gas, and 

electricity networks containing energy hubs. The optimal energy flow problem of a multi-carrier energy system with 

different renewable sources has been solved in [14,15]. Ref. [16] has investigated a multi-period optimization method 

to solve the energy dispatch problem of an energy hub considering biomass energy for heating. In [17,18], the 

purchasing/generation amount of each energy is determined and optimized according to the various load values and 

the prices of upstream energy carriers. In [19], a hierarchical energy management is developed for several home energy 

centers. The authors did not consider the system uncertainty; for example, the uncertainties of the output power of 

renewable-based DGs and electricity tariffs are not considered. In [20], taking into account the uncertainty of load 

demands, a new method for scheduling and optimal operation of energy hubs has been presented. However, the 

uncertainties of electricity prices have not been taken into account. Ref. [21] introduces an innovative approach to 
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tackle the uncertainties of integration of electric vehicles into the power grid by employing a non-stationary Markov 

chain. The application of a non-stationary discrete Markov model in this investigation offers a detailed and significant 

comprehension of the dynamic and time-varying characteristics of electric vehicle activities within the power grid. By 

conducting an in-depth case analysis, the results derived from the model provide compelling observations regarding 

the quantity of electric vehicles linked to the grid and the amount of energy they store throughout a 24-hour timeframe. 

Additionally, this study evaluates the precision of the model in depicting the load behavior of electric vehicle charging. 

An integrated model for optimizing the operation and scheduling of energy hubs has been developed in [22], which 

considers the uncertainty of renewable DGs and the load demands of energy hubs. Ref. [23] presents the optimal 

stochastic scheduling of an energy hub considering the system’s thermal and electrical energy markets. In this study, 

Monte Carlo simulation has been applied to investigate energy demands, wind power generation, and market price 

uncertainties. However, the Monte Carol simulation method has extreme computational complexity. Stochastic 

programming and Monte Carol simulation methods are widely used to evaluate the uncertainties of optimization 

problems. However, the main drawback of stochastic programming is that it imposes an enormous computational 

burden on problem-solving [24]-[25]. 

Demand response refers to the adjustment in electricity usage by customers of an electric utility in order to align 

power consumption with the available supply [26]. Reference [27] introduces a novel approach for regulating demand 

response involvement in load frequency control while accounting for communication time delays. The extended state 

observer is employed to estimate the level of Load Disturbance (LoD), taking into consideration the inherent 

uncertainty in power system parameters. Subsequently, the demand response program is integrated into load frequency 

control to offset either the entirety or a portion of the LoD, based on the power accessible at the aggregators and the 

communication time delay. However, the effects of other responsible loads in the system are not taken into account.  

The authors in [28] have presented a stochastic model for a multi-carrier hub, in which the demand response 

capabilities of the hub, as well as the electricity and thermal energy markets, are considered. However, the effects of 

cooling and ice storage systems on the hub’s operating costs are not investigated. The economic operation of a multi-

carrier energy system using the connection matrix and the virtual nodes is proposed in [29]. Although this study has 

considered several energy sources and the responsibility effects of the demands, it did not study the effect of the 

cooling system and the modeling of partial loading of the equipment. In [30], multi-carrier microgrids that can 
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exchange energy with each other are investigated, but the effects of cooling systems and the responsibility effects of 

the demands are not discussed. 

To reduce energy systems’ operating costs, energy storage systems play an essential role in the system’s operation. 

The energy storage systems increase the system’s overall performance and flexibility. For example, an electric storage 

unit stores energy during periods of low electricity prices, and it will discharge during peak consumption hours [31]. 

An energy hub model is proposed in [32], which aims to maximize the benefit of the system. However, it does not 

consider cooling system modeling and demand response programs. In [33], a framework for participation in multi-

carrier energy systems is presented, which integrates renewable energy sources and energy storage systems in the 

energy hub system. However, the responsible effects of cooling, thermal and electric demands, and ice storage effects 

on the systems have not been studied. Reference [34] introduces an enhanced framework for a MEM incorporating 

both electricity and natural gas, along with integrated solar, wind, and energy storage systems. The model, centered 

around energy hubs, is designed to reduce operational expenses and decrease greenhouse gas emissions. Reference 

[35] entails the execution of experiments and three-dimensional computational fluid dynamics analysis to investigate 

the heat transfer and fluid flow properties within an energy storage system of a solar air heater with a roughened wall. 

The roughened wall is characterized by a rectangular S-shaped pattern in two arrangements: staggered and inline. The 

thermal efficiency of the roughness design is a crucial aspect, with the orientation and shape of the irregularity playing 

a significant role. Nevertheless, the impact of this storage system has not been explored in the context of a multi-

energy microgrid operation. 

As can be seen from the literature review on the energy hubs, some significant aspects related to energy hubs have 

not yet reached maturity and development. Among the critical existing challenges that should be addressed more 

deeply than the previous research, we can point out the role of ice storage technologies in the optimal operation of 

energy hubs. Also, another remaining challenge that should be satisfactorily addressed is the investigation of the 

responsibility effects of thermal and cooling demands besides the electrical demand response. Notably, most of the 

previous studies have only assayed the effects of electrical demand response. In addition, using a fast analysis method 

to evaluate the energy hub system’s uncertainties can increase the efficiency and speed of the hub’s operation 

scheduling. Moreover, an appropriate tool must measure the risk associated with the hub’s operating costs. 

According to the mentioned topics, this paper presents a comprehensive risk-based framework for the probabilistic 
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scheduling of a MEM in the presence of responsive cooling, thermal, and electrical loads. In the modeling of MEMs, 

the effectiveness of the most important technologies, such as ice storage technology and Power to Gas (P2G) units 

[36], have been addressed. The risk-based framework uses the well-known Conditional Value at Risk (CVaR) 

approach and the 2m+1 Point Estimation Method (PEM), which can quickly analyze the uncertain variables based on 

the Taylor series to measure the risks pertaining to the MEM’s operating costs. The 2m+1 PEM only utilizes the 

information on the skewness and kurtosis of the Probability Distribution Functions (PDF) and analyzes the system 

uncertainties with appropriate accuracy [37]. In this regard, various types of uncertainties are investigated, such as the 

uncertainties of cooling, thermal and electrical loads, renewable resources, and energy purchasing prices of upstream 

energy carriers. In this paper, the MEM’s internal energy converters equipment is modeled as equipment with non-

constant efficiency, and the effects of partial loading of equipment are considered using non-linear relationships. Table 

1 presents the taxonomy of the proposed risk-based optimal decision-making compared to the state-of-the-art and the 

existing literature. 

