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Abstract 

Semi-supervised clustering, a technique that combines semi-supervised learning and 

clustering, is widely employed in the field of machine learning. However, clustering 

itself poses challenges as it is an NP-hard and multi-objective problem. 

Consequently, meta-heuristic and multi-objective algorithms have shown greater 

success in addressing this problem. Nonetheless, these algorithms often encounter 

issues such as being trapped in local optima and requiring manual parameter 

adjustments. This research paper introduces an algorithm that tackles the problem of 

semi-supervised clustering by creating convex hulls of the initial labeled data within 

each cluster. It also incorporates the labeling of data enclosed within these convex 

hulls and the adaptive adjustment of parameters using a multi-objective cuckoo 

algorithm. To enhance the results, labeled data is utilized in the initialization and 

learning phases of the algorithm. The proposed approach is evaluated using 11 UCI 

datasets and five synthetic datasets in various experiments. The statistical and 

numerical analysis demonstrates that the proposed method outperforms the other six 

algorithms used for comparison. The experiments employ four evaluation criteria, 

namely ARI, Accuracy, NMI, and F-measure. The results show the superiority of 

the proposed method across the majority of the datasets. 

 

Keywords: Clustering, Semi-supervised, Convex hull, Adaptive, Swarm 

Intelligence, Fuzzy adaptation 
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1. Introduction 

The amount of data is increasing every year, and the underlying structures are 

becoming more and more complex. Therefore, searching, analyzing, and processing 

this amount of data [1] with such a complex structure presents new challenges that 

require new data mining and machine learning techniques. The main classifications 

of machine learning techniques include supervised learning and unsupervised 

learning [2].   Clustering is considered as one of the most important unsupervised 

learning techniques in the field of machine learning, and is used in all kinds of 

applications such as image segmentation [3, 4], self-driving cars [5], identification 

and analysis of optimal faces in seismic datasets [6], network security issues [7–9], 

the clustering of sensor nodes [10–13], intrusion detection [14], blind channel 

equalizer design [14], human action classification [15], document clustering [16], 

tourism market segmentation [14], analysis of gene expression patterns [17, 18], 

feature selection [19] etc. as a pre-processing technique.   

In some cases, the analyst has little knowledge about the underlying structure of data 

in the form of prior knowledge (e.g., pairwise constraints and class labels) [20], and 

the amount of this knowledge compared to the unlabeled data is meager. In such 

cases, the supervised techniques cannot be used due to the scarcity of training data. 

On the other hand, unsupervised approaches may also lead to the production of 

irrelevant results. A better method is to apply the new learning approaches and 

improve the quality of results by incorporating some prior knowledge in the learning 

process. These approaches have been produced by combining the supervised and 

unsupervised learning approaches, and are named semi-supervised learning [21]. 

Semi-supervised learning can be applied to classification and clustering problems 

[21, 22]. 
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Compared to the supervised methods, semi-supervised learning algorithm reduce the 

execution time, and in comparison to the unsupervised methods, they do not get stuck 

in the local optima [23].  

Semi-supervised clustering algorithms are typically classified into three main 

categories: distance-based, search-based, and hybrid approaches. [24]. In the first 

methodology, it is common to utilize an existing clustering technique, while 

incorporating a distance measure based on prior knowledge. The distance criterion 

is then modified in a manner that it reduces the distance between data points that are 

intended to be grouped (Must-Link constraints: ML) while increasing the distance 

between data points that should be assigned to separate clusters (Cannot-Link 

constraints). [2]. To put it differently, the distance measure is parametrized using the 

prior knowledge  acquired through the ML and Cannot-Link constraints [25]. 

Nevertheless, in the distance-based approach, the adjusted distance metric may not 

yield precise results; for instance, two data points linked by a ML constraint could 

still be distant from each other and consequently assigned to separate clusters. 

Several studies utilizing this technique include references [26], [27], and [28]. 

  

Search-based methodologies adapt conventional clustering algorithms by 

incorporating prior knowledge, such as labeled data or constraints, to enhance the 

clustering outcomes. This is achieved through the alteration of the objective function 

of the clustering algorithm in various manners. The optimization of the clustering 

objective is achieved by embedding the constraints into the incremental partitioning 

process in Constrained COBWEB [29]. Seeded K-means [30], on the other hand, 

incorporates the prior knowledge of the labeled data only during the initialization 

step of the conventional K-means algorithm. In contrast, Constrained K-means [30] 
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combines prior knowledge in both the initialization and assignment steps of the K-

means algorithm. Combined methods leverage both distance and constraint-based 

perspectives to effectively address this particular problem. 

In the search-based methods, incorporating prior knowledge into traditional 

clustering techniques enhances clustering performance [2]. One approach utilized in 

this method involves modeling clustering as a multi-objective optimization problem 

[2], a strategy that has been implemented in various studies [31–37]. While single-

objective methods are also evident in the literature [38–40], the preference for multi-

objective algorithms stems from the NP-hard and multi-objective characteristics of 

the clustering. Multi-objective formulations enhance robustness more significantly 

than their single-objective counterparts. Both single-objective and multi-objective 

formulations address challenges such as manual parameter tuning and local optima 

entrapment. To tackle these issues, this paper introduces ConvexCo, a method that 

incorporates an adaptive multi-objective cuckoo algorithm with convex hulls to 

effectively address the semi-supervised clustering problem. The key contributions 

of this research include the following: 

(a) Forming a convex hull in each cluster using labeled data and labeling 

the enclosed data in it to have more labeled data in the early stages of 

clustering. 

(b) Applying a new definition of penalty component in the calculation of 

the Connectedness objective function within the multi-objective cuckoo 

criteria. Exploiting more reliable labeled data to form primary cluster 

centers. 

 

The subsequent sections of this paper are structured as follows: Section 2 

addresses the related work on semi-supervised clustering. Section 3 introduces 
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the algorithm that has been proposed. Section 4 focuses on the experiments 

conducted and the results obtained from analyzing the datasets, comparing 

them with the existing state-of-the-art algorithms. Finally, Section 5 concludes 

the paper. 

