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Abstract The Ebola virus is a highly infectious disease that can propag-
ate throughout a population depending on how people interact in society.
his research introduces a modified mathematical model of Ebola Virus Dis-
ease (EVD), incorporating effective control strategies such as quarantine, self-
isolation, and hospitalization. These compartments have played a key role in
understanding the transmission of the Ebola virus disease in the society. By
using a conformable derivative, a system of equations has been developed for
the Ebola virus disease model. The basic reproduction number R0 has been
determined using the Next-generation matrix method. To understand the im-
pact of parameter variations on Ebola virus disease, sensitivity analysis of R0

has been observed. Stability analysis has been calculated at both the DFEP
and the DPEP to assess the behaviour of virus. The conformable derivative
facilitates a smooth transition from fractional order to classical models as the
parameter (c) approaches to 1. Additionally, implementation of quarantine,
self-isolation, and hospitalization emerges as a highly effective strategy, sig-
nificantly reduced Ebola virus disease in society. These findings enhance our
understanding of Ebola dynamics and offer critical implications for effective
outbreak control strategies.

Keyword: Ebola virus, Mathematical modelling, Reproduction number, Sens-
itivity analysis, Stability Analysis.
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1 Introduction

The Ebola virus, which causes Ebola virus disease, is a serious and frequently
deadly infection that has created major problems for public health. The virus
has intermittently spread since its discovery in 1976, particularly in Cent-
ral and West African countries, with disastrous results. It is named after the
Ebola River in the Democratic Republic of the Congo and is a member of
the Filoviridae family (previously known as Zaire) [1–4]. The Ebola virus is
spread to people by close contact with infected animals or their body fluids
and is thought to have originated in animals, notably fruit bats. Once the
virus has infected humans, by coming into contact with fluids from the body,
including saliva, blood, organs, or other parts of the body, it can spread from
one person to another [5]. In 2014-2015, Sierra Leone, Liberia and Guinea col-
lectively reported 3.9 cases in West Africa [6]. As an entire population, health-
care professionals were responsible for 25 per cent of all contamination during
disease transmission, according to Al-Smadi (2020) [7]. Even when they had
an infectious condition, Africans continued to shake hands, kiss, and caress
their relatives. At funerals, Africans also practised the tradition of bathing
and clothing the bereaved family. Cities, villages, and towns are places where
vast crowds of people meet and spread the Ebola virus [8]. In general, Ebola
virus disease symptoms include fever, lack of appetite, abdominal pain, severe
headaches, sore throats, and weariness. Liver and kidney damage, vomiting,
rash and other symptoms accompany these symptoms. Disorders characterized
by low white blood cell counts, increased platelet counts, and elevated liver
enzyme levels can all be associated with uncontrollably occurring internal and
external bleeding. Three days on average are followed by a rapid progression
toward death for the patient. The interval between the moment of Ebola virus
infection and the beginning of symptoms is known as the incubation period,
and it usually lasts between two and twenty-one days. Anywhere might have
symptoms appear. An infected individual cannot transmit the Ebola virus to
the host population unless they exhibit the previously listed symptoms. A
mathematical model of the Ebola virus called SEIVR (susceptible, exposed,
infected, vaccinated, recovered) is created by Tahir et al. (2019) [9]. Then they
found its basic reproduction number R0, furthermore, a sensitivity analysis of
R0 is also discussed, and all local equilibrium points concerning the disease
are derived, conditional on the investigation of all possible equilibria of the
model in terms of primary reproductive number. Rafiq et al. (2020) [10] ex-
plore the dynamics of the Ebola virus disease spread. They created a coupled
nonlinear differential equation SEIR-type model. These equations offer a use-
ful tool for discussing how domestic and wild animals can spread the Ebola
virus to human populations. They initially create the suggested model and get
the threshold parameter (R0) value for the model. They establish the disease-
free equilibrium (DFE) and endemic equilibrium (EE), as well as discuss the
stability of the model. A basic mathematical model that developed in 2014
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Ebola spread in Liberia is being studied by Maheshwari et al. (2020) [11]. The
resultant mathematical model is then validated using numerical simulations
and data made accessible by the WHO. They also create a new mathemat-
ical model that takes the inorganization of people into account. They describe
different cases of vaccination to observe the effect of vaccination on infected
individuals by the passage of time. To investigate how vaccination affects the
spread of the Ebola virus, they use the best controls possible. Khan et al.
(2020) [12] delved into the development of qualitative theory and approxim-
ate solutions for a fractional-order Ebola model, utilizing Atangana-Baleanu-
Caputo (ABC) fractional operators. Conditions for the model’s existence and
stability were established through diverse analytical tools. The Laplace Ado-
main Decomposition method was employed to obtain approximate solutions,
with Matlab-generated graphs illustrating the model’s dynamics for different
fractional order values of γ. Until an infected person manifests the aforemen-
tioned EVD symptoms, they cannot spread the disease to the host popula-
tion. To comprehend the spread of this pandemic, Farman et al. (2022) [13]
provide a nonlinear time-fractional mathematical model of the Ebola virus.
The Ebola virus is an extremely infectious disease that, depending on the
population’s size and social dynamics, can spread throughout it. A set of frac-
tional differential equations is solved using the fractional derivative operators
Caputo and Atangana-Baleanu. A qualitative investigation of the fractional
order model is conducted. To determine existence and uniqueness, the fixed-
point theorem and an iterative strategy are utilized. The Laplace domain
decomposition approach is used to determine the time-fractional model’s true
behaviour. The study of Khan et al. (2022) [14] on the numerical calculations
and analytical behaviour of the fractional order Ebola model. With the use
of fixed point results, they determined the uniqueness, and stability condi-
tions of the model. Using the two-step fractional Adam Bashforth approach,
they computed the numerical solution to the fractional order smoke model.
Yadav et al. (2023) [15] utilized the Atangana–Baleanu–Caputo fractional de-
rivative to analyze Ebola virus transmission dynamics, offering novel insights.
Numerical techniques were employed, demonstrating the enhanced accuracy
of non-integer order derivatives and exploring previously uncharted aspects
of the model. Mbah et al. (2023) [16] studies delve into the virus’s transmis-
sion dynamics, formulating an eighteen-equation system to comprehensively
describe its spread. The research explored the local and global stability of
disease-free and endemic equilibria, revealing effective strategies for popula-
tion segments and a forward bifurcation in the system. Nisar et al. (2023) [17]
utilized a hybrid genetic algorithm (HGASQP), incorporating sequential quad-
ratic programming and feed-forward neural networks, to optimize the Ebola
virus disease model. The approach, minimizing mean squared error, demon-
strated efficacy and robustness in comparison to the Adam approach.