Numerical algorithms such as MILP have high speed in optimizing problems. However, they have poor 

performance when solving non-convex problems because these algorithms can easily be trapped in local optima in 

these conditions. On the other hand, meta-heuristic algorithms and evolutionary-based optimization approaches used 

in power systems are more efficient due to straightforward implementation and high efficiency [38]-[39].  For 

example, Particle Swarm Optimization (PSO) was employed for the optimal management of an integrated system, 

including wind units coupled with a battery [39]. Co-evolutionary PSO was applied to smart home operation strategies 

[40]. In Ref. [41], the optimal scheduling of a distribution network is acquired using a hybrid algorithm incorporating 

a bacterial foraging algorithm and PSO. Ref. [42] proposes the expansion planning problem of a single MEM with 

various energy sources using the PSO search algorithm. In [43], the slime mold algorithm is applied to solve the node-

selecting approach for a traffic network problem. The Slime Mould Algorithm (SMA) is a novel population-based 

optimization method presented in 2020 by Mirjalili & et al that has more capability for solving many problems than 

the popular algorithms  [44] . 

 

Notwithstanding high accuracy and ability compared with other algorithms, SMA has not yet been exerted to solve 

MEM scheduling problems. However, the original SMA in some optimization problems, is trapped in local optima 
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due to adjusting the exploration and exploitation process and high non-linearity environment of the problems. The 

main reason for this issue is that SMA’s mutation mechanism, which causes varying solutions, is not effectively robust 

for all optimization problems. Therefore, to enhance the SMA’s robust ability to move towards the global solution of 

energy management of MEMs, this paper presents a new self-adaptive modified technique for the original SMA based 

on the Wavelet theory. The effectiveness of the new self-adaptive modified SMA algorithm has been presented with 

numerical results in Section 5.  

In summary, this paper develops a comprehensive risk-based framework for the stochastic scheduling of a MEM 

system with responsive cooling, thermal, and electrical loads. The modeling of MEMs incorporates key technologies 

such as P2G, Combined Heat and Power (CHP), various boilers, chillers, and different energy storage systems 

including Electrical Storage Systems (ESS), Heat Storage Systems (HSS), Gas Storage Systems (GSS), and Cooling 

Storage Systems (CSS). The framework utilizes the CVaR approach and the 2m+1 PEM to efficiently analyze 

uncertain variables. Various uncertainties are explored, including cooling, thermal, and electrical load uncertainties, 

uncertainties in renewable resources, and fluctuations in energy purchasing prices of upstream energy sources. The 

MEM's internal energy conversion equipment is modeled with non-constant efficiency, accounting for the effects of 

partial loading through non-linear relationships. Furthermore, a novel Self-adaptive modified Slime Mould is 

introduced to address the MEM’s integrated non-convex and non-linear risk-based daily decision-making problem. In 

the following, the main contributions of this paper are expressed: 

1) Developing a risk-based model for a multi-energy microgrid composed of P2G, CHP, various boilers, 

chillers, and different energy storage systems, including ESS, GSS, HSS, and CSS, and renewable energy 

sources. The comprehensive study of the storage system is an essential contribution of this paper compared 

to existing studies such as [17, 18], and [34]. In this paper, much attention has been paid to the ice storage 

systems to provide cooling if needed; Moreover, the impact of various responsive loads, such as electrical, 

heating, and cooling demands, on the total operating cost of a MEM system has been assessed. 

2) Introducing a new Self-adaptive Modified SMA (SAMSMA) optimization algorithm to solve the integrated 

MEM’s non-convex and non-linear risk-based daily decision-making problem. 

3) The proposed framework considers vast areas of uncertainties including, PV and wind energy sources, 

various energy demands, and energy exchange prices with upstream energy networks. 
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4) Developing the MEM modeling utilizing non-constant efficiency and partial loads of the MEM’s internal 

energy converter equipment. 

The rest of this paper is formed as follows. In Section 2, the proposed integrated MEM structure is presented. 

Section 3 formulates the proposed risk-based daily scheduling framework of the integrated MEM. Section 4 represents 

the fast stochastic 2m+1 PEM uncertainty analysis method for solving the proposed optimization problem regarding 

the system uncertainties. The introduced SMSMA algorithm and its modification have been expressed in section 5. 

Section 6 investigates the performance of the proposed risk-based daily scheduling framework and the SMSMA 

algorithm with numerical results. In the end, Section 7 remarks on the paper’s conclusions. 

2. Proposed Multi-Energy Microgrid Structure 

MEMs can be widely used for many purposes, including industrial, commercial, and residential applications [45]. 

Each MEM may contain three equipment types: energy conversion equipment, energy transmission units, and energy 

storage devices. Energy conversion equipment is required to convert energy carriers from one form to another. A 

general diagram of the MEM proposed in this paper is presented in Fig. 1. In this MEM, gas, heat, and electrical 

energies are the input energy sources, and electrical, heat, and cooling energies are the output demands. The input 

energies are converted or directly transported to the output point based on the MEM conditions and demands. 

The electrical energy demand at the output of the MEM can be provided by the CHP, solar unit, wind power unit, 

or purchasing from the upstream network. To supply the thermal load at the output side of the MEM, the Gas-

Consumed Boiler (GCB) or the Electric Boiler (EB) or generated thermal power by the CHP unit, as well as the 

purchased thermal power from the upstream network, can be utilized. Due to the price changes of electricity, thermal, 

and natural gas energies at the upstream networks during the daily operation of the MEM, the generated thermal power 

by the boiler, CHP, or the heat purchased from the upstream network can be stored in the Thermal Storage System 

(TSS). In addition, generated electric power by the CHP, solar unit, wind power unit, or purchased electric power 

from the upstream grid can be stored in the Electricity Storage System (ESS) during the day. Also, the required gas 

for gas-consuming units can be provided by purchasing from the upstream gas network and by using renewable 

energies and converting to gas by the P2G unit. Also, the gas in the MEM can be stored in the Gas Storage System 
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(GSS) for later hours.  

To supply cooling loads, Absorption Chillers (AC) or Electric Chillers (EC) can be utilized. It is also possible to 

store the generated cooling power in the Ice Storage System (ISS) equipment. Ice storage-based air conditioning 

technology is the process of using ice to store thermal energy. This process can reduce the energy used for cooling 

during peak electrical demand. It uses standard cooling equipment, plus an energy storage tank to transfer all or part 

of the MEM’s cooling needs to off-peak and nighttime hours. During off-peak hours, ice is made and stored in energy 

storage tanks. Notably, hydrogen systems are used for specific applications such as hydrogen-fueled vehicles or for 

specific utilities. Hence, since any hydrogen-consuming applications are not included in our model, we did not 

consider the water and hydrogen systems, power-to-hydrogen systems, or any related frameworks. Moreover, the 

process of producing hydrogen from water and using it for power generation is currently not cost-effective when the 

microgrid is equipped with CHP and the gas price is low. For this rational reason, we did not take into account the 

hydrogen-to-power system either.  