 

2. Related work 

In reviewing the performed studies in this area, the relevant papers are categorized 

into two groups: 1) Papers with multi-objective solutions (Semi-MO group). 2) 

Papers with single-objective ones (Semi-SO group). 

2.1. Semi-MO group 

In this section, we review those reports in which multi-objective optimization 

algorithms have been used to solve the semi-supervised clustering problem. 

In the method proposed by Alok et al. [34], four objective functions with the search 

capability of multi-objective simulated annealing (SA) are simultaneously 

optimized. The proposed approach aimed to estimate the number of clusters 

automatically and to detect the appropriate partitioning for the datasets having either 

well-separated clusters of any shape or symmetrical clusters with or without 

overlaps. The algorithm has been tested on 24 artificial datasets, 5 UCI datasets, and 

one satellite image.  

In another work, Alok et al. [35] proposed an algorithm to detect intrinsic structures 

and identify the interesting patterns of five gene expression datasets based on semi-

supervised clustering. The methodology of this research is based on the simultaneous 

optimization of four internal evaluation metrics (Sym-index, I-index, XB-index, and 

FCM-index) and one external criterion (AR index) using SA multi-objective 
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optimization algorithm. Due to the difficulty of producing labeled data for gene 

expression datasets, the FCM algorithm has been used for this purpose in such a way 

that those data with the highest membership value have been considered as labeled 

data.  

For the segmentation of three satellite images, Alok et al. [33] proposed a semi-

supervised algorithm that automatically estimates the number of homogeneous areas 

using a multi-objective optimization framework. For this reason, the search 

capability of multi-objective SA has been used, which updates three objective 

functions (Sym-index, I-index, and Minkowski index) together. The FCM clustering 

technique has been used to generate supervised data. Labeled data are selected 

randomly based on the maximum membership values of the respective clusters. The 

amount of labeled data is ten percent. 

For the accurate clustering of three cancer datasets, Saha et al. [32] developed a semi-

supervised algorithm to estimate the number of clusters automatically.  

Ebrahimi and Abadeh [36] proposed a semi-supervised clustering algorithm for 

clustering one UCI and three textual datasets. In this algorithm, intra-cluster variance 

and the number of constraint violations are minimized simultaneously by a multi-

objective genetic algorithm. 

The goal of the study by Saha et al. [37] was to estimate the number of clusters 

automatically and also present an appropriate clustering algorithm either in the well-

separated partitions of any shape or in symmetrical ones (with or without 

overlapping). The proposed method has been tested on seven artificial and 4 UCI 

datasets. Four objective functions of Sym-index (based on symmetry), Con-index 

(based on cluster connectivity), I-index (based on Euclidean distance), and AR-index 
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(supervised index) have been optimized simultaneously by multi-objective SA. The 

first three objective functions are the internal clustering indices, and the last one is 

an external index. 

Khorshidi et al. presented an algorithm for classifying the data collected from 

patients who have used different health services. The proposed method is based on 

stochastic approximation of gradient descent optimization of K-median cost and 

Regression Error functions. This research primarily aimed to evaluate the superiority 

of the multi-objective method over the single-objective method, to group the patients 

who had an accident, and to classify new patients [31].  

According to the above-reviewed articles, most of the studies in this group have been 

conducted to solve the automatic clustering problem, and SA is the most widely used 

optimization algorithm, which demonstrates the need to examine other optimization 

algorithms and make improvements in other clustering aspects like accuracy and 

speed. 

2.2. Semi-SO group 

This section studied the second group of reports. Single-objective optimization 

algorithms have been used to solve the semi-supervised clustering problem in this 

group. 

Lai et al. [38] proposed an algorithm for the semi-supervised clustering of 13 UCI 

datasets. The paper aimed to increase the clustering performance of sparsely 

distributed overlapping clusters by allowing a more informed search using labeled 

data across a small number of iterations. The proposed algorithm was designed to 

optimize the ssFCM objective function with the PSO algorithm. The authors used 

the power of semi-supervised (ssFCM) and PSO methods to conduct a more 
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informed search using labeled data through fewer iterations while maintaining 

diversity. The ssFCM can find meaningful clusters using labeled data, with PSO used 

due to its adaptability to problem representation and proper searching ability. Two 

methods of ssPSO have been used, where partial supervision is only applied in the 

initialization phase and the other throughout the learning process. 

In the method proposed by Dong et al., a semi-supervised clustering algorithm has 

been presented to increase the accuracy of fuzzy clustering and solve the problem of 

the PSO algorithm (being stuck in local optima). The algorithm has been proposed 

to optimize the reverse of the within-cluster sum of squares in 2 steps: In the first 

phase, clustering is performed approximately. Then in the second phase, it is 

conducted more accurately.  Four UCI datasets have been used for experimental 

results [39].  

Another semi-supervised clustering algorithm has been presented by Dong et al. The 

reverse of the sum of the squares of distances between data and their related cluster 

centers (SSE) has been optimized considering labeled data in combination with the 

Gini coefficient for increasing clustering accuracy. The algorithm uses the labeled 

data instead of a random selection of the initial cluster centers.  Evaluation of the 

method has been done using two UCI datasets [40]. 

In all the reviewed papers, one of the nature-inspired algorithms has been used to 

solve the problem of semi-supervised clustering in single-objective or multi-objective 

form. On the other hand, according to [41] and [42], parameter adaptation has a 

significant effect on establishing a proper balance between the exploration and 

exploitation phases of metaheuristic algorithms and improves their overall 

performance.  Local traps are also prevented by striking an appropriate balance 

between the two phases. With this point of view, in this article, an attempt has been 
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made to dissolve the semi-supervised clustering problem optimally by applying an 

adaptive multi-objective cuckoo algorithm in combination with the convex hull 

concept which is formed by each group of the labeled data. 