After deeply studying the literature review, we found some model gaps. We
have added quarantine, self-isolated and hospitalized classes in our model,
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which was very important to control the transmission of the Ebola Virus.
Section 2: The modified Ebola virus disease transmission model with quar-
antine, self-isolation, and hospitalized class will be discussed. Section 3 will
focus on determining the basic reproduction number using the Next-generation
Method, as well as discussing local and global stability at the disease-free and
endemic equilibrium point. Additionally, we will provide a sensitivity analysis
of the basic reproduction number. Section 4 will cover the outcomes and
observations of the Ebola virus disease model, while Section 5 will conclude
our study.

2 Model description

A compartmental model is used to study the following compartments: Sus-
ceptible (S), Exposed (E), Infected (U), Quarantine (Q), Hospitalized (H),
Self-isolation (J), and Recovered (R). Individuals in the Susceptible (S) com-
partment are not infected. Those in the Exposed (E) compartment carry the
disease-causing pathogen but do not yet show clinical symptoms. Infected
(U) individuals are infectious, can spread the disease, and exhibit symptoms.
After their infectious period, these individuals are placed under sanitary care
and then classified as hospitalized. Quarantine (Q) contains individuals who
are infected but asymptomatic and are isolated to prevent transmission. The
Hospitalized (H) compartment holds individuals receiving treatment, who still
pose a risk of infection. Individuals in Self-isolation (J) are infected but have
mild or no symptoms, remaining at home in isolation. Finally, the Recovered
(R) compartment consists of those who have survived the disease, developed
natural immunity, and are no longer infectious. The dynamics of the model
are illustrated in Figure 1.

The parameters in the model are defined as follows: ∆ represents the nat-
ural birth rate, α is the propagation rate of susceptible individuals S(ξ) to
exposed individuals E(ξ), β1 is the propagation rate of exposed individuals
E(ξ) to quarantined individuals Q(ξ), and β2 is the propagation rate of ex-
posed individuals E(ξ) to infected individuals U(ξ). The parameter ρ denotes
the propagation rate of infected individuals U(ξ) to hospitalized individuals
H(ξ), while ω represents the natural death rate. The parameters ε2 and ε1
describe the propagation rates from quarantined individuals Q(ξ) to hospital-
ized individuals H(ξ) and to self-isolated individuals J(ξ), respectively. The
parameter η indicates the propagation rate from self-isolated individuals J(ξ)
to recovered individuals R(ξ), and γ represents the propagation rate from
hospitalized individuals H(ξ) to recovered individuals R(ξ). The model also
includes the following death rates: dE for exposed individuals E(ξ), dQ for
quarantined individuals Q(ξ), dU for infected individuals U(ξ), dJ for self-
isolated individuals J(ξ), and dH for hospitalized individuals H(ξ), all due to
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the virus.

Let K : (0,∞) → R the conformable fractional derivative of K (of order c)
provided by Khalil et al. [18], can be define as,

Gc(K)(ξ) = lim
σ→0

K(ξ + σξ1−c)−K(ξ)

σ
, (1)

if K is differentiable, then,

Gc(K)(ξ) = t1−cdK

dξ
, c ∈ (0, 1]. (2)

For Gc(K)(ξ), we can sometimes utilize the notation K(c)(ξ) to represent the
conformable fractional derivatives of K of order c. Furthermore, we may state
that K is c-differentiable if the conformable fractional derivative of K of order
c exists. This involves taking the limit as σ approaches 0 of the difference
quotient, which captures the change in K concerning ξ over a small interval
σξ1−c. Now we discuss the mathematical behaviour of the ebola transmission
in figure 2. Where the non-linear system of equations we have,

dc

dξc
S = ∆− (αE + ω)S, (3)

dc

dξc
E = αSE − (β2U + β1Q+ ω + dE)E, (4)

dc

dξc
Q = β1EQ− (ε1 + ε2 + ω + dQ)Q, (5)

dc

dξc
U = β2EU − (ρ+ ω + dU)U, (6)

dc

dξc
J = ε1Q− (η + ω + dJ) J, (7)

dc

dξc
H = ρU + ε2Q− (γ + ω + dH)H, (8)

dc

dξc
R = ηJ + γ H − (ω)R. (9)

With initial conditions,

S(0) ≥ 0, E(0) ≥ 0, Q(0) ≥ 0, U(0) ≥ 0, J(0) ≥ 0, H(0) ≥ 0, R(0) ≥ 0. (10)
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3 Model Analysis

3.1 Invariant Region

To find the invariant region of system of equations (3-9) with non-negative ini-
tial conditions (10) solution is bounded, taking total population N(S,E,Q, U, J,H,R) =
S(ξ) + E(ξ) + Q(ξ) + U(ξ) + J(ξ) +H(ξ) + R(ξ). When there is no disease,
take the derivative of N with respect to ξ.

We obtain:
ξ1−cN′ = ∆− ωN, (11)

after solving (11) and ξ → ∞, then,

Ω = {(S,E,Q, U, J,H,R) ∈ R : N(t) ≤ ∆

ω
}. (12)

which is the feasible solution set of a system of equations that are bounded.