The MEM is an independent entity that purchases different forms of energy from different upstream energy 

networks at a predetermined price to meet the MEM’s output energy demand. The MEM operator can optimize the 

MEM’s energy demands in response to variations in the input energy prices by changing the supplier energy at the 

MEM’s input or changing the MEM’s energy consumption pattern by employing demand response capability at the 

MEM’s output. With the change in the supplier energy at the MEM input, the energy consumption does not change 

from the viewpoint of the responsive customers. However, the supplier energy source has been changed to another 

energy source. The MEM operators minimize their energy purchase costs by employing the flexibility achieved by 

converting heat, cold, gas, and electricity energies to each other. Therefore, the MEM operator can reduce the 

operating costs of the MEM by changing the consumption pattern of thermal, electrical, and cooling loads and 

employing the flexibility that results from the conversion of different energies to each other. Also, the MEM’s storage 

units create an ability for the MEM to sell the MEM’s surplus energy to upstream networks and reduce costs. 

 

3. Mathematical Formulation of the Risk-Based MEM Energy Management Framework 

The daily operation cost of the integrated MEM consists of the electrical, heat, and natural gas purchasing costs 
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from the upstream networks. The most critical issue that must be determined in the optimal daily operation of a MEM 

is the amount of converted energy by each internal equipment in the MEM and the amounts of exchanged energy with 

upstream networks, as well as storing energies in various storages. The operating costs of the integrated MEM should 

be minimized over the 24-hour horizon according to the following objective function: 

24

, , ,

1

(Cos ) min ( . . .(t t t t t t CHP Gcb

MEM E e in H H in G G in G t t

t

Min t L L L F F  
=

 
= + + + + 

 
 £

                                                         (1) 

where £𝐺  is the emission factors (per unit of gas energy) of cogeneration units. Eq. (1)  represents the energy 

purchasing costs from the upstream networks as well as carbon production costs.  This equation is based on the hourly 

reaction of the MEM against hourly energy prices considering environment costs. In Eq. (1), the uncertainties 

associated with the MEM system have not been taken into account, which can cause serious risks for the MEM 

operator. To make a trade-off between the MEM’s operating costs and its pertaining risks, we consider the CVaR, 

which is a well-known tool for risk measurement. The CVaR value can be calculated for any given confidence level 

α ∈ [0, 1] as follows [46]: 

,

1
[ .max{Cos ,0}]

1
hubCVaR Min W t 



 
 

= + −
−
                                                                                                   (2) 

where 𝜗 demonstrates VaR, 𝜌 defines the sample point set in the 2m+1 PEM method described in Section 4. Wρ is the 

weighting factor corresponding to sample point ρ in the 2m+1 PEM method. Hence, the MEM operator’s objective 

function is to minimize the expected costs(𝐶𝑜𝑠𝑡ℎ𝑢𝑏), together with the weighted CVaR of the cost. Accordingly, Eq. 

(1) can be rewritten by the following equation: 

, ,

1 1

1
[(1 )* .Cos *( .{max(Cos ,0)})]

1

N N

hub hubMin W t W t
 

  
 

   
= =

− + + −
−

                                                              (3) 

where 𝛶 ∈ [0, 1] is a weighting factor that indicates the trade-off between the MEM’s operating costs and its risks. 

The objective function (3) is constrained with Eqs. (4) - (47): 

,Cos ,hubt   −                                                                                                                                               (4) 

0,                                                                                                                                                                  (5) 

where 𝛬𝜌 is a positive auxiliary parameter that limits the difference between the operating costs corresponding to the 
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sample point ρ (𝐶𝑜𝑠𝑡ℎ𝑢𝑏,𝜌) and the VaR value represented in Eq. (4). 

This study focused on analyzing the optimal daily operation of a multi-energy microgrid from the perspective of 

microgrid operators. The investigation addressed various constraints relevant to microgrid operations. The microgrid 

operator needs to predict selling/purchasing wholesale market prices from/to upstream networks one day before the 

scheduling day. Although this prediction can be uncertain, it utilizes uncertainty analysis methods such as 2m+1 PEM 

and CVaR method to mitigate their risks in the operations. Consequently, considering the power flow constraints of 

the upstream electricity network is unnecessary for the daily operation of the microgrid from the microgrid operator's 

perspective. Therefore, including electricity network constraints in the modeling or simulation results is considered 

irrelevant to the daily operation of the microgrid. Hence, the electricity network can be anything. 

Eqs. (5) to (9) balance the electricity, gas, and heat energies at the input and output sides of the  MEM, respectively:   

2

, , , ,

t EC P G Ecb ESS t CHP wind pv ESS

e in t t t ch t e out t t t dch tL P P P L P= + + + + − − − −P P P P                                                                            (6) 

2

, , ,

t Gcb CHP GSS P G GSS

g in t t ch t t dch tL = + + − −F F F F F                                                                                                                   (7) 

, , , ,

t CSS AC t Ecb Gcb chp CSS

h in ch t t h out t t t dch tL L     = + + − − − −                                                                                                         (8) 

, , , ,

EC AC ISS t ISS

t t c dch t c out ch tL   + + = +                                                                                                                                    (9) 

where 𝛷𝑡
𝐶𝐻𝑃 and 𝛷𝑡

𝑏𝑜𝑖𝑙𝑒𝑟 are the generated heat power of CHP and boiler, respectively. Ƒ
𝑡
𝑃2𝐺 is the gas generation of 

the P2G unit. 𝜓𝑡
𝐸𝐶and 𝜓𝑡,𝐶

𝐴𝐶  are the generated cooling energies by electrical and absorption chillers. According to the 

type of customers, electrical, thermal, and cooling energies at the output of the MEM are divided into two parts 

consisting of fixed and flexible loads as follows [47]: 

, , , , ,

t t t

e out e out Fix e out DRL L L= +                                                                                                                                               (10) 

, , , , ,

t t t

h out h out Fix h out DRL L L= +                                                                                                                                               (11) 

, , , , ,

t t t

c out c out Fix c out DRL L L= +                                                                                                                                               (12) 

where 𝐿𝑒,𝑜𝑢𝑡,𝐹𝑖𝑥
𝑡  , 𝐿ℎ,𝑜𝑢𝑡,𝐹𝑖𝑥

𝑡    and  𝐿𝐶,𝑜𝑢𝑡,𝐹𝑖𝑥
𝑡  are the constant part of electrical, thermal, and cooling loads and 𝐿𝑒,𝑜𝑢𝑡,𝐷𝑅 

𝑡 ,  

𝐿ℎ,𝑜𝑢𝑡,𝐷𝑅 
𝑡  and 𝐿𝑐,𝑜𝑢𝑡,𝐷𝑅 

𝑡  are the responsible parts for electrical, thermal, and cooling loads. The total amount of electric, 

heat, and cooling loads for a day is fixed, and these loads can only be moved from one time period to another period 
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in the day. Therefore, the sum of electrical, thermal, and cooling loads every day must equal the following equations: 

, , , ,

day t t

e e out Fix e out DR

t T t T

L L L
 

= +                                                                                                                                       (13) 

, , , ,

day t t

h h out Fix h out DR

t T t T

L L L
 

= +                                                                                                                                        (14) 

, , , ,

day t t

c c out Fix c out DR

t T t T

L L
 

= +                                                                                                                                       (15) 

