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ABSTRACT 

The developments in ocean energy have prompted researchers to investigate the floating offshore wind 

turbines (FOWTs). Therefore, the need to stabilize this structure is a crucial aspect in control 

engineering. The presence of disturbances and noise highlights the importance of implementing an 

intelligent control approach. This paper focuses on the nonlinear FOWT with an online feedback 

control system utilizing deep reinforcement learning (DRL) algorithms. The inherent characteristics 

of DRL allow the FOWT to adapt to changing environments, employing two parallel networks known 

as online-target. An observer system is integrated with direct gain based on the measured outputs from 

available sensors, demonstrating global asymptotic stability through a Lyapunov function. 

Furthermore, an agent trained using DQN in the adapted environment requires minimal instances to 

determine the optimal control policy. Simulation tests conducted in MATLAB exhibit the superior 

performance of the proposed observer-controller compared to the LQR approach in terms of FOWT 

stabilization. Additionally, it is shown that the Luenberger observer doesn’t perform as effectively as 

the newly developed observer in presence of uncertainty, unknown disturbances. Finally, the outcomes 

are compared with the gain scheduling PI control method recommended by Jonkman as a well-known 

benchmark to validate the accuracy of the simulation results. 

Keywords: Floating Offshore Wind Turbine; Multi-body system; Nonlinear control; Machine 

learning; Deep reinforcement learning; Black-box nonlinear observer;  

 

1. Introduction 

1.1. Background and motivation 

Deep water is a significant source of wind energy, but traditional concrete foundations are not 

suitable for deployment in such depths. Floating foundations offer stability and environmental 

response, offering six degrees of freedom for Floating Offshore Wind Turbines (FOWTs). However, 

design limitations like blade tip deflection have become more significant. To ensure accuracy, 

efficient controllers and tuning techniques are essential, especially for large, flexible turbines. 

Automated optimization methods like Cp-max, HawtOpt, and WISDEM® [1-3] help integrate 

dynamic aspects into optimization. Regular updates to controllers are necessary for evolving wind 

turbine designs [4,5]. 

 

1.2. Literature review 

Floating Offshore Wind Turbines (FOWTs) face complex dynamics that necessitate advanced 

control strategies to optimize performance. Traditional proportional–integral–derivative (PID) 

controllers often struggle with uncertainties and disturbances, prompting the exploration of novel 

approaches including machine learning and deep learning techniques. Enrique et al. [6] combined 

reinforcement learning (RL) with PID for pitch angle control, enhancing traditional methods, while 

their use of a radial basis function (RBF) network [7] and adaptive neuro-fuzzy inference systems 

[8] shows potential in wind power estimation. Deep learning methods like Long Short-Term Memory 
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(LSTM) models and Variational Mode Decomposition (VMD) have also proven effective for wind 

speed forecasting [9-12]. Hybrid control approaches that integrate adaptive neural networks with PID 

controllers and inverse plant models are being investigated for improved signal tracking [13]. 

 

Recent research has further explored RL-based mechanisms for FOWT control. Zhang et al. [14] 

applied RL to power systems, and Fernandez-Gauna et al. [15] used RL to adjust controllers for 

varying wind conditions in a variable-speed FOWT. Abouheaf et al. employed RL in policy iteration 

and adaptive actor-critic methods for a doubly-fed induction generator FOWT [16], while RL has 

also been applied to yaw control tasks [17, 18]. Hybrid intelligent controllers combining traditional 

methods with intelligent approaches have shown promise. For instance, Iqbal et al. proposed a hybrid 

fuzzy system and model predictive controller [19], and Ngo et al. created a fuzzy logic-based PID 

controller [20]. Sedighizadeh and Rezazadeh developed an adaptive PID controller tuned with RL 

[21], and optimization methods like particle swarm optimization (PSO) have been used alongside 

neural networks [22]. Active control techniques, including neural network-based systems for pitch 

control [23-26] and hybrid ANFIS and fuzzy systems [27, 28], have demonstrated potential in 

enhancing FOWT performance. 

In addition to controller design, observer design plays a crucial role in estimating unmeasured 

signals in nonlinear systems [29–32]. However, model-oriented observers often require precise 

system models, which may be impractical under real-world uncertainties [33–40]. Sliding mode 

algorithms offer advantages such as finite-time convergence and robustness to uncertainty [41–49], 

with second-order sliding mode observers addressing chattering issues and enhancing robustness 

[50–54]. These advancements in control and estimation techniques, including machine learning and 

sliding mode methods, hold promise for improving the performance and reliability of FOWTs under 

challenging conditions. 

 

1.3. Paper contributions and organizations 

For the past two decades, robustness in control systems amid modeling uncertainties has been a 

significant research focus [39]. This is often due to simplified dynamic models and approximate 

physical parameters. This paper addresses gaps in FOWT control, particularly yaw and generator 

torque modulation, using Deep Reinforcement Learning (DRL) combined with Deep Q-Network 

(DQN) for real-time control. The proposed DRL approach, supported by extensive simulation data, 

offers potential for efficient nonlinear control strategies, even amidst environmental constraints and 

model uncertainties. 