Clustering presents challenges as an NP-hard and multi-objective problem, as 

discussed earlier [22]. The computational complexity of clustering remains elevated, 

even for problems of moderate size. Consequently, the utilization of meta-heuristic 

algorithms, such as swarm intelligence algorithms, has become essential due to their 

track record of successfully addressing clustering problems. In contrast to a single 

objective clustering approach, multi-objective clustering seeks to optimize clustering 

on the basis of multiple criteria simultaneously. Through the utilization of multi-

objective optimization algorithms, clustering methods efficiently diminish the scope 

of search and strive to optimize an array of criteria that are diverse and 

complementary. The preference for employing these algorithms over single-objective 

counterparts stems from their remarkable ability to produce resilient outcomes. Our 

research on swarm intelligence algorithms has provided insights into their inherent 

traits and capabilities. We concluded that the Cuckoo algorithm has the potential to 

address the semi-supervised clustering problem according to the following features: 

• Strong global search capability in solving many real application optimization 

problems [43].    

• Fewer parameters to adjust [44]. 

• Ensuring global convergence [45]. 

• Higher stability of Cuckoo compared to PSO, Bat and Firefly algorithms  [46]. 

• Portability and platform independence [47]. 

• Producing accurate and high-strength results [48]. 
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Notwithstanding the difficulties related to establishing thresholds and fuzzy rules, 

the application of fuzzy control techniques remains prevalent due to the promising 

results they offer. Specifically, these techniques have been seamlessly incorporated 

into a myriad of swarm intelligence algorithms, including Particle Swarm 

Optimization (PSO), Bacterial Foraging Optimization (BFO), Ant Colony 

Optimization (ACO), Artificial Fish Swarm Algorithm (AFSA), Gravitational 

Search Algorithm (GSA), Firefly Algorithm (FA), Cuckoo Search (CS), Bat 

Algorithm (BA), and Artificial Bee Colony (ABC). Fuzzy control distinguishes itself 

among these methods due to its simplicity and effectiveness when incorporated into 

the PSO algorithm. As a result, it becomes a feasible choice for examination and 

utilization in alternative algorithms. Therefore, in this paper, the method used in [49] 

is applied to adapt the migration coefficient parameter in the multi-objective cuckoo 

algorithm. 

3. Proposed semi-supervised Clustering 

In this section, we initially define the semi-supervised clustering problem and outline 

the research goals. Subsequently, we elucidate the sequential process involved in 

implementing the proposed approach. 

 

3.1. Research objectives and problem definition 

 

Clustering aims to group unlabeled samples into distinct classes based on their 

similarities, resulting in the formation of clusters [50]. In semi-supervised algorithms, 

there exists a combination of labeled data 𝑋𝑙 = (𝑥1, 𝑥2, … , 𝑥𝑙) with corresponding labels 

{1,…,k} and unlabeled data 𝑋𝑢 = (𝑥𝑙+1, 𝑥𝑙+2, … , 𝑥𝑙+𝑢) with unknown labels, where the 

number of labeled data points (l) is significantly smaller than that of unlabeled data 
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points (u). Both sets of data (labeled and unlabeled) are selected independently from 

the same underlying data distribution. The primary objective of semi-supervised 

techniques is to leverage the available labeled data to enhance the performance of the 

algorithm and achieve more accurate results. 

Our proposed framework designed to solve the semi-supervised clustering problem 

is illustrated in Figure 1. Given the semi-supervised nature of the clustering problem, 

we initially aimed to augment the labeled data by constructing a convex hull around 

them and labeling the data contained in it in each group according to our previous 

work [51]. Subsequently, after exploring various techniques, we determined that 

meta-heuristic algorithms are better suited for solving this NP-hard clustering 

problem. Additionally, since clustering is a multi-objective problem, it is essential to 

consider different and complementary objectives simultaneously to narrow down the 

search space and obtain improved results. Hence, we utilized a multi-objective 

cuckoo algorithm. Furthermore, the initial labeled data were utilized throughout the 

learning process of the algorithm by customizing the objective functions. It is 

important to note that only the primary labeled data, rather than the labeled data 

obtained through convex hull formation, were used in the initialization of the cluster 

centers. To enhance the overall performance of these algorithms, we thoroughly 

examined the challenges and practical factors associated with them. Some of these 

challenges include getting trapped in local optima and the need for manual parameter 

adjustment. To address these issues, we studied the existing methods for automatic 

parameter adaptation and implemented the approach described in [49] to dynamically 

adjust the motion coefficient parameter of the multi-objective cuckoo algorithm. 
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3.2. Encoding of a state, initialization of clusters centers, and 

assignment of points 

In the presented approach, a collection of real numbers is utilized to denote the 

condition of Cuckoos. These values signify the positions of the cluster centers and 

are initially selected from labeled data. In terms of the task at hand, the principle of 

minimum Euclidean distance has been taken into account for the allocation of 

unlabeled data. A specific point P (as defined in Equations 1 and 2) is assigned to 

the cluster with the smallest Euclidean distance from its center. 

| arg min { ( , )}i e iP i d C P
                                                                 (1)   

1...i k=                                                                                             (2) 

iC
 is the center of the ith cluster and ed

 denotes the Euclidean distance. 

 

3.3. Objective functions 

Based on the study by [52], the most suitable objectives for addressing bi-objective 

clustering problems are Compactness and Connectedness. In our research, we have 

incorporated these objective functions with certain modifications. The first objective 

function evaluates the Sum of Squares of Errors (SSE) of a solution using Equation 

3, which signifies the proximity between an object and the nearest cluster centroid. 

In cases where labeled data is available, the distance between that data and its 

assigned cluster is taken into account. 

 

2

1( ) || ||
i i

k

i x c j iSSE x =  =  −¢
 

 
(3) 

 

 

The Euclidean distance is represented by ||.||, with i  denoting the center of the cluster 
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ic , and jx
 representing the jth element of the dataset. The goal is to minimize the SSE 

as the objective function. Additionally, the Connectedness objective is minimized as 

well, the computation of which is illustrated in Equations 4 and 5. 
  (4) 

 

1

( , ) 0

if
j

p q otherwisex


=
: ^k k kC p C q C   

 
  

 

 (5) 

 

λ is the number of elements in the clustered dataset, i jnn
 denotes the jth nearest 

neighbor of the object i, and 𝛼  indicates the number of neighbors used in the 

connectedness measure. In addition, 
,

iji nnx
corresponds to the penalty variable value 

injected as follows: if an object i and its nearest neighbor are not in the same cluster, 

then the value of the injected penalty is (
1

j ), otherwise it is zero. The nearer the 

neighbor clustered in a different group, the higher the penalty cost is. 