The transfer percent of electric, thermal, and cooling loads per hour can only be equal to the responsibility 

percentage of the loads. Therefore, the following limit for the changes of responsive loads per hour should be observed: 

,min ,max

, , ,

t t t

out DR out DR out DRL L L                                                                                                                                            (16) 

The following equation can be used to calculate the generated electrical power by the CHP unit (𝑃𝑡
𝑐ℎ𝑝

) [48]: 

 

,max

, 1

,max ,max

, 1 2 1

,min ,max

, 1 2 2

,

,

,

chp chp chp chp chp chp chp chp chp

t s t t t H

chp chp chp chp chp chp chp chp chp chp chp

t t s t H H

chp chp chp chp chp chp chp chp chp chp chp

t s t H t H

a b T c for d

P a b T c y for d

a b T c y y for d

   

   

   

 + +  

= + + − 

+ + − −  






                                             (17) 

where 𝑃𝑡
𝑐ℎ𝑝

 is the electrical active power of CHP, and 𝜙𝑡,ℎ
𝑐ℎ𝑝

 is the CHP’s generated thermal power. 𝜙𝑡,𝑚𝑎𝑥
𝑐ℎ𝑝  and 𝜙𝑡,𝑚𝑖𝑛

𝑐ℎ𝑝
 

are the minimum and maximum capacities of the CHP’s output thermal power, respectively. The coefficients in Eq. 

(17) are constants and indicate the dependency between the production amount of CHP’s thermal and electrical 

powers, known as the CHP’s partial loading coefficients. 𝑇𝑠
𝑐ℎ𝑝 is the CHP’s temperature of the hot water. The 

parameters 𝑑1,𝑟
𝑐ℎ𝑝 and 𝑑2,𝑟

𝑐ℎ𝑝
 are called loading constants and are obtained from the following relations:  

1, 1, ,max , 1,( )chp chp chp chp chp

r r t t h rd d e = −                                                                                                                                           (18) 

2, 2, ,max , 2,( )chp chp chp chp chp

r r t t h rd d e = −                                                                                                                                             (19) 

All the coefficients of equations (18) and (19) are fixed, and their values are given in reference [48]. Also, the 

consumed natural gas amount by the CHP unit (Ƒ
𝑡
𝑐ℎ𝑝) in the MEM can  be calculated as follows [48]: 

3.412
( )

chp chp

chp E t

t chp

t

P

GHV





+
=F                                                                                                                                       (20) 

𝐺𝐻𝑉𝐺  is the amount of gross heat per unit volume of natural gas (𝑀𝐵𝑇𝑈/𝑚3) and 𝜂𝑡
𝑐ℎ𝑝

  is the CHP's overall 

efficiency. The gas consumption value by the gas-fired boiler (Ƒ
𝑡
𝐺𝑐𝑏) unit to generate heat energy can be expressed as 
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follows  [49]: 

23.412
( .( ) . )Gcb boil Gcb boil Gcb boil

t t ta b c
GHV

 = + +F                                                                                                          (21) 

In this regard, 𝜙𝑡
𝐺𝑐𝑏 is the produced thermal power by the boiler. The maximum amount of thermal power that a 

boiler can generate is represented by 𝜙𝑡,𝑚𝑎𝑥
𝐺𝑐𝑏 . 𝑎𝐺𝑐𝑏 and 𝑏𝐺𝑐𝑏 express boiler partial loading constants. The electrical 

power amount used by the electric boiler (𝑃𝑡
𝐸𝑐𝑏) can  be evaluated by [50]:   

Ecb

Ecb t

t Ecb

t

P



=                                                                                                                                                               (22) 

The amount of electric power consumption of the unit P2G (Ƥ𝑡
𝑃2𝐺) is determined as follows [51]: 

2 2

2
.

.3.412

gP G P G

t tP G

t

GHV


=P F

                                                                                                                                       (23) 

The output thermal power of gas-fired and electric boilers should be between the minimum and maximum capacity 

of gas-fired and electric boilers, respectively: 

,min ,max

Gcb Gcb Gcb

t t t   
                                                                                                                                                  (24) 

,min ,max

Ecb Ecb Ecb

t t t   
                                                                                                                                                 (25) 

The CHP’s generated thermal power amount must be between the CHP’s maximum and minimum values: 

,min , ,max

chp chp chp

t t h t   
                                                                                                                                                   (26) 

The amount of generated natural gas by the P2G unit must be between the maximum and minimum generation 

values of the P2G unit, which is expressed according to the following relationship: 

2 2 2

,min ,max

P G P G P G

t t t F F F
                                                                                                                                             (27) 

The State Of Charge (SOC) of ESS (𝑃𝑆𝑂𝐶,𝑡
𝐸𝑆𝑆 ) can be obtained by the following equation: 

, , 1 , ,

ESS ESS ESS ESS ESS ESS

SOC t SOC t ch ch t dch dch tP P P P −= + −
                                                                                                                  (28) 

where 
𝑐ℎ
𝐸𝑆𝑆 and 

𝑑𝑐ℎ
𝐸𝑆𝑆 are charge and discharge efficiencies. In addition, the ESS cannot be charged and discharged 

simultaneously. Also, the rate of SOC changes related to the ESS should be considered as follows: 

, ,max0 ESS ESS

ch t chP P t  
                                                                                                                                                 (29) 
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, ,max0 ESS ESS

dch t dchP P t  
                                                                                                                                                 (30) 

The upper/lower capacity limit for the ESS is as follows: 

(31) 
,min , ,max

ESS ESS ESS

SOC SOC t SOCP P P 
 

The AC unit’s output cooling power is limited by the minimum (𝜓𝑡,𝑚𝑖𝑛
𝐴𝐶 ) and maximum (𝜓𝑡,𝑚𝑎𝑥

𝐴𝐶 ) capacities: 

,min ,max

AC AC AC

t t t   
                                                                                                                                              (32) 

In addition, the required heat energy for the AC unit (𝜙𝑡
𝐴𝐶) to produce cooling energy is calculated by the AC 

unit’s efficiency (𝜂𝑡,𝐶
𝐴𝐶) as follows: 

,

,

AC

t CAC

t AC

t C





=

                                                                                                                                                           (33)                                

The SOC related to TSS (𝜙𝑆𝑂𝐶,𝑡
𝑇𝑆𝑆 ) is calculated considering the charge/discharge efficiency (

𝑐ℎ
𝑇𝑆𝑆) /(

𝑑𝑐ℎ
𝑇𝑆𝑆) as 

follows: 

, , 1 , ,

TSS TSS TSS TSS TSS TSS

SOC t SOC t ch ch t dch dch t     −= + −
                                                                                                                      (34) 

where 𝜙𝑐ℎ/𝑑𝑐ℎ,𝑡
𝑇𝑆𝑆  is the charge/discharge value of 𝑇𝑆𝑆  unit. The discharge and charge of each TSS cannot be 

simultaneously carried out. The lower/upper capacity limit and TSS charging/discharging ramp are represented by Eq. 