The paper introduces a nonlinear observer designed to reconstruct state variables—translation, 

rotation, and their derivatives—using only translational/orientational measurements. This observer, 

developed independently of the controller, ensures global asymptotic stability and is readily 

executable due to its design. Extensive MATLAB simulations demonstrate that the black-box 

nonlinear observer-based DRL system outperforms traditional controllers, such as the Linear 

Quadratic Regulator (LQR) and Luenberger observer, in control performance. The DRL system is 

also compared to the gain scheduling PI control method by Jonkman, confirming its effectiveness. 

Novelties of proposed approach to Floating Offshore Wind Turbine Control: 

- Unique DRL Integration: Optimizes control policies for nonlinear FOWT dynamics. 

- Online Feedback Control: Uses DRL algorithms (DQN, actor-critic) for real-time adjustments. 

- Black-Box Nonlinear Observer: Enhances adaptability and robustness using sensor data. 

- Superior Performance: Outperforms traditional linear methods like LQR. 

- Global Asymptotic Stability: Achieves stability and rapid convergence with minimal learning 

instances. 
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Paper structure is as follows: 

- Section 2: FOWT modeling and disturbance handling. 

- Section 3: Nonlinear observer design. 

- Section 4: Comparison of LQR controller and Luenberger observer. 

- Section 5: Conclusion and reflections. 

 

2. Problem formulation of FOWT 

 

2.1. General description 

This paper aims to simulate the exact model for the FOWT, a semi-submersible structure with 

three triangular buoyancy cylinders and a central cylinder for tower control. The proposed controller 

has a nominal power of 5-MW and a tower height of 87.6 m, a weight of 13.5 kilotons for entire 

structure, filling a gap in literature on RL applications in FOWT control. 

Fig. 1 illustrates the various components of the system, including the aerodynamic force (
AF ), 

buoyancy force (
BF ), catenary line forces (

CF ), and hydrodynamic drag (
DF ). Additionally, the 

forces in inertial and body references are denoted as ℱ0and ℱ𝑏, respectively. Torque (
AT , BT , CT , and 

DT ) is associated with each force, with rT  representing the rotor-oriented torque. Furthermore, Fig. 

2 provides a visual representation of the system's components. 

 

2.1.1. State space model of FOWT 

The state space analysis of a system involves considering various forces. 
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where ( , , , )Ff x u v w  stands for the resultant force: 

 
 ( )

1

3 3   F g a j

j

f m I diag m F
−

= +   
(2) 

gm  is the FOWT’s mass, 3 3I   is the identity matrix, and am  (added mass) is the inertia increase 

due to fluid displacement during acceleration. The other term in Equation (1), Tf , represents the 

resultant torque: 

 ( )1RI R   T

T g j

j

f T−=   
(3) 

In this mathematical expression, gI  denotes the inertial tensor with respect to the vertical axis, R  

signifies the transformation matrix, and jT  denotes the collective torques acting on the system. The 

resultant Qf  is derived as: 
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where rJ  and gJ  denote the inertia of the rotor and generator-side shaft, respectively, and 
rkQ  

and 
gkQ  represent the th

rk  and th
gk  torque around each shaft. 

 

2.1.2. buoyancy force 

The buoyant force equals the weight of fluid displaced by the floating object, as per Archimedes' 

principle [55]: 

 ( ), 3̂B i i iF x gAl e=  (5) 

In the provided equation,   represents the density of water, g denotes the acceleration due to 

gravity, iA  signifies the projection of the cylinder along its height, il  represents the length of the 

cylinder, and 3ê  denotes the unit vector aligned with the z-axis direction. 

 

2.1.3. Wave simulation 

A 1.75m amplitude, 12s period sine wave yields a three-dimensional wave height: 

 ( ) ( )( ), , = sin , ,w wh x t A x t   (6) 

where A is the magnitude of the wave oscillation, t  stands for the simulation time,   shows the 

change in the direction of the wave around the 𝑧-axis of the inertial coordinates, wx  is the spatial 

position of the wave elevation and the variable  , a function of time and place, is computed as 

follows: 
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(7) 

where  , ( )RT
z  , g  and   stand for the rate of recurrence of the wave, the transformation matrix 

about the z axis, the gravity constant, and the phase angle, respectively.  

JONSWAP spectrum, resulting of the Pierson – Moskowitz spectrum valid for undeveloped marine 

countries, is given by: 
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where p  is the ultimate increase factor and   the spectra ultimate width is: 
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(9) 

and ( )
Mnn pS  is the Pierson – Moskowitz spectrum with the amount of: 
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(10) 

Where sH  and zT  represent wave height and the average periodic time, respectively. With usage 
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of Equation (8), the amplitude of wave is calculated as follows. 

 ( )2 ΔiA S  =  
(11) 

Hydrodynamic characteristics such as velocity, acceleration, and pressure will be analyzed: 
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(12) 

in which z  is equal with: 

 ( )3Rˆ T

z wz e a x=  (13) 

 

2.1.4. Wave drag force 

The drag force resists body movement in fluid, estimated by the Morrison equation [55]: 

 
, , , , ,= +Dt i d i t i a i t iF K v K a  (14) 

where 
,d iK is the drag constant, ,a iK  demonstrates the inertia constant, and ,t iv  and ,t ia  are the 

crosswise velocities and accelerations, correspondingly, calculated by: 
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(15) 

and norm speed is also equal to: 

 1

2

,

1 0 0

= 0 1 0

0 0 0

T T

t i rel relv R R 

  
  
  
    

 

(16) 

The relative wave velocity, rel  , and its derivative