In the customized version of Connectedness, if any labeled data exists in the 

neighborhood, data comparison is based on the labeled data to impose the penalty, 

and the cost calculation of the neighbors is done according to the procedure discussed 

above. In situations where the object i itself (not its neighbors) has a different label, 

its cost is calculated according to Equation 6: 

,

1

min( )
p qx

indexof labeled data inith data neighborhood
=

 

    

(6)  

 

In other cases, the cost is calculated at 
1

j . 

 

3.4. Adjustments for fuzzy parameter adaptation 

In this section, the adjustments used for the Mamdani fuzzy system for the adaptation 

of the migration coefficient parameter are discussed. 
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The motion of cuckoos in each generation can be expressed as Equation 7: 

1* 2* * ( )new old best old

i j i j i j i jH C H C F H H= + −
 

 

(7) 

 

 

Here, 
new

i jH
 represents the new position 

1
1 (1 exp( ))C

current iteration
= − −

, 

old

i jH
 denotes 

the current cuckoo position 
( )2 (0.5 1.5*(1/ ( ))) orm Normalized rorN ErC sqrt currentiteration= + , 

( )orm NormalN izedError
 will be explained later, F is the migration coefficient, λ is also a 

uniform random number between zero and one, and  
best

i jH
indicates the position of 

the best cuckoo in the best cluster in each generation. The migration coefficient F 

requires manual adjustment; however, we have automated this adjustment using 

fuzzy logic. The recommended values for this parameter typically fall within the 

range of 0.5 to 2.5. 

To dynamically adapt the migration coefficient parameter, the diversity of the 

swarm, the error, and the algorithm iterations are utilized as inputs in a fuzzy system 

framework known as Mamdani. The iteration, diversity, and error are mathematically 

defined in Equations (8) to (11). 

Current iteration
Iteration

Maximumof iterations
=

 

 

(8) 

 

( )Dist EachCuckoo from Best Cuckooof the Best Cluster
Diversity

Maximum Dist
=

 

 

(9) 

 

( ) ( )iError Fitness x Fitness BestCuckoo= −
 

 

(10) 

 

To ensure that the error value falls within the range of 0 and 1, normalization is 

performed as per Equation 11. 

min( )

max( ) min( )

Error Error
NormalizedError

Error Error

−
=

−  

 

(11) 
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Given the multi-objective nature of the proposed approach, the error vector is 

represented as a two-dimensional vector. To simplify the calculation and comparison 

process, the norm form of Equation 11 is utilized as the input for the fuzzy system, 

as shown in Equation 12. 

( ) 2( )Norm NormalizedError Norm NormalizedError=
  

(12) 

 

 
To develop a fuzzy system that can dynamically adjust the migration coefficient 

parameter, three inputs are taken into consideration. The output of the fuzzy system 

corresponds to the adjusted migration coefficient. The input variables are structured 

based on the criteria illustrated in Figure 2(a), 2(b), and 2(c), representing iteration, 

distance-based diversity, and error, respectively. Each input is divided into three 

Gaussian membership functions. As previously mentioned, the output variable is 

constrained within the range of 0.5 to 2.5, defined by five Gaussian membership 

functions, as depicted in Figure 2(d). 

The rules in this fuzzy system are modified based on a specific logic. Initially, the 

emphasis is on high exploration during the early iterations. As the algorithm 

progresses towards the final iterations, the focus shifts towards increased 

exploitation. This adjustment aims to enrich the exploration process and ultimately 

lead to an almost optimal solution. Conversely, when the population's diversity is 

low, the cuckoos tend to have minimal dispersion from the best cuckoo and are 

closely clustered to the best cuckoo. In such cases, it is important to consider 

increasing the exploration factor. On the other hand, in scenarios with high diversity, 

the exploitation factor should be prioritized. The specific rules governing the utilized 

fuzzy system can be observed in Figure 3. 
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3.5. The ConvexCo algorithm 
 

The steps of the ConvexCo algorithm, which is an adaptive multi-objective cuckoo 

algorithm for semi-supervised data clustering, are as follows: Upon receiving the 

inputs, the initial population of cuckoos is created from the labeled data, and the 

Goalpoint (the position of the initial best cuckoo in the best group of cuckoos) is 

randomly assigned based on the provided pseudo-code. The position of the best 

cuckoo in all generations is then adjusted according to the initial Goalpoint. 

Subsequently, convex hulls are formed from each group of the labeled data, and the 

data enclosed within these convex hulls are labeled using their corresponding 

boundary labels. Non-dominated members of the primary population of cuckoos are 

identified and added to the archive. The archive is then processed, and the following 

steps are repeated MaxIt times : 

Archive members and indices are updated, and the capacity of the archive is checked 

for additional members. Region-based selection is employed to remove these 

additional members, with a preference for selecting dense cells for removal. If a 

selected cell contains only one member, that member is removed; otherwise, one 

member from the cell is randomly selected for removal. 

The best cuckoo from each generation is selected from the archive, with a bias 

towards selecting from less dense cells. This selection process is reversed when 

compared to removing additional archive members. The Globalbest variable is 

updated by comparing this selection with its current value. The cuckoo population is 

then grouped using the K-means algorithm (based on city block distance 

measurement), and the average values of the objective functions for each group of 

cuckoos are calculated. These values are then compared to determine the best cluster, 
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which is defined as a group with a non-dominated response. If no group dominates 

any others, a group is randomly selected as the best cluster. In that best cluster, a non-

dominated cuckoo is also chosen as the best cuckoo. If this non-dominated member 

does not exist, one cluster member is randomly considered the best cuckoo. This best 

cuckoo position is the point to which other cuckoos will move in the next step. 