(35) and (36) – (37), respectively [52]: 

,min , ,max

TSS TSS TSS

SOC SOC t SOC                                                                                                                                                (35) 

, ,max0 TSS TSS

ch t ch t                                                                                                                                                      (36) 

, ,max0 TSS TSS

dch t dch t                                                                                                                                                    (37) 

The EC unit’s cooling power is limited by its minimum (𝜓𝑡,𝑚𝑖𝑛
𝐸𝐶 ) and the maximum (𝜓𝑡,𝑚𝑎𝑥

𝐸𝐶 )   capacities  as 

follows: 

,min ,

EC EC EC

t t C   
                                                                                                                                               (38) 

The electrical energy required for the EC unit (𝑃𝑡
𝐸𝐶) to produce cooling can be expressed as follows: 

,

EC

EC t

t EC

t C

P



=

                                                                                                                                                          (39) 
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The SOC related to GSS (Ƒ
𝑆𝑂𝐶,𝑡
𝐺𝑆𝑆 ) is calculated based on the following equation [53]: 

, 1 , 1 , ,

GSS GSS GSS GSS GSS GSS

SOC t SOC t ch ch t dch dch t − −= + −F F F F
                                                                                                               (40) 

where Ƒ
𝑐ℎ/𝑑𝑐ℎ,𝑡
𝐺𝑆𝑆  is the charge/discharge value of 𝐺𝑆𝑆 unit. 

𝑐ℎ
𝐺𝑆𝑆 and 

𝑑𝑐ℎ
𝐺𝑆𝑆 are the charging and discharging efficiency 

of GSS, and GSS cannot be charged and discharged simultaneously. GSS capacity limits and the SOC ramp rate 

related to GSS are described by equations (41), (42), and (43), respectively: 

,min , ,max

GSS GSS GSS

SOC SOC t SOC F F F
                                                                                                                                          (41) 

, ,max0 GSS GSS

ch t ch t  F F
                                                                                                                                                  (42) 

, ,max0 GSS GSS

dch t dch t  F F
                                                                                                                                                (43) 

The SOC related to ISS (𝜓𝑆𝑂𝐶,𝑡
𝐼𝑆𝑆 ) can be defined by considering the charge (

𝑐ℎ
𝐼𝑆𝑆) and discharge (

𝑑𝑐ℎ
𝐼𝑆𝑆 ) efficiencies 

using the following equations: 

, , 1 , ,

ISS ISS ISS ISS ISS ISS

SOC t SOC t ch ch t dch dch t     −= + −
                                                                                                                      (44) 

where 𝜓𝑐ℎ/𝑑𝑐ℎ,𝑡
𝐶𝑆𝑆  is the charge/discharge value of 𝐼𝑆𝑆 unit. The ISS cannot be simultaneously discharged and charged. 

In addition, the limits of ISS capacity and ramp rate for its SOC are expressed by equations (45) - (47), respectively: 

,min , ,max

ISS ISS ISS

SOC SOC t SOC   
                                                                                                                                            (45) 

, ,max0 ISS ISS

ch t ch t   
                                                                                                                                                    (46) 

, ,max0 ISS ISS

dch t dch t   
                                                                                                                                                  (47) 

The strategy adopted by the MEM operator and its decision-making parameters at every hour is expressed as 

follows: 

2

, , , , , , , , , , , , ,( , , , , , , , , , , , , , , , )Hub CSS CSS chp Gcb Ecb AC ISS ISS EC GSS GSS P G ESS ESS t t

t ch t dch t t t t t c dch t ch t t ch t dch t t dch t ch t e out DR h out DRX P P L L        = F F F               (48) 

4. Uncertainty Analysis of the MEM Based on the 2m+1 PEM 

The existing uncertainties in the MEM operation may result in weak daily scheduling of the MEM. To overcome 

the MEM’s uncertainties, this paper applies the point estimate method, which converts the stochastic daily MEM 
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scheduling problem into a 2m+1 equivalent deterministic daily MEM scheduling problem by specific weights. 

Suppose a function ( )F  that relates m input uncertain variables to an output uncertain variable (S) as follows [54]- 

[55]. 

1 2( , ,..., ,..., )d mS F z z z z=                                                                                                                                        (49) 

In Eq. (49), considering the optimal daily MEM scheduling problem, the variable S indicates the daily operating 

costs of the MEM, and function F is related to Eq. (1) with system constraints (6)-(47). Moreover, m represents the 

number of uncertain variables in the MEM system. In this regard, PEM replaces the PDFs of uncertain variables into 

three concentrated locations based on the Taylor series. Accordingly, each uncertain variable contains three 

concentration locations in the PEM with the p-th location 3,2,1) , ( , =pz pd
 
and its weight factor (ωz,d) to evaluate the 

expected operation cost. The weighting factors reveal the corresponding location impact on the future expected 

operation cost of the integrated MEM. The following equations estimate the three concentration locations for uncertain 

variables, including generation power of wind and solar units, various energy demands, energy exchange prices, and 

their corresponding weight factors: 

3,2,1.
,

, =+= pz zzz dpdd
pd                                                                                                                               (50) 

( ) 0&2,1
4

3
1

2 3,3,4,

3,

,

23 ==−−+= − 



zzz

z
z ddd

d

pd
pforp

  
                                                                                                              (51) 

( )

( )

( )

( )










zd

zd
zd

zd

zd
zd EE

zz dd 44,3,

4

3

3

,







 −

=







 −

=
                                                                                                                        (52)

  

( )



2

3,4,

3,

2,1,,

3

,

11&2,11

zdzd

d

zdzdz pd

p

pd m
zz p

−
−=









−

= =−
−

            

                                                                                                

       

(53) 

where, 𝜇𝑍𝑑
 is the mean value of an uncertain variable and 𝜎𝑍𝑑

 is the standard division value of it. 𝜉𝑍𝑑,𝑃 is the standard 

location in PEM and 𝜆𝑍𝑑,3
and 𝜆𝑍𝑑,4

, respectively, are the skewness and kurtosis of variable 𝑍𝑑 . After calculating 

concentration locations for uncertain parameters, the operation cost of the MEM should be evaluated for each 

concentration location. In this regard, one of the uncertain parameters in each hour, including various energy load 

demands, the wind power, the generated power by the solar unit, and energy exchange prices with upstream networks, 
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is fixed to its concentration location, and the other uncertain parameters are fixed to their mean values as follows: 

( ) 3,2,1,...,,...,, ,, 21
=








= pzFCost

zzz m
pdpd                                                                                                              (54) 

Based on the above equations, the expected operation cost of the energy MEM is calculated as follows:            

, ,

3 2

1 21 1 1 1 1 ,3
(Cos ) .(Cos( , )) .(Cos( , )) [ ( , ,..., ,..., )].

d p d p

m m m

z z z z zd zmd p d p d zd
Expected t d p d p F      

= = = = =
= = +      (55)            

5. Proposed Self-Adaptive Modified Slime Mould Algorithm 

 