3.2 Positivity of Solution

Theorem 3.1. If S(0) > 0, E(0) > 0, Q(0) > 0, U(0) > 0, J(0) > 0, H(0) >
0, R(0) > 0 are positive in the feasible set Ω, then the solution set
(S(ξ), E(ξ), Q(ξ), U(ξ), J(ξ), H(ξ), R(ξ)) of system of equations is positive ∀ ξ ≥
0

Proof. Taking the first equation from the system of equations,

dc

dξc
S = Λ− (αE + ω)S, (13)

after simplification,
S ≥ S(0)e−ξc−1(αE+ω)ξ, (14)

similar to another system of equations. Therefore, we can say the solution set
of all system of equations are positive for ξ ≥ 0 [19].

Disease-Free Equilibrium Point (DFEP)
When population has no infectious individuals of Ebola virus disease, then

E = Q = U = J = H = R = 0.

Then we have DFEP,

E = (S, 0, 0, 0, 0, 0, 0) =
(
∆

ω
, 0, 0, 0, 0, 0, 0

)
. (15)
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Disease-Present Equilibrium Point (DPEP)
When the population has an infectious person with Ebola virus disease, then
DPEP is,

E∗ =
ε1 + ε2 + ω + dQ

β1

,

H∗ =
ε2(αS

∗ − ω − dE)

β1(γ + ω + dH)
,

U∗ = 0,

J∗ =
ε1(αS

∗ − ω − dE)

β1(η + ω + dJ)
,

Q∗ =
αS∗ − ω − dE

β1

,

R∗ =
(αS∗ − ω − dE)(ηγε1 + ηγε2 + ηωε1 + ηdHε1 + γωε2 + γdJε2)

β1(η + ω + dJ)(γ + ω + dH)ω
.

(16)

3.3 Basic Reproduction Number

The next-generation matrix method applies a system of equations to calculate
the basic reproduction number R0 [20]. Taking Transmission matrix F and
transition matrix V from system of equations at DFEP,

FV−1 =



α∆
ω (ω+dE)

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



. (17)

Therefore, we find the basic reproduction number,

R0 =
α∆

ω (ω + dE)
. (18)
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3.4 Local Stability of DFEP

Theorem 3.2. The DFEP point is locally stable if R0 is less than unity and
unstable if R0 is greater than unity [21].

Proof. The Jacobian matrix of system of equations (3-9) at DFEP, we get,

J0 =



−ω −α∆
ω

0 0 0 0 0

0 α∆
ω

− ω − dE 0 0 0 0 0

0 0 −ω − dQ − ε1 − ε2 0 0 0 0

0 0 0 −ω − ρ− dU 0 0 0

0 0 ε1 0 0 −η − ω − dJ 0

0 0 ε2 ρ −γ − ω − dH 0 0

0 0 0 0 γ η −ω


,

(19)
The characteristic equations are,

J0 = (−ω − δ)
(
αΛ

ω
− ω − dE − δ

)
(−ω − dQ − ε1 − ε2 − δ) (−ω − ρ− dU − δ)

(τ + δ + ω)
(
ω2 + (η + γ + dJ + dH)ω − δ2 + (γ + dH) (η + dJ)

)
.

(20)

After solving (20), we have the root of δ are,

δ1 = −ω, δ2 = (dE + ω)(R0 − 1), δ3 = −ω − dQ − ε1 − ε2, δ4 = −ω − ρ− dU ,

δ5 = −ω, δ6 = −
√
(γ + ω + dJ) (η + ω + dH), δ7 = −

√
(−γ − ω − dJ) (−η − ω − dH),

(21)

where δ1, δ3, δ4, δ5, δ6 and δ7 < R0 and δ2 < 1 if R0 < 1 in equation (21).

3.5 Global Stability of DFEP

Lemma 1. If R0 < 1, then, the system of equation is globally asymptotic
stable at DFEP if condition (A1) and (A2) are satisfied [22].

A1:
dFH

dξ
= G(FH , 0)

A2: H(FH , VH) = PHVN − Ĥ(FH , VH)

where PH shows the matrix of parameters of infectious stages. FH is individuals
without Ebola virus and VH individuals with Ebola virus disease.
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Theorem 3.3. If R0 is less than unity, the DFEP is globally stable; if R0 is
greater than unity, it is unstable.

Proof. Firstly, we satisfy condition (A1), so rewrite the system of equations
FH = (S) and, VH = (E,Q,U, J,H,R). Then, the DFEP is given by the fixed

point, E0 = (S0) =
(
∆
ω

)
, the system dFH

dξ
= G(FH) becomes,

dS∗

dξ
= −ω S +∆, (22)

By solving Eq. (22), the equation has a unique equilibrium point,

S∗ =
∆

ω
, (23)

S0 is therefore globally asymptotically stable. The criterion (A1) is therefore
satisfied. The second condition (A2) now has to be confirmed.

H(FH , VH) = PHVN − Ĥ(FH , VH),

and Ĥ(FH , VH) ≥ 0, For that, system of equations (3-9). We have,

H(FH , VH) =



(Sα− β2U − β1Q− ω − dE)E − β1QE − β2EU

β1QE + (β1E − ω − dU − ε1 − ε2)Q

β2EU + (β2E − ω − ρ− dU)U

ε1Q+ (−η − ω − dJ) J

ρU + ε2Q+ (−γ − ω − dH)H

η J + γ H + (−ω)R


,

(24)

Ĥ(FH , VH) = PHVN −H(FH , VH) =



αE (S∗ − S)

0
0
0
0
0


,

(25)
This demonstrates that Ĥ(FH , VH) ≥ 0, with VN denoting an M-matrix that
has non-negative off-diagonal elements. Lemma 1 states that since the DFEP
E0 is globally asymptotically stable when R0 < 1, this implies that the criteria
(A1) and (A2) are met. This completes the proof.
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3.6 Local Stability of DPEP

Theorem 3.4. The DPEP (16) state that, system of equations (3-9) is locally
stable if R0 is greater than unity and unstable if R0 is less then unity.