For the movement of cuckoos, according to the basic algorithm, the migration 

coefficient parameter value must be set manually, and due to the adaptive adjustment 

of this value through a fuzzy system design, at this stage, the input values of the fuzzy 

system are obtained as described previously in Section 3-4. These input values are 

then transferred to the fuzzy system to receive the adjusted migration coefficient 

value corresponding to each iteration. The cuckoos of each generation can move 

accordingly. After the cuckoo movement, if the iteration number has not reached its 

maximum value, the actions are resumed from step 10. Otherwise, the algorithm is 

terminated. 

 

 

Algorithm 1 ConvexCo 

 Inputs: L: Labeled data; U: Unlabeled data; K: no. of Clusters; MaxIt: Maximum no. of 

iteration; 

 Output: Clustered data 

1.   Use L to initialize the cuckoo population 

2.  Define Goalpoint (status of initial best cuckoo in best cuckoo groups) randomly and set 

Globalbest (status of best cuckoo in all generations) with Goalpoint 

3.   Labeling the data enclosed in each convex hull formed from the labeled data in each cluster 

4.  For It=1:MaxIt 

5.     If (It==1) 

6.          Find non-dominated solutions for the cuckoo population 

7.          Add non-dominated solutions to the Archive 

8.          Process the Archive to select the best solution 

9.     end 

10. Update Archive elements 

11. Update Archive indices 

12. Check Archive capacity and remove additional solutions 
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13. Define the best cuckoo of the current generation using the Archive 

14. Update Globalbest by comparing the current best cuckoo and Globalbest 

15. Group cuckoo population by K-means using 'city block distance' 

16. Define the best cuckoo group and the best cuckoo in that group 

17. Preparing Fuzzy system entries (Iteration, Diversity, Error) for estimating motion coefficient  

18. Moving cuckoos toward the best cuckoo 

19. End 

 

 

 

4. Experimental results 

Within this segment, we have examined the experiments carried out to validate the 

effectiveness of the proposed ConvexCo clustering technique. Both numerical and 

statistical analyses have been conducted on the results obtained. The partitioning 

outcomes have been compared to other state-of-the-art algorithms, Cuckoo [53], 

Semi-supervised Cuckoo, NSGAII, MOPSO, Seeded K-means [30], and Constrained 

K-means [30]. 

4.1. Parameter setting 

The parameter settings of the ConvexCo for the experimental study are presented in 

Table 1. 

               

4.2. Synthetic data  

The synthetic datasets have been denoted in the Xd-Xc-noX format, where 'd' signifies 

attributes, 'c' represents clusters, and 'no' indicates the dataset number (Table 2). For 

instance, 2d-10c-no0 refers to a dataset with two attributes, ten clusters, and zero as 

the dataset number. In order to ensure a fair comparison with other algorithms, all the 

semi-supervised clustering algorithms in our experiment settings utilize the same 

labeled dataset. Specifically, 10% of the samples are selected from the labeled data. 
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Additionally, the number of clusters 'K' is set to be equal to the number of ground 

truth clusters. 

                        

In this experiment, we clearly demonstrate how the suggested algorithm enhances 

performance in comparison to alternative algorithms. This improvement is achieved 

by applying the algorithm on the synthetic dataset 2d-4c-no3. The dataset, along with 

the labeled data, is depicted in Figure 4(a). Furthermore, Figure 4(b) demonstrates 

the clustering outcome obtained through the application of the proposed method to 

the aforementioned dataset. Figure 4(c), on the other hand, represents the desired 

clustering result. Lastly, Figure 4(d) provides a comparison of the error rate between 

the proposed method and other algorithms. It is worth noting that the proposed 

algorithm successfully clusters a significant portion of the unlabeled data while 

simultaneously reducing the error rate. The reported error rate is based on the average 

of 15 iterations of executing semi-supervised algorithms. 

 



                 

4.3. Datasets 

Table 3 summarizes the characteristics of the 11 benchmark datasets selected from 

the UCI for the experiment . 

4.4. Experimental setup 

A 10% portion of the data is extracted from labeled samples for every dataset. The 

identical sets of the labeled data are utilized in all semi-supervised clustering 

algorithms. As a result of the stochastic nature of meta-heuristic algorithms, the mean 

values of ARI, Accuracy, NMI, and F-measure are documented in Table 4 following 

15 iterations of each algorithm in every dataset. 

 

4.5. Results 

Table 4 and its continuation show the significant effectiveness of the proposed 

algorithm compared to other algorithms under the evaluation criteria of ARI,  

Accuracy, NMI, and F-measure. The first two columns of each table represent the 

evaluation values of the Cuckoo clustering algorithm under two distinct criteria. The 

third to fourth, fifth to sixth, seventh to eighth, ninth to tenth, eleventh to twelfth, and 

thirteenth to fourteenth columns, respectively, denote the same values for Semi-

Cuckoo, NSGAII, MOPSO, Seeded K-means, Constrained K-means, and the 

proposed ConvexCo method. The clustering algorithm that exhibits the highest 

performance for each criterion is highlighted in bold for every dataset. 

 

4.5.1. Comparisons to related algorithms 

The results in Table 4 show that the ConvexCo algorithm has better clustering 

performance for most of the datasets compared to the others. These results are more 
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clearly demonstrated by utilizing the t-test. 

According to the four evaluation criteria, the performance of the proposed method in 

the Zoo, Iris, BankAuthentication, Balance, Jain, msplice, Landsat, 2d-10c-no0, 2d-

4c-no1, 2d-4c-no2, 2d-4c-no3 datasets is better than that of other methods. 

Constrained k-means produces better results in Ecoli, Segment, and Pendigits. On 

Aggregation and 2d-4c-no4, NSGAII works better. Considering the excessive clutter 

in these five datasets, it seems that the proposed method mislabels the cluttered data 

due to forming a convex hull at the beginning stage of the algorithm. On the other 

hand, according to the algorithm routine, these wrong labels are preserved and do not 

enter the evaluation process by the objective functions again. Another point, 

compared to the Constrained K-means algorithm, is that this algorithm uses only one 

criterion for evaluation and the Connectedness measure does not play a role in its 

evaluation. This criterion is effective in mislabeling due to distance dependence. 