5.1. Original slime mould algorithm 

The SMA has been adopted from the morphological changes and behaviour of slime mould Physarum poly-

cephalum in foraging. In SMA, using three different morphotype weights, the negative and positive feedbacks of slime 

mould during foraging are simulated. The organic matter in slime mould looks for food and then surrounds it, and in 

the long run, secretes enzymes to digest food. During the migration process of slime mould, the front end extends into 

a fan-shaped, tracked by an interconnected venous network. The venous network allows cytoplasm to flow inside the 

network [42]. Since slime moulds have unique characteristics and patterns, they can surround different food sources 

simultaneously using the venous network. The mathematical modeling of slime mould mechanisms for the 

establishment of SMA is presented as follows [42]: 

The SMA begins with a set of random agents called population, in which each agent is a candidate solution for 

optimizing the MEM scheduling problem [32]. Each agent is determined as follows: 

[ ,1 ,2,... , ] 1,2,...,Xi xi xi xi D i ps= =                                                                                                                  (56) 

where, D is the number of decision variables, and ps is the population size. The slime mould is approached to food 

based on the existence of odor in the air. Accordingly, the following equations describe the contraction mode and 

approach to a food of slime mould in SMA: 

.( ) ,

( ) ( . ( ) ( )),

. ( ),

b b A B

c

rand UB LB LB rand z

X X t v W X t X t r p

v X t r p



− + 


= +  − 




                                                                                                           (57) 
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where 𝑣𝑐⃗⃗⃗⃗  is a parameter decreased linearly from one to zero. t is the current iteration, 𝑋𝑖
⃗⃗  ⃗ is the new slime mould 

location, 𝑋𝑏(𝑡)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  is the individual location that has the most odor concentration found by the algorithm, 𝑋𝐴(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and 

𝑋𝐵(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ represent two randomly selected locations. z is a setting parameter in SMA. r is a random variable between 

[0,1]. 

The following equations represent the other required parameters for the calculation of the new slime mould location: 

tanh | ( ) | 1,2,...,p S i DF i ps= −                                                                                                               (58) 

where S (i) is the fitness value of X agent, and DF is the best fitness obtained in all iterations of SMA previously. 𝑣𝑏⃗⃗⃗⃗  

is a random parameter located between [−a, a] and parameter a is calculated by: 

arctan max_ 1a h t t= − +                                                                                                                                             (59) 

where max_t is the maximum iteration of SMA. W indicates the slime mould weight, which is represented as follows: 

( )
1 .log( 1),

( ( )
( )

1 .log( 1),

bF S i
r condition

bF wF
W SmellIndex l

bF S i
r other

bF wF

−
+ + −

= 
− − +

 −

                                                                                                (60) 

( )SmellIndex Sort S=                                                                                                                                                   (61) 

The condition indicates whether F(i) is in the upper half of the sorted population or not. bF and wF denote the best 

and worst fitness values obtained in the current iteration. The Sort function arranges the solutions based on the most 

optimal objective function from top to bottom 

5.2. Self-adaptive modified slime mould algorithm  

The main goal of this self-adaptive modification is to compensate for the original SMA’s shortcomings, and 

improve the SMA algorithm’s convergence characteristics, and escape it from local optima. This self-adaptive 

modification is used to create diversity in different solution candidates’ positions and prevent stagnation in the 

population. The original SMA is based on the two leading operators, including food search and approach to food. 

Hence, in the setting process between the food search and approach to food, the original SMA algorithm may fail to 

find global solutions and be trapped in local optima. The main reason for this mentioned issue is that the mutation 

operators in Eq. (57) for the original slim mould algorithm during the optimization process are inefficient and cannot 
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powerfully mutate the solution agents to reach the global optima. A new modification for the SMA solutions has been 

presented to enhance the SMA’s ability and robustness. This mutation is derived from the wavelet theory [56], which 

is a potent tool for adequately adjusting the variables in each solution of the SMA algorithm, which increases its search 

potential. The name of this improved self-adaptive algorithm is SMSMA. 

 In this paper, to improve the performance of the SMA algorithm in essential exploration and exploitation 

procedures, the parameter 𝐴   is created with a self-adaptive mechanism based on the wavelet theory. The parameter 

𝐴   based on the self-adaptive mechanism dynamically generates population mutations along the search path. The 

mathematic relations of the self-adaptive mechanism of the SMSMA algorithm are as follows: 


























=

−

h

h

h
A





5cosexp
1

2

2

                                                                                                                                  (62) 

 
( )exp

)ln(iter/1)ln( max  
+− −= iterh
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itermax
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                                                                                                                                       (64)      

where η is the upper limit of h and β is the shape parameter of h. In this regard, a large value of 𝐴  enlarges the search 

area and vice versa. Since 99% of the total Morlet wavelet energy is located in the interval [-2.5 - 2.5], φ can be chosen 

randomly in the interval [h*-2.5 - h*2.5]. In order to adapt the parameter 𝐴  well, the value of the parameter (h) varies 

with time. In particular, in the initial iterations of the search, the value of h should be small and 𝐴  should be large. In 

addition, with the increase of the iterations, the value of h should become larger, and the value of 𝐴  should be 

decreased. Accordingly, in the initial stages, to have a small value of h, a small value of β should be applied. Hence, 

a wide-area search occurs in early iterations, and the search around the global optimal is encompassed later. 

6. Numerical Results 

This section investigates the efficiency of the proposed risk-based optimal scheduling framework on an integrated 

MEM system. The MEM system has been tested with two approaches. In the first approach, which is the primary and 
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deterministic state, the MEM performance is analyzed without considering the uncertainties of the system. In the 

following approach, the uncertainty effects of the renewable sources, the different types of loads, and the price of each 

energy carrier at the MEM’s input are examined.  

Table 2 shows the technical specifications of the MEM’s internal equipment. The wind power unit is a turbine with 

350 KW, and the solar power plant is a 700 KW unit. The structure of the proposed MEM is shown in Fig. 1. The 

distribution functions used for electrical and thermal load uncertainties are normal PDF [57]. Also, the energy price 

prediction errors [57], wind power [57], and photovoltaic power uncertainties [58] are modeled with normal PDFs. 

The standard deviation error of the uncertain variables is assumed to be 10%. The population and the maximum 

iterations in SMSMA are 50 and 200, respectively. To achieve the best minimization performance of MMSMA, the 

algorithm first has been run with the 200 population size and the 1000 maximum number of iterations. After that, the 

maximum number of the population and the iterations have been reduced with trial and error until the minimization 

of the MEM’s operation cost is not changed. The results indicated that selecting populations and the maximum number 

of iterations for MMSMA to 50 and 200, respectively, could result in the best operation cost minimization performance 

and running time. Only 25% of the MEM’s electrical, thermal, and cooling output loads are responsible. The proposed 

framework is solved by MATLAB software on a Core i7, 2.7 GHz PC with 4 GB RAM.  