Proof. The jacobian matrix of (3-9) at DPEP,

Je =



j11 j12 0 0 0 0 0

j21 j22 j23 j24 0 0 0

0 j32 0 0 0 0 0

0 0 0 j44 0 0 0

0 0 j53 0 0 j56 0

0 0 j63 j64 j65 0 0

0 0 0 0 j76 j76 j77



, (26)

where j11 = −α (ε1+ε2+ω+dQ)
β1

−ω, j12 = − α∆β1

αω+αdQ+α ε1+α ε2+ω β1
, j21 =

α (ε1+ε2+ω+dQ)
β1

,

j22 =
α∆β1

αω+αdQ+α ε1+α ε2+ω β1
−α∆β1−αω2−αω dE−αω dQ−αω ε1−αω ε2−αdEdQ−αdEε1−αdEε2−ω2β1−ω β1dE

αω+αdQ+α ε1+α ε2+ω β1
−

ω − dE, j23 = −ε1 − ε2 − ω − dQ, j24 = −β2(ε1+ε2+ω+dQ)
β1

,

j32 =
α∆β1−αω2−αω dE−αω dQ−αω ε1−αω ε2−αdEdQ−αdEε1−αdEε2−ω2β1−ω β1dE

αω+αdQ+α ε1+α ε2+ω β1
, j44 =

β2(ε1+ε2+ω+dQ)
β1

− ω − ρ − dU , j53 = ε1, j56 = −η − ω − dJ , j63 = ρ, j64 = ρ,
j65 = −γ−ω−dH , j75 = γ, j76 = η, j77 = −ω. The characteristics polynomial
of Je is given by,

Ω3 + (−j11 − j22) Ω
2 + (j11 j22 − j12 j21 − j23 j32) Ω + j11 j23 j32, (27)

We rename the coefficients of Ω in the above Eq (27),

P1 = −j11 − j22,

P2 = j22 − j12 j21 − j23 j32,

P3 = j11 j23 j32.
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For (n = 1,2,3), the eigenvalue of the Jacobian matrix contains the negative
real component if and only if Pn > 0, as per the Routh-Herwitz criteria [23].

S1 = P1 > 0,

S2 = P1P2 − P3 > 0,

S3 = P1P2P3 − P 2
1P4 − P 2

3P4 > 0.

For DPEP (16), when the basic reproduction number of the model is greater
than one, and all the Routh Herwitz matrix determinants (S1, S2, S3 > 0) are
positive. Negative real components are present in each of the Jacobian matrix’s
eigenvalues. Then the model (3-9) is locally asymptotically stable.

3.7 Global Stability at DPEP

Using the geometric technique devised by Li et al. [24], the global stability
analysis at DPEP has been examined.
Lemma 2. Let us assume the following system of equations:

ξ̄ = f(ξ), (28)

where D1 is an open set and connected, and f : D1 → Rn and f ∈ C1(D1).If
the following circumstances hold true, then L ⊂ D1, such that a compact
absorbing set L exists, can be considered.There exists a unique equilibrium
point for Eq. (28) if ξ∗ ∈ D1. For Eq. (28), the equilibrium point (ξ∗) is
globally stable if,

q = lim
t→∞

sup
ξ∈L

1

t

∫ t

0
Γ(N(x(s, ξ0)))ds). (29)

Theorem 3.5. If R0 > 1 then Ebola virus disease model (3-9) is said to be
globally asymptotically stable at DPEP (16).

Proof. The first three stages of the Ebola virus disease model (3-9) are se-
lected, using the Jacobian system of equations, for the DPEPs, to generate
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global stability for DPEP (16).

J1 =


−αE∗ − ω −αS∗ 0

αE∗ αS∗ − U∗β2 −Q∗β1 − ω − dE −β1E
∗

0 Q∗β1 β1E
∗ − ω − dQ − ε1 − ε2

 ,

(30)
The second additive compound matrix is defined as follows:

Z =


k11 + k22 k23 −k13

k32 k11 + k33 k12

−k31 k21 k22 + k33

 . (31)

Where kij are entries of J1, shown as, K11 = −αE∗ − ω,K12 = −α ∗S,K13 =
0, K21 = −αE∗, K22 = αS∗ − U∗β2 − Q∗β1 − ω − dE, K23 = −β1E

∗, K31 =
0, K32 = Q∗β1, K33 = β1E

∗ − ω − dQ − ε1 − ε2,

dividing H3 from a diagonal matrix before the matrix, the differential matrix
H3 multiplied to get the matrices shown below.

H3H
−1
1 =



0 0 0

0
(( d

dξ
E∗)Q∗−( d

dξ
Q∗)E∗)R∗

Q∗2E∗ 0

0 0
(( d

dξ
Q∗)E∗−( d

dξ
E∗)Q∗)

Q∗2E∗

 , (32)

now, H2H3H
−1
2 add H2H1H

−1
2 and, then got H4 matrix in the block matrix.

Now, matrix R in block matrix form of H4, the block matrix R =

R11 R12

R21 R22

.
Let Ê(R) be a norm-related measure. Next, let us examine Lozinski’s function
about ω1 norms, which may be expressed as follows:

Ê(R∗) ≤ sup(η1, η2), (33)

η1 = Ê(R11) + |R12|), (34)

η2 = Ê(R21) + |R22|), (35)

η1 ≤
Q∗′

Q∗ − 2ω, (36)
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η2 ≤
Q∗′

Q∗ − 2ω. (37)

By using (36) and (37) in equation (33),

Ê(R∗) ≤ sup(η1, η2) ≤ −ω, (38)

this implies that, q ≤ −ω ≤ 0.

Hence proved the global stability at DPEP. Positive equilibrium (S∗, E∗, Q∗)
is globally asymptotically stable. Moreover, consider a sub-system of system
of equation (3-9) using lemma 2 by Martian [25],

U(ξ) =
β2E

∗U∗

− (ρ+ ω + dU)
, (39)

J(ξ) =
ε1Q

∗

− (η + ω + dJ)
, (40)

H(ξ) =
ρU∗ + ε2Q

∗

− (γ + ω + dH)
, (41)

R(ξ) =
ηJ∗ + γ H∗

−ω
. (42)

Hence proved, that the Ebola virus disease model is globally stable at the
DPEP.

3.8 Sensitivity Analysis

Sensitivity analysis [26] is an important analysis that shows how each para-
meter affects disease transmission. To establish how relevant each parameter
is to disease transmission, the sensitivity index of factors with relation to the
basic reproduction number was produced; intervention control strategies that
target such parameters should be employed in Ebola disease control/prevention.