The ConvexCo algorithm demonstrates superior effectiveness compared to other 

semi-supervised algorithms by utilizing labeled data through the formation of convex 

hulls effectively. Additionally, it optimizes the use of labeled data during the learning 

phase. Moreover, the fuzzy adaptation of the migration coefficient parameter of 

cuckoo effectively steers the algorithm in the right direction. 
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4.5.2. Statistical analysis 

 

In this section, the outcomes derived from Table 4 are examined utilizing paired 

t-tests. Tables 5 to 8 represent the average rank of each algorithm applied to 16 

datasets, respectively, based on ARI, Accuracy, NMI, and F-measure metrics. 

According to these rankings, we performed a paired t-test for each evaluation 

criterion between the proposed algorithm and the 3 highest-rank algorithms. 

As results presented in Table 9 show, there is a significant difference in the mean 

of clustering criteria of the ConvexCo algorithm in comparison with those of other 

comparable algorithms, which rejects the null hypothesis (the mean difference in 

each group is zero), at α=0.05 significance level for each criterion. 
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*MD = mean difference, SD = standard error of the difference between the means. According to the significance criterion: p > 0.05 is not 

significant. 

 



4.6. Discussion 

In most instances, our proposed algorithm has demonstrated superior 

performance compared to other algorithms. As indicated in Table 4, this is 

evident from the evaluation criteria, namely ARI, Accuracy, NMI, and F-

measure. It is important to note that there are certain cases where the overall 

performance of all algorithms remains low. We have examined these scenarios 

and presented the findings accordingly . 

 

The datasets we have plotted reveal an interesting pattern. As depicted in 

Figure 5, these datasets are characterized by a significant overlap of data 

points. Consequently, distinguishing and assigning them to distinct clusters 

poses a considerable challenge. Conversely, the Zoo, Iris, 2d-4c-no3, and 2d-

4c-no4 datasets exhibit well-separated clusters. As a result, clustering has been 

performed with greater accuracy, leading to improved evaluation results. This 

can be observed in Figure 6. 

 

 
 

 

 

 

5. Conclusion 

In this paper, we applied an adaptive semi-supervised clustering algorithm 

based on the multi-objective cuckoo named ConvexCo for solving a semi-

supervised clustering problem. To reach this aim, due to the multi-objective 

and NP-hard nature of the clustering, we have used an adaptive multi-objective 

cuckoo in combination with the convex hull concept in such a way that labeled 
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data were applied in the initialization step. Then, they participated in forming 

convex hulls to label the enclosed data in them. Finally, they were exploited in 

the evaluation step as follows: in the SSE criterion, the distance of the labeled 

data from the centers of the clusters to which they belonged was included, and 

in the connectedness criterion, if there is any labeled data in the neighborhood, 

that labeled data is used as a comparison source. To apply a penalty, if the 

original data is not in the same cluster as the labeled data, it will be penalized 

to the maximum extent. 

The performance of the proposed method was evaluated on several UCI 

and artificial datasets using four criteria: ARI, Accuracy, NMI, and F-measure. 

According to the experimental results, it is concluded that the proposed 

algorithm works better than the other compared algorithms in terms of all four 

criteria . 

 

Future works can be formed by turning single-objective swarm intelligence 

algorithms that have not been used to solve semi-supervised clustering 

problems into multi-objective versions and the employment of the ConvexCo 

objective functions in the other alternative algorithms. 

The ConvexCo algorithm may not work well for mixed datasets because of 

mislabeling data by convex hull formation at the beginning stage of the 

algorithm and preserving them in the evaluation step. the exploited objective 

functions in this algorithm are also based on distance which do not operate 

appropriately on cluttered data. These issues should be deeply considered 

regarding the clustering of this data type. 
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Figure 1. The proposed framework to solve the semi-supervised clustering problem. 

Figure 2. (a) Iteration input. 

Figure 2. (b) Diversity input. 

Figure 2. (c) NormalizedError input. 

Figure 2. (d) Output (adjusted migration coefficient: F). 

      Figure 3. The designed fuzzy system rules used to estimate the migration coefficient. 

  Figure 4. (a) Labeled and unlabeled examples. 

  Figure 4. (b) Clustered examples using ConvexCo. 

  Figure 4. (c) Original fully labeled data. 

  Figure 4. (d) Error Rate comparison of the different algorithms. 

      Figure 5. Datasets with mix clusters: (a) Ecoli. 

 Figure 5. Datasets with mix clusters: (b) Segment. 

 Figure 6. Well-separated datasets: (a) Zoo. 

   Figure 6. Well-separated datasets: (b) Iris. 

   Figure 6. Well-separated datasets: (c) 2d-4c-no3. 

   Figure 6. Well-separated datasets: (d) 2d-4c-no4. 
          

       Table 1. Parameter settings. 

      Table 2. Synthetic dataset characteristics. 

      Table 3. UCI dataset characteristics. 

      Table 4. Comparing the performance of the proposed method with others using 10% 

labeled data for semi-supervised algorithms. 
     Table 4 Continued. Comparing the performance of the proposed method with others 

using 10% labeled data for semi-supervised algorithms. 

     Table 5. Statistical rank based on the ARI index. 

      Table 6. Statistical rank based on Accuracy. 

      Table 7. Statistical rank based on NMI. 

      Table 8. Statistical rank based on F-measure. 

      Table 9. Results of the significance testing by paired t-test based on ARI, Acc, NMI, 

and F-measure criteria. 
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Values Explanations Parameters 

Different 

depending on each 

dataset 

Number of clusters K 

      10 Number of initial cuckoos 
NumCuckoos 

 

      3 
The minimum number of eggs that can be 

laid by each cuckoo 

MinNumberOfEggs 

 

      5 
The maximum number of eggs which can 

be laid by each cuckoo 

MaxNumberOfEggs 

 

      3 
The number of clusters in grouping 

cuckoos by K-means algorithm 

NumberOfCluster 

 

15 Maximum number of cuckoo population 
MaxNumOfCuckoo 

 

      100 Maximum iterations 
MaxIter 

 

Table 1. 
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#Class 
#Attributed 

(d) 
#Example Name 

10 2 2972 2d-10c-no0 

4 2 1623 2d-4c-no1 

4 2 1064 2d-4c-no2 

4 2 1123 2d-4c-no3 

4 2 863 2d-4c-no4 

Table 2. 