The price of each energy carrier at the input of the MEM is shown in Fig. 2. The amount of required electrical, 

cooling, and thermal loads at the MEM output over 24 hours are plotted in Fig. 3. The predicted daily power generation 

of the solar and the wind power units are demonstrated in Fig. 4.  

 

 

 

 

 

The results of the daily scheduling of the MEM’s internal equipment are shown in Fig. 5. It is evident from this 

figure that the MEM’s CHP and boiler generate electricity only when the price of natural gas is low. In addition, the 

electric boiler in the system is not cost-effective for generating thermal energy. To produce cooling power, the AC 
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unit is economical equipment, and this device often works with maximum capacity at different hours. Also, the EC 

unit is used to provide the remaining cooling power. The energy storage units in the daily scheduling are frequently 

charged or discharged to reduce the MEM’s total daily costs. The MEM operator generally tends to generate energy 

from the MEM’s internal equipment rather than purchasing at high prices through upstream networks. The MEM 

operator buys the needed energy during the hours when the energy purchase prices are lower. This fact can be seen in 

the MEM’s excess and deficiency power curves and the charge/discharge strategies of the MEM’s storage units. 

 

Fig. 6 shows the MEM’s electric, gas, and thermal powers exchanging with the upstream networks. When the 

electricity demand is high between 10 am and 10 pm and the gas price is high, the MEM operator supplies its electricity 

demand by purchasing electricity from the upstream network. In addition, it is evident from this figure that when the 

gas price is low, the operator tends to buy gas energy, and when the gas price is high, the operator sells the MEM’s 

surplus gas to the gas network. Moreover, when the gas price is high, the operator buys thermal energy to supply the 

MEM’s heat demand. Also, the operator can sell the MEM’s surplus thermal energy to the upstream heating network 

at other hours. 

 

Table 3 indicates the comparison results of three uncertainty analysis methods to investigate the performance of the 

proposed 2m+1 PEM method. In this table, the MEM’s daily operation costs for four uncertainty analysis methods, 

including the proposed 2m+1 PEM, 2m PEM methods, Monte Carlo and the scenario-based method, have been 

presented. In this regard, it is notable that when the uncertainties are taken into account, the operating costs of the 

MEM are increased. Despite the increase in the MEM’s operating costs in the 2m+1 point estimation method; this 

method is more effective because it provides a more realistic view of the system for the MEM operator. In addition, 

this table shows that the MEM’s expected operating costs of the proposed 2m+1 PEM are very close to the Monte 

Carlo result. However, the running time of the proposed 2m+1 PEM is much lower than the Monte Carlo which 

indicates the superiority of the proposed 2m+1 PEM. 

 

Fig. 7 depicts the tradeoff between CVaR and the expected operating costs of the MEM for various values of 𝜰 in 
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order to explore the effects of risk level on the MEM operation. As the level of the MEM’s risk aversion increases, it 

is expected that the corresponding CVaR values will increase, and the MEM’s expected operating costs will rise. The 

numerical outcomes shown in Fig. 7 support this fact. 

 

To demonstrate the sensitivity of the total operation costs concerning the responsibility of loads and the increase in 

various storage capacities, Figures 8 and 9 are presented. As we can see from Figure 8, increasing the responsibility 

of loads to 20% results in a significant reduction in total operation costs. By increasing the responsibility of loads 

from 20%, the reduction in total operational costs is gradual. Moreover, Figure 9 indicates that increasing the various 

storage capacities by 40% can effectively reduce the total operational cost. 

 

 

The comparative results between different optimization algorithms are presented in Table 4 in terms of statistical 

comparison indicators such as standard deviation, average, worst, and best solutions. It is noteworthy that the best 

result for each index in this table is typed in bold. Statistical indices show that the SMSMA algorithm is better than 

other well-known algorithms in all indices. The low standard deviation of the SMSMA algorithm compared to other 

algorithms shows the superiority of the proposed wavelet-based self-adaptive mutation to the original SMA algorithm. 

In this regard, in the wavelet theory, when the number of sample generations is significant, and samples are randomly 

generated in each iteration, it causes the sum of positive values of 𝐴  and the sum of the negative values of 𝐴  to be 

equal. Therefore, this feature of the proposed self-adaptive wavelet mutation method makes SMSMA experience a 

low standard deviation value. Considering the low standard deviation value of SMSMA compared to other algorithms 

reveals the quality and robustness of the self-adaptive modified mutation method for the original SMA algorithm. 

These comparisons show the ability of the SMSMA to solve the daily optimal scheduling problem of the MEM. 

 

7. Conclusions 

This paper presented a risk-based scheduling framework for multi-carrier MEM systems, considering the impacts 
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of responsive cooling and thermal and electrical energy loads. The objective function of the study is to minimize the 

MEM’s operating costs and the risk associated with it due to system uncertainties. The well-known CVaR approach 

and the fast 2m+1 PEM uncertainty analysis method were employed to handle the risk arising from the uncertainties 

of renewable energy sources, various energy demands as well as energy purchasing prices at the MEM input. The 

operating effects of the MEM’s several internal equipment and different energy storage units, especially ice storage, 

were investigated. Moreover, to solve the non-linear risk-based scheduling problem of the MEM, the new self-adaptive 

modified optimization algorithm named SMSMA was introduced. 

According to the obtained results, it can be concluded that the proposed scheduling framework can specify the 

energy generation of the MEM’s internal equipment as well as energy-exchanging values with the upstream energy 

networks. The hub’s optimal policy is different at different times of the day according to the energy purchasing prices 

at the MEM input and different energy needs. Based on the results of the MEM’s energy exchanges with the upstream 

networks and also the storage units’ charging and discharging strategies, the system operator has been able to buy 

energy from the upstream networks at different times when the prices of energy carriers are low. Moreover, the MEM 

operator could sell the MEM’s surplus energy when the price of energy carriers is high to make a profit. The ISS 

performance  increases the MEM’s flexibility to exert more energy  resources, reducing costs besides utilizing other 

energy storages. The ice can be stored inside the MEM for short-term operation or  long-term  planning of the energy 

MEM. Results showed that with the increase in the parameter 𝜰, the CVaR values related to the MEM’s operating 

cost are significant. The numerical results also indicated the ability and robustness of the SMSMA algorithm to obtain 

the optimal solution of the risk-based daily scheduling problem of an integrated MEM compared to other algorithms. 
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Figure captions: 

Fig. 1. Generalized schematic of the integrated MEM. 

Fig. 2. Predicted daily prices of different energy carriers at the MEM input [59]. 

Fig. 3. Predicted daily thermal and electrical loads at the MEM output [8]. 

Fig. 4 Daily predicted generation power of the solar and wind power units. 

Fig. 5. Optimal operating of the MEM’s internal equipment, a) Electrical equipment, b) Thermal equipment, c) Cooling equipment, d) Gas 

equipment. 

Fig. 6. Power exchange of the MEM with the upstream networks. a) Electric power, b) Gas, c) Thermal power. 

Fig. 7. The MEM’s expected operating costs --versus the CVaR for different values of the risk management parameter 𝜰. 
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Fig. 8. The sensitivity analysis of the total operation costs versus responsibility of loads. 