Definition: The normalized forward sensitivity index of a variable ϕ that
depends differentiable on a parameter P is defined,

Lϕ
P = ∂ϕ

∂P × P
ϕ
.

As we have explicit formula for R0, analytical expression has been derived for
the sensitivity of R0 as,

LR0
P = ∂R0

∂P × P
R0
.

Parameters for sensitivity analysis of R0,

Lϕ
α = ∂R0

∂α
× α

R0
= 1 > 0,
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Lϕ
ω = ∂R0

∂ω
× ω

R0
= −2ω−dE

ω+dE
< 0,

Lϕ
dE

= ∂R0

∂dE
× dE

R0
= − dE

ω+dE
< 0.

Those parameters, which have positive indices, show that if their values in-
crease, they impact the rate of infection in the community. Those parameters,
which have negative indices, show that if their values are increasing, then they
minimize the disease in the community.

3.9 Existence and Uniqueness of Solution

In this find the existence of the non-linear systems of the equation of the Ebola
virus disease model (3-9) by using fixed point theory [27].

The system of non-linear is,

S(ξ)− S(0) =
∫ c

ξ
[∆− (αE + ω)S]dξ, (43)

E(ξ)− E(0) =
∫ c

ξ
[αSE − (β2U + β1Q+ ω + dE)E]dξ, (44)

Q(ξ)−Q(0) =
∫ c

ξ
[β1EQ− (ε1 + ε2 + ω + dQ)Q]dξ, (45)

U(ξ)− U(0) =
∫ c

ξ
[β2EU − (ρ+ ω + dU)U ]dξ, (46)

J(ξ)− J(0) =
∫ c

ξ
[ε1Q− (η + ω + dJ) J ]dξ, (47)

H(ξ)−H(0) =
∫ c

ξ
[ρU + ε2Q− (γ + ω + dH)H]dξ, (48)

R(ξ)−R(0) =
∫ c

ξ
[ηJ + γ H − (ω)R]dξ. (49)

Now let’s start the procedure,

S(ξ)− S(0) =
∫ ξ

0
σc−1[∆− (αE + ω)S]dσ, (50)

E(ξ)− E(0) =
∫ ξ

0
σc−1[αSE − (β2U + β1Q+ ω + dE)E]dσ, (51)

Q(ξ)−Q(0) =
∫ ξ

0
σc−1[β1EQ− (ε1 + ε2 + ω + dQ)Q]dσ, (52)

U(ξ)− U(0) =
∫ ξ

0
σc−1[β2EU − (ρ+ ω + dU)U ]dσ, (53)

J(ξ)− J(0) =
∫ ξ

0
σc−1[ε1Q− (η + ω + dJ) J ]dσ, (54)
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H(ξ)−H(0) =
∫ ξ

0
σc−1[ρU + ε2Q− (γ + ω + dH)H]dσ, (55)

R(ξ)−R(0) =
∫ ξ

0
σc−1[ηJ + γ H − (ω)R]dσ. (56)

now we define the kernels,

λ1(ξ, S) = ∆− (αE(ξ) + ω)S(ξ), (57)

λ2(ξ, E) = αS(ξ)E(ξ)− (β2U(ξ) + β1Q(ξ) + ω + dE)E(ξ), (58)

λ3(ξ,Q) = β1E(ξ)Q(ξ)− (ε1 + ε2 + ω + dQ)Q(ξ), (59)

λ4(ξ, U) = β2E(ξ)U(ξ)− (ρ+ ω + dU)U(ξ), (60)

λ5(ξ, J) = ε1Q(ξ)− (η + ω + dJ) J(ξ), (61)

λ6(ξ,H) = ρU(ξ) + ε2Q(ξ)− (γ + ω + dH)H(ξ), (62)

λ7(ξ, R) = ηJ(ξ) + γ H(ξ)− (ω)R(ξ). (63)

Theorem 3.6. If the following inequality is proven:

0 < r1, r2, r3, r4, r5, r6, r7 ≤ 1, (64)

where ∥S∥ ≤ b1, ∥E∥ ≤ b2, ∥Q∥ ≤ b3, ∥U∥ ≤ b4, ∥J∥ ≤ b5, ∥H∥ ≤ b6, ∥R∥ ≤
b7, and αb1 = r1, β1b3+β2b4+ω+dE = r2, ε1+ ε2+ω+dQ = r3, ρ+ω+dU =
r4, η + ω + dJ = r5, γ + ω + dH = r6, ω = r7.

Proof. Consider S1 and S2 as two functions for the kernel λ1. Then,

∥λ1(ξ, S1)− λ1(ξ, S2)∥
≤ r1∥S1(ξ)− S2(ξ)∥.

(65)

Since ∥S∥ is a bounded function of r1, we have

∥λ1(ξ, S1)− λ1(ξ, S2)∥ ≤ r1∥S1(ξ)− S2(ξ)∥. (66)

Similarly, for each kernel λ2, λ3, λ4, λ5, λ6, λ7, the Lipschitz conditions are sat-
isfied. If 0 < r1, r2, r3, r4, r5, r6, r7 ≤ 1, then r1, r2, r3, r4, r5, r6, r7 also satisfy
the contraction conditions for λ1, λ2, λ3, λ4, λ5, λ6, λ7 respectively. This con-
cludes the proof of the theorem.