 

 
#Class #Attributed(D) #Example Name 

7 17 101 Zoo1707 

3 4 150 Iris0403 
8 7 336 Ecoli0708 

7 19 2310 Segment1907 

10 16 10992 Pendigits1610 

2 4 1372 BankAuthentication0402 
3 4 625 Balance 0403 
2 2 373 Jain0202 
7 2 788 aggregation0207 

3 240 3175 msplice1003 

6 36 2000 landsat1006 

 

Table 3. 
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ARI Acc ARI Acc ARI Acc ARI Acc ARI Acc ARI Acc ARI Acc 

Zoo 0.42 62.71 0.77 86.14 0.74 81.58 0.66 77.1 0.44 67.33 0.47 69.31 0.83 87.99 

Iris 0.59 70.4 0.76 90.84 0.71 85.64 0.64 78.44 0.72 88.67 0.73 88.33 0.78 91.78 

Ecoli 0.49 62.18 0.6 68.65 0.72 80.38 0.58 70.73 0.53 69.94 0.73 80.85 0.63 73.55 

Segment 0.15 35.76 0.39 61.75 0.35 55.76 0.21 41.17 0.41 63.12 0.42 65.67 0.41 64.5 

Pendigits 0.22 37.05 0.53 71.79 0.54 78.96 0.42 58.9 0.54 76.72 0.55 79.43 0.54 73.04 

BankAuthentication 0.04 60.03 0.09 64.65 0.07 63.59 0.07 62.13 0.05 61.22 0.09 65.16 0.59 88.24 

Balance 0.12 50.41 0.32 63.64 0.13 52.9 0.06 52.11 0.16 53.76 0.4 70.4 0.53 85.41 

Jain 0.26 75.57 0.31 77.75 0.28 76.41 0.35 79.3 0.32 78.55 0.4 80.77 0.75 93.46 

Aggregation 0.74 79.76 0.86 92.7 0.94 96.84 0.88 92.12 0.73 86.17 0.82 90.12 0.91 95.67 

msplice1003 0.53 79.58 0.63 85.82 0.55 80.08 0.17 56.28 0.62 85.51 0.66 86.4 0.67 87.41 

landsat1006 0.28 47.27 0.38 63.92 0.39 64.89 0.29 53.8 0.3 54.5 0.34 60.6 0.5 68.06 
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2d-10c-no0 0.8 83.45 0.9 93.79 0.89 92.44 0.89 91.95 0.88 91.76 0.89 93.3 0.91 94.89 

2d-4c-no1 0.79 82.9 0.89 93.33 0.89 92.82 0.86 90.36 0.88 92.67 0.89 92.47 0.97 98.42 

2d-4c-no2 0.85 90.89 0.93 96.92 0.91 96.01 0.9 94.92 0.91 95.77 0.92 95.52 0.96 98.55 

2d-4c-no3 0.9 94.87 0.93 97.64 0.92 97.3 0.92 97.29 0.92 97.33 0.93 97 0.95 98.29 

2d-4c-no4 0.9 93.26 0.98 99.12 0.99 99.61 0.84 90.75 0.97 98.96 0.97 98 0.98 99.44 

 

 

Table 4. 
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NMI 
F-

measure 
NMI 

F-
measure 

NMI 
F-

measure 
NMI 

F-
measure 

NMI 
F-

measure 
NMI 

F-
measure 

NMI 
F-

measure 
 

Zoo 0.58 0.05 0.77 0.8 0.78 0.67 0.76 0.59 0.67 0.46 0.65 0.59 0.8 0.81  

Iris 0.71 0.29 0.77 0.91 0.77 0.79 0.76 0.74 0.74 0.89 0.75 0.9 0.8 0.92  

Ecoli 0.56 0.11 0.63 0.63 0.69 0.7 0.66 0.49 0.63 0.57 0.7 0.78 0.62 0.64  

Segment 0.27 0.11 0.5 0.63 0.51 0.49 0.36 0.32 0.55 0.68 0.58 0.71 0.54 0.65  

Pendigits 0.51 0.08 0.64 0.72 0.7 0.79 0.57 0.52 0.69 0.77 0.71 0.8 0.67 0.77  

BankAuthentication 0.03 0.49 0.05 0.62 0.08 0.64 0.07 0.59 0.03 0.6 0.06 0.64 0.61 0.91  

Balance 0.13 0.35 0.25 0.59 0.11 0.48 0.07 0.29 0.14 0.51 0.32 0.63 0.36 0.66  

Jain 0.33 0.63 0.36 0.8 0.36 0.8 0.29 0.71 0.37 0.81 0.42 0.83 0.62 0.92  

Aggregation 0.83 0.18 0.88 0.9 0.95 0.96 0.91 0.88 0.84 0.87 0.87 0.9 0.92 0.95  

msplice1003 0.52 0.32 0.57 0.81 0.53 0.82 0.58 0.8 0.59 0.86 0.6 0.87 0.63 0.88  

landsat1006 0.38 0.18 0.5 0.69 0.48 0.63 0.43 0.49 0.43 0.59 0.46 0.64 0.51 0.7  

2d-10c-no0 0.9 0.15 0.93 0.91 0.91 0.92 0.93 0.89 0.93 0.93 0.93 0.9 0.94 0.94  

2d-4c-no1 0.82 0.22 0.85 0.89 0.85 0.9 0.83 0.78 0.83 0.9 0.84 0.36 0.95 0.98  

2d-4c-no2 0.87 0.14 0.92 0.97 0.9 0.95 0.9 0.93 0.9 0.96 0.91 0.39 0.94 0.98  

2d-4c-no3 0.85 0.22 0.91 0.98 0.92 0.98 0.89 0.96 0.91 0.98 0.91 0.39 0.94 0.99  

2d-4c-no4 0.91 0.25 0.96 0.98 0.97 0.99 0.96 0.98 0.95 0.98 0.95 0.39 0.97 0.99  

Table 4 Continued. 
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Zoo 7 2 3 4 6 5 1 