Fig. 9. The sensitivity analysis of the total operation costs versus increasing in the various storage capacities. 

 

 

 

 

 

 

 

 

 

Table 1. Taxonomy of the proposed the proposed risk-based optimal decision-making compared to the state-of-the-art and the existing literature. 

Ref. 

Output 

Energy 

Loads 

Component 

Consideration 

Risk 

Consideration 

Uncertainty 

Modelling 

Demand 

Response 

Non-Constant 

Efficiency 

and Partial 

Loads 

Storages 

[10] Electrical 

Wind Unit, Diesel 

Generator, Fuel 

Cell 

    ESS 

[11] 
Electrical, 

Thermal 

PV, DG, HVAC  ✓ ✓  ESS 

[16] 
Electrical, 

Thermal 

CHP, Boiler, 

Wind Unit 

 ✓   ESS, TSS 

[17] 
Electrical, 

Thermal, 

CHP, Boiler, AC      
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Cooling 

[18] 
Electrical, 

Thermal 

CHP, Boiler, 

Diesel Generator, 

Wind Unit 

✓ ✓  ✓ ESS 

[23] 
Electrical, 

Thermal 

CHP, Boiler, PV, 

Wind Unit 
 ✓ ✓  TSS 

[28] 
Electrical, 

Thermal 
CHP, Boiler  ✓ ✓  ESS, TSS 

[32] 
Electrical, 

Thermal 

CHP, Boiler, EB, 

Wind Unit 
✓ ✓   ESS, TSS 

[33] 

Electrical, 

Thermal, 

Cooling 

CHP, GCB, PV, 

EC, AC, EB, 

Wind Unit 

    
ESS, TSS, 

ISS 

[34] 
Electrical, 

Thermal 

CHP, GCB, Wind 

Unit 
 ✓   ESS 

Proposed 

Electrical, 

Thermal, 

Cooling 

CHP, GCB, P2G, 

PV, EC, AC, EB, 

Wind Unit 

✓ ✓ ✓ ✓ 
ESS, TSS, 

GSS, ISS 

 

Table 2. Characteristics of the MEM’s internal equipment. 

 

Equipment Technical Details 

Electrical Boiler  

 

𝜙𝑡,𝑚𝑎𝑥
𝐺𝑒𝑏 = 500(𝐾𝑊)  =0.9 

Absorption Chiller 𝜓𝑡,𝑚𝑎𝑥
𝐴𝐶 =1500 𝐾𝑊  =0.85 

Electrical Chiller 𝜓𝑡,𝑚𝑎𝑥
𝐸𝐶  =1500 𝐾𝑊  =0.6 

CHP 𝜙𝑡,𝑚𝑎𝑥
𝑐ℎ𝑝

= 1500(𝐾𝑊) 

0 Gas-fired Boiler 

 

𝜙𝑡,𝑚𝑎𝑥
𝐺𝑐𝑏 = 800(𝐾𝑊) 

0 
P2G Ƒt,max

P2G =0.01 (MSCM)  =0.7 

ESS 

 

𝑃𝑐ℎ,𝑚𝑎𝑥
𝐸𝑆𝑆 =1000 KW 𝑃𝑆𝑂𝐶,𝑚𝑎𝑥

𝐸𝑆𝑆 =200 KW 𝑃𝑆𝑂𝐶,𝑚𝑎𝑥
𝐸𝑆𝑆 =300 KWh 

𝑐/𝑑,𝐸𝑆𝑆
=0.9 

TSS 

 

𝜙𝑆𝑂𝐶,𝑚𝑎𝑥
𝑇𝑆𝑆 =1000 𝐾𝑊 𝜙𝑑𝑐ℎ,𝑚𝑎𝑥

𝑇𝑆𝑆 =200 KW 𝜙𝑑𝑐ℎ,𝐼𝑛𝑖𝑡𝑖𝑎𝑙
𝑇𝑆𝑆 =300 KWh 

𝑐/𝑑,𝑇𝑆𝑆
=0.9 

GSS 

 

Ƒ𝑆𝑂𝐶,𝑚𝑎𝑥
𝐺𝑆𝑆 = 0.01 𝑀𝑆𝐶𝑀 Ƒ𝑐ℎ,𝑚𝑎𝑥

𝐺𝑆𝑆 = 0.003 𝑀𝑆𝐶𝑀 Ƒ𝑐ℎ,𝐼𝑛𝑖𝑡𝑖𝑎𝑙
𝐺𝑆𝑆 = 0.003 𝑀𝑆𝐶𝑀 𝑐

𝑑,𝐺𝑆𝑆
= 1 

ISS 𝜓𝑆𝑂𝐶,𝑚𝑎𝑥
𝐼𝑆𝑆 = 300(𝐾𝑊) ψdch,max

ISS = 60(𝐾𝑊) ψdch,𝑖𝑛𝑖𝑡𝑖𝑎𝑙
ISS = 90(𝐾𝑊ℎ) 

𝑐/𝑑,𝐼𝑆𝑆
= 0.9 
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Table 3. Total daily MEM’s operation costs by various uncertainty analysis methods 

 Deterministic Stochastic 

  

Uncertainty Analysis Method 

Monte Carlo Scenario-Based 2m PEM 2m+1 PEM 

Expected %SD Expected %SD Expected %SD Expected %SD 

MEM’s 

Operation Costs 

($) 

25737.4 25895.2 0.87 25914.3 1.42 25908.8 1.24 25897.7 1.02 

Time (S) 5.41 1574 43 169 173 
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Table 4. Comparison of the statistical results of the proposed SMSMA algorithm and other well-known algorithms to solve the optimal daily 

scheduling problem of the MEM. 

Optimization 

algorithm 

Operating cost ($) 

Best Average Worst Standard Deviation 

GA 25848.6 25867.8 25893.5 3.537 

PSO 25828.0 25846.1 25866.7 2.841 

SMA 25784.6 25809.7 25839.3 1.274 

SMSMA 25737.4 25755.0 25779.4 0.341 
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Fig. 1. Generalized schematic of the integrated MEM. 
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Fig. 2. Predicted daily prices of different energy carriers at the MEM input [59]. 
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Fig. 3. Predicted daily thermal and electrical loads at the MEM output [8]. 
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Fig. 4 Daily predicted generation power of the solar and wind power units. 
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c 

 

d 

Fig. 5. Optimal operating of the MEM’s internal equipment, a) Electrical equipment, b) Thermal equipment, c) Cooling equipment, d) Gas 

equipment. 
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c 
Fig. 6. Power exchange of the MEM with the upstream networks. a) Electric power, b) Gas, c) Thermal power. 

 

Fig. 7. The MEM’s expected operating costs --versus the CVaR for different values of the risk management parameter 𝜰. 
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Fig. 8. The sensitivity analysis of the total operation costs versus responsibility of loads. 
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Fig. 9. The sensitivity analysis of the total operation costs versus increasing in the various storage capacities. 
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