Now consider the kernels λ1, λ2, λ3, λ4, λ5, λ6, λ7 and rewrite the system of
equations,

S(ξ) = S(0) +
∫ ξ

0
λ1(σ, S)dσ, (67)

E(ξ) = E(0) +
∫ ξ

0
λ2(σ,E)dσ, (68)

Q(ξ) = Q(0) +
∫ ξ

0
λ3(σ,Q)dσ, (69)
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U(ξ) = U(0) +
∫ ξ

0
λ4(σ, U)dσ, (70)

J(ξ) = J(0) +
∫ ξ

0
λ5(σ, J)dσ, (71)

H(ξ) = H(0) +
∫ ξ

0
λ6(σ,H)dσ, (72)

R(ξ) = R(0) +
∫ ξ

0
λ7(σ,R)dσ, (73)

now proceed with the recursive formula which is as follows,

Sr(ξ) = S(0) +
∫ ξ

0
λ1(σ, Sr−1)dσ, (74)

Er(ξ) = E(0) +
∫ ξ

0
λ2(σ,Er−1)dσ, (75)

Qr(ξ) = Q(0) +
∫ ξ

0
λ3(σ,Qr−1)dσ, (76)

Ur(ξ) = U(0) +
∫ ξ

0
λ4(σ, Ur−1)dσ, (77)

Jr(ξ) = J(0) +
∫ ξ

0
λ5(σ, Jr−1)dσ, (78)

Hr(ξ) = H(0) +
∫ ξ

0
λ6(σ,Hr−1)dσ, (79)

Rr(ξ) = R(0) +
∫ ξ

0
λ7(σ,Rr−1)dσ, (80)

where,

S(0) ≥ 0, E(0) ≥ 0, Q(0) ≥ 0, U(0) ≥ 0, J(0) ≥ 0, H(0) ≥ 0, R(0) ≥ 0. (81)

It can also be written in sequential term differences which are as follows,

Ω1r = S(ξ)− S(0) =
∫ ξ

0
σc−1(λ1(σ, Sr−1)− λ1(σ, Sr−2))dσ, (82)

Ω2r = E(ξ)− E(0) =
∫ ξ

0
σc−1(λ2(σ,Er−1)− λ2(σ,Er−2))dσ, (83)

Ω3r = Q(ξ)−Q(0) =
∫ ξ

0
σc−1(λ3(σ,Qr−1)− λ3(σ,Qr−2))dσ, (84)

Ω4r = U(ξ)− U(0) =
∫ ξ

0
σc−1(λ4(σ, Ur−1)− λ4(σ, Ur−2))dσ, (85)

Ω5r = J(ξ)− J(0) =
∫ ξ

0
σc−1(λ5(σ, Jr−1)− λ5(σ, Jr−2))dσ, (86)

Ω6r = H(ξ)−H(0) =
∫ ξ

0
σc−1(λ6(σ,Hr−1)− λ6(σ,Hr−2))dσ, (87)

Ω7r = R(ξ)−R(0) =
∫ ξ

0
σc−1(λ7(σ,Rr−1)− λ7(σ,Rr−2))dσ, (88)
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the system of equations implies that,

Sr(t) =
r∑

j=1

Ω1r(ξ), Er(t) =
r∑

j=1

Ω2r(ξ),

Qr(t) =
r∑

j=1

Ω3r(ξ), Ur(t) =
r∑

j=1

Ω4r(ξ),

Jr(t) =
r∑

j=1

Ω5r(ξ), Hr(t) =
r∑

j=1

Ω6r(ξ), Rr(t) =
r∑

j=1

Ω7r(ξ).

(89)

Now, we take norm both sides of the system of equations, then kernels sat-
isfy the Lipschitz condition. Now triangle inequality applies to a system of
equations, then we have,

∥ Sr(ξ)− Sr−1(ξ) ∥≤ r1

∫ ξ

0
σc−1 ∥ (Sr−1 − Sr−2) ∥ dσ, (90)

∥ Er(ξ)− Er−1(ξ) ∥≤ r2

∫ ξ

0
σc−1 ∥ (Er−1 − Er−2) ∥ dσ, (91)

∥ Qr(ξ)−Qr−1(ξ) ∥≤ r3

∫ ξ

0
σc−1 ∥ (Qr−1 −Qr−2) ∥ dσ, (92)

∥ Ur(ξ)− Ur−1(ξ) ∥≤ r4

∫ ξ

0
σc−1 ∥ (Ur−1 − Ur−2) ∥ dσ, (93)

∥ Jr(ξ)− Jr−1(ξ) ∥≤ r5

∫ ξ

0
σc−1 ∥ (Jr−1 − Jr−2) ∥ dσ, (94)

∥ Hr(ξ)−Hr−1(ξ) ∥≤ r6

∫ ξ

0
σc−1 ∥ (Hr−1 −Hr−2) ∥ dσ, (95)

∥ Rr(ξ)−Rr−1(ξ) ∥≤ r7

∫ ξ

0
σc−1 ∥ (Rr−1 −Rr−2) ∥ dσ, (96)

we have,

∥ Ω1r ∥≤r1

∫ ξ

0
∥ Ω1r−1 ∥ dσ, ∥ Ω2r ∥≤ r2

∫ ξ

0
∥ Ω2r−1 ∥ dσ,

∥ Ω3r ∥≤r3

∫ ξ

0
∥ Ω3r−1 ∥ dσ, ∥ Ω4r ∥≤ r4

∫ ξ

0
∥ Ω4r−1 ∥ dσ,

∥ Ω5r ∥≤r5

∫ ξ

0
∥ Ω5r−1 ∥ dσ, ∥ Ω6r ∥≤ r6

∫ ξ

0
∥ Ω6r−1 ∥ dσ,

∥ Ω7r ∥≤r7

∫ ξ

0
∥ Ω7r−1 ∥ dσ.

(97)

The following theorem may be derived from these findings.
Theorem 3.7. The modified Ebola virus disease model offers a solution under
the condition that can be formed τmax property,

riτmax ≤ 1, i = i, 2, . . . , 7. (98)
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Proof. Consider the function S(ξ), E(ξ), Q(ξ), U(ξ), J(ξ), H(ξ), and R(ξ) are
the bounded and having the kernels λ1, λ2, λ3, λ4, λ5, λ6, λ7 satisfied the Lipschitz
condition. We apply the recursive method to a system of equations,

∥ Ω1r ∥≤ S(0) ∥ {r1τmax}r, ∥ Ω2r ∥≤ E(0) ∥ {r2τmax}r,
∥ Ω3r ∥≤ Q(0) ∥ {r3τmax}r, ∥ Ω4r ∥≤ U(0) ∥ {r4τmax}r,
∥ Ω5r ∥≤ J(0) ∥ {r5τmax}r, ∥ Ω6r ∥≤ H(0) ∥ {r6τmax}r,
∥ Ω7r ∥≤ R(0) ∥ {r7τmax}r.