Iris 7 2 5 6 4 3 1 

Ecoli 7 4 2 5 6 1 3 

Segment 7 4 5 6 2.5 1 2.5 

Pendigits 7 5 3 6 3 1 3 

BankAuthentication 7 2.5 4.5 4.5 6 2.5 1 

Balance 6 3 5 7 4 2 1 

Jain 7 5 6 3 4 2 1 

Aggregation 6 4 1 3 7 5 2 

Msplice 6 3 5 7 4 2 1 

Landsat 7 3 2 6 5 4 1 

2d-10c-no0 7 2 4 4 6 4 1 

2d-4c-no1 7 3 3 6 5 3 1 

2d-4c-no2 7 2 4.5 6 4.5 3 1 

2d-4c-no3 7 2.5 5 5 5 2.5 1 

2d-4c-no4 6 2.5 1 7 4.5 4.5 2.5 

Average Rank 6.75 3.09 3.69 5.34 4.78 2.84 1.5 

 

Table 5. 
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Zoo 7 2 3 4 6 5 1 

Iris 7 2 5 6 3 4 1 

Ecoli 7 6 2 4 5 1 3 

Segment 7 4 5 6 3 1 2 

Pendigits 7 5 2 6 3 1 4 

BankAuthentication 7 3 4 5 6 2 1 

Balance 7 3 6 5 4 2 1 

Jain 7 5 6 4 3 2 1 

Aggregation 7 3 1 4 6 5 2 

Msplice 6 4 5 7 3 2 1 

Landsat 7 3 2 6 5 4 1 

2d-10c-no0 7 2 4 5 6 3 1 

2d-4c-no1 2 3 7 6 4 5 1 

2d-4c-no2 7 2 3 5 4 6 1 

2d-4c-no3 7 2 4 5 3 6 1 

2d-4c-no4 6 3 1 7 4 5 2 

Average Rank 6.5625 3.25 3.75 5.3125 4.25 3.375 1.5 

 

 

Table 6. 
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Zoo 7 3 2 4 5 6 1  

Iris 7 2.5 2.5 4 6 5 1  

Ecoli 7 4.5 2 3 4.5 1 6  

Segment 7 5 4 6 2 1 3  

Pendigits 7 5 2 6 3 1 4  

BankAuthentication 6.5 5 2 3 6.5 4 1  

Balance 5 3 6 7 4 2 1  

Jain 6 4.5 4.5 7 3 2 1  

Aggregation 7 4 1 3 6 5 2  

msplice1003 7 5 6 4 3 2 1  

landsat1006 7 2 3 5.5 5.5 4 1  

2d-10c-no0 7 3.5 6 3.5 3.5 3.5 1  

2d-4c-no1 7 2.5 2.5 5.5 5.5 4 1  

2d-4c-no2 7 2 5 5 5 3 1  

2d-4c-no3 7 4 2 6 4 4 1  

2d-4c-no4 7 3.5 1.5 3.5 5.5 5.5 1.5  

Average Rank 6.78 3.69 3.25 4.75 4.5 3.31 1.72  

 

Table 7. 
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Zoo 7 2 3 4.5 6 4.5 1  

Iris 7 2 5 6 4 3 1  

Ecoli 7 4 2 6 5 1 3  

Segment 7 4 5 6 2 1 3  

Pendigits 7 5 2 6 3.5 1 3.5  

BankAuthentication 7 4 2.5 6 5 2.5 1  

Balance 6 3 5 7 4 2 1  

Jain 7 4.5 4.5 6 3 2 1  

Aggregation 7 3.5 1 5 6 3.5 2  

msplice1003 7 5 4 6 3 2 1  

landsat1006 7 2 4 6 5 3 1  

2d-10c-no0 7 4 3 6 2 5 1  

2d-4c-no1 7 4 2.5 5 2.5 6 1  

2d-4c-no2 7 2 4 5 3 6 1  

 

 

Table 8. 
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Performance 

Measures 

Paired Algorithms 

for Comparison 

Paired Differences 

t-value df p-value 
Statistical 

significance 
MD SD Std. Error  

95% Confidence 

Interval 

Lower Upper 

ARI 

(ConvexCo, 

Constrained K-means 
3.56 0.16 0.04 0.07 3.6 2.64 

15 

0.01 
Significant 

(ConvexCo, Semi-

Cukoo) 
0.1 0.15 0.04 0.06 0.14 2.7 0.02 

Significant 

(ConvexCo, NSGAII) 0.12 0.18 0.04 0.07 0.16 2.63 0.02 Significant 

Accuracy 

(ConvexCo, Semi-

Cuckoo) 
5.65 7.58 1.89 3.75 7.55 2.98 

15 

0.009 
Significant 

(ConvexCo, 

Constrained K-means 
5.34 8.39 2.1 3.25 7.4 2.55 0.02 

Significant 

(ConvexCo, NSGAII) 6.48 10.42 2.61 3.87 9.08 2.48 0.02 Significant 

NMI 

(ConvexCo, NSGAII) 0.08 0.15 0.03 0.04 0.12 2.17 

15 

0.04 Significant 

(ConvexCo, 

Constrained K-means 
0.07 0.14 0.04 0.04 0.11 0.02 0.04 

Significant 

(ConvexCo, Semi-

Cukoo) 
0.08 0.14 0.03 0.05 0.12 2.33 0.03 

Significant 

F-measure 

(ConvexCo, NSGAII) 0.073 0.08 0.02 0.05 0.09 3.36 

15 

0.004 Significant 

(ConvexCo, 

Constrained K-means 
0.18 0.27 0.07 0.12 0.25 2.8 0.01 

Significant 

(ConvexCo, Semi-

Cukoo) 
0.05 0.07 0.01 0.03 0.07 3 0.009 

Significant 

Table 9. 

 