(99)

Thus, we assume that this is the model for the Ebola virus disease solution.

S(ξ)− S(0) = Sr(ξ)−B1n(ξ), E(ξ)− E(0) = Er(ξ)−B2n(ξ),

Q(ξ)−Q(0) = Qr(ξ)−B3n(ξ), U(ξ)− U(0) = Ur(ξ)−B4n(ξ),

J(ξ)− J(0) = Jr(ξ)−B5n(ξ), H(ξ)−H(0) = Hr(ξ)−B6n(ξ),

R(ξ)−R(0) = Rr(ξ)−B7n(ξ).

(100)

it is shown that the term in equation (100) hold ∥ B1n(ξ) ∥→ 0, ∥ B2n(ξ) ∥→
0, ∥ B3n(ξ) ∥→ 0, ∥ B4n(ξ) ∥→ 0, ∥ B5n(ξ) ∥→ 0, ∥ B6n(ξ) ∥→ 0, and
∥ B7n(ξ) ∥→ 0, so we have,

∥ B1n(ξ) ∥ ≤∥
∫ ξ

0
σc−1[λ1(σ, S)− λ1(σ, Sr−1)]dσ ∥,

≤
∫ ξ

0
∥ σc−1[λ1(σ, S)− λ1(σ, Sr−1)] ∥ dσ,

≤ ξr1 ∥ S − Sr−1 ∥ .

(101)

Similarly for others,

∥ B2n(ξ) ∥≤ ξr2 ∥ E − Er−1 ∥, (102)

∥ B3n(ξ) ∥≤ ξr3 ∥ Q−Qr−1 ∥, (103)

∥ B4n(ξ) ∥≤ ξr4 ∥ U − Ur−1 ∥, (104)

∥ B5n(ξ) ∥≤ ξr5 ∥ J − Jr−1 ∥, (105)

∥ B6n(ξ) ∥≤ ξr6 ∥ H −Hr−1 ∥, (106)

and,
∥ B7n(ξ) ∥≤ ξr7 ∥ R−Rr−1 ∥, (107)

apply recursive relation, then obtain,

∥ B1n(ξ) ∥≤ ξr−1rr1Φ, (108)

∥ B2n(ξ) ∥≤ ξr−1rr2Φ, (109)

∥ B3n(ξ) ∥≤ ξr−1rr3Φ, (110)

∥ B4n(ξ) ∥≤ ξr−1rr4Φ, (111)
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∥ B5n(ξ) ∥≤ ξr−1rr5Φ, (112)

∥ B6n(ξ) ∥≤ ξr−1rr6Φ, (113)

∥ B7n(ξ) ∥≤ ξr−1rr7Φ, (114)

taking at τmax point, we get

∥ B1n(ξ) ∥≤ {τmax}r−1rr1Φ, (115)

∥ B2n(ξ) ∥≤ {τmax}r−1rr2Φ, (116)

∥ B3n(ξ) ∥≤ {τmax}r−1rr3Φ, (117)

∥ B4n(ξ) ∥≤ {τmax}r−1rr4Φ, (118)

∥ B5n(ξ) ∥≤ {τmax}r−1rr5Φ, (119)

∥ B6n(ξ) ∥≤ {τmax}r−1rr6Φ, (120)

∥ B7n(ξ) ∥≤ {τmax}r−1rr7Φ, (121)

r → ∞ apply both sides, then using the result of theorem 3.6, then we get,
∥ B1n(ξ) ∥→ 0, ∥ B2n(ξ) ∥→ 0, ∥ B3n(ξ) ∥→ 0, ∥ B4n(ξ) ∥→ 0, ∥ B5n(ξ) ∥→
0, ∥ B6n(ξ) ∥→ 0 and ∥ B7n(ξ) ∥→ 0.

Theorem 3.8. if
(1− riξ) ≥ 0, i = 1, 2, . . . , 7. (122)

then modified Ebola virus disease model has a unique system of solutions.

Proof. Suppose different system of solution such as Ŝ, Ê, Q̂, Û , Ĵ , Ĥ, R̂, then
it may write,

S(ξ)− Ŝ(ξ) =
∫ ξ

0
σc−1[λ1(σ, S)− λ1(σ, Ŝ)]dσ, (123)

E(ξ)− Ê(ξ) =
∫ ξ

0
σc−1[λ2(σ,E)− λ2(σ, Ê)]dσ, (124)

Q(ξ)− Q̂(ξ) =
∫ ξ

0
σc−1[λ3(σ,Q)− λ3(σ, Q̂)]dσ, (125)

U(ξ)− Û(ξ) =
∫ ξ

0
σc−1[λ4(σ, U)− λ4(σ, Û)]dσ, (126)

J(ξ)− Ĵ(ξ) =
∫ ξ

0
σc−1[λ5(σ, J)− λ5(σ, Ĵ)]dσ, (127)

H(ξ)− Ĥ(ξ) =
∫ ξ

0
σc−1[λ6(σ,H)− λ6(σ, Ĥ)]dσ, (128)

R(ξ)− R̂(ξ) =
∫ ξ

0
σc−1[λ7(σ,R)− λ7(σ, R̂)]dσ, (129)

apply norm on both sides (123-129) and results of kernels which fulfil the
Lipschitz condition. We can write it as,

∥ S(ξ)− Ŝ(ξ) ∥≤ r1ξ ∥ S(ξ)− Ŝ(ξ) ∥, (130)
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∥ E(ξ)− Ê(ξ) ∥≤ r2ξ ∥ E(ξ)− Ê(ξ) ∥, (131)

∥ Q(ξ)− Q̂(ξ) ∥≤ r3ξ ∥ Q(ξ)− Q̂(ξ) ∥, (132)

∥ U(ξ)− Û(ξ) ∥≤ r4ξ ∥ U(ξ)− Û(ξ) ∥, (133)

∥ J(ξ)− Ĵ(ξ) ∥≤ r5ξ ∥ J(ξ)− Ĵ(ξ) ∥, (134)

∥ H(ξ)− Ĥ(ξ) ∥≤ r6ξ ∥ H(ξ)− Ĥ(ξ) ∥, (135)

∥ R(ξ)− R̂(ξ) ∥≤ r7ξ ∥ R(ξ)− R̂(ξ) ∥, (136)

then,
∥ S(ξ)− Ŝ(ξ) ∥ (1− r1ξ) ≤ 0, (137)

∥ E(ξ)− Ê(ξ) ∥ (1− r2ξ) ≤ 0, (138)

∥ Q(ξ)− Q̂(ξ) ∥ (1− r3ξ) ≤ 0, (139)

∥ U(ξ)− Û(ξ) ∥ (1− r4ξ) ≤ 0, (140)

∥ J(ξ)− Ĵ(ξ) ∥ (1− r5ξ) ≤ 0, (141)

∥ H(ξ)− Ĥ(ξ) ∥ (1− r6ξ) ≤ 0, (142)

∥ R(ξ)− R̂(ξ) ∥ (1− r7ξ) ≤ 0, (143)

consequently,
∥ S(ξ)− Ŝ(ξ) ∥= 0, (144)

∥ E(ξ)− Ê(ξ) ∥= 0, (145)

∥ Q(ξ)− Q̂(ξ) ∥= 0, (146)

∥ U(ξ)− Û(ξ) ∥= 0, (147)

∥ J(ξ)− Ĵ(ξ) ∥= 0, (148)

∥ H(ξ)− Ĥ(ξ) ∥= 0, (149)

and,
∥ R(ξ)− R̂(ξ) ∥= 0. (150)

This shows that the model has a unique solution. which is the complete proof
of the theorem.

4 Numerical Simulations

A numerical solution of the non-linear fractional-order system of odes has been
obtained using RK4 method [28–30] on Maple 2019. Using the initial condi-
tion S(0) = 5, E(0) = 1, U(0) = 2, Q(0) = 1, H(0) = 7, J(0) = 1, R(0) = 3,
and parameter of Table 1, behavior of individuals have been display in fig-
ures for c = 0.4, 0.6, 0.8, 1. Fractional order ODEs help us to understand, how
population effect under observation changes. The advantage of this method is
that, when c = 1 the fractional model goes to the classical model. In Figure 3,
the dynamic behaviour of the susceptible class can be studied. Over 30 days,
the number of susceptible classes is getting very increase. Dynamic behaviour
of Exposed, Quarantine, Infected, Self-Isolated, Hospitalized and Recovered
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shown in Figure (4-9). As the results show when people are self-isolated, quar-
antined and hospitalized, the number of infected persons is decreased, So we
can say the rate of Ebola virus disease going to decrease.

5 Conclusion

In conclusion, we have included self-isolation, hospitalized classes, and quar-
antine to a mathematical model for studying the dynamics of the Ebola virus
disease, based on research done by Khan et al. (2022) [14]. The problem has
been governed by a system of conformable differential equations, and its in-
variant region has been ensured by using a well-known theorem. We calculated
basic reproduction using the next-generation matrix method and checked its
sensitivity analysis. For fractional values of derivatives between 0 and 1, graphs
have been shown to demonstrate how the solutions of all classes behave. The
advantage of the fractional order is that, as ξ approaches 1, the solution of
fractional models (3-9) tends to the solution of classical models. In the graph-
ical representation, we have observed that when people are quarantined, self-
isolated and hospitalized, the infection rate decreases. Based on these findings,
it can be concluded that the addition of above mentioned three compartments
has a significant role in controlling the transmission of Ebola virus disease
in society. Future research could focus on finding the best ways to control
strategies and vaccine using our model and incorporating real-world data to
make our predictions even more accurate and also using a different type of
vaccination. By exploring these areas, we can make our model more effective
and relevant in addressing the challenges of disease modelling and control.
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Figure 1. Transmission rate of Ebola virus in the society by discussing the Sus-
ceptible, Exposed, Infected, Quarantine, Hospitalized, Self-isolation and Recovered
individuals.

Parameters Values Sources Parameters Values Sources

ε1 0.048 [14] dE 0.075 [14]

ε2 0.35 [14] β1 0.2 Assumed

β2 0.13 Assumed dQ 0.35 [14]

ρ 0.0379 Assumed dU 0.24 Assumed

γ 0.08 [14] ω 0.7 [14]

dJ 0.23 Assumed α 0.14280 [14]

dH 0.22 Assumed η 0.09 Assumed

∆ 10 Assumed

Table 1
Values of Parameters
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Figure 2. Flow Chart of Ebola Virus Transmission

Figure 3. Susceptible Individual S(ξ) after the implementation of self-isolated, quar-
antined and hospitalized of Ebola virus individuals for c = 0.4, 0.6, 0.8, 1.
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Figure 4. Exposed Individual E(ξ) after the implementation of self-isolated, quar-
antined and hospitalized of Ebola virus individuals for c = 0.4, 0.6, 0.8, 1.

Figure 5. Quarantined Individual Q(ξ) after the strict implementation of self-isol-
ated, quarantined and hospitalized of Ebola virus individuals for c = 0.4, 0.6, 0.8, 1.
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Figure 6. Infected Individual U(ξ) after the strict implementation of self-isolated,
quarantined and hospitalized of Ebola virus individuals for c = 0.4, 0.6, 0.8, 1.

Figure 7. Self-Isolated Individual J(ξ) after the strict implementation of self-isol-
ated, quarantined and hospitalized Ebola virus individuals for c = 0.4, 0.6, 0.8, 1.
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Figure 8. Hospitalized Individual H(ξ) after the strict implementation of self-isol-
ated, quarantined and hospitalized of Ebola virus individuals for c = 0.4, 0.6, 0.8, 1.

Figure 9. Recovered Individual R(ξ) after the strict implementation of self-isolated,
quarantined and hospitalized of Ebola virus individuals for c = 0.4, 0.6, 0.8, 1.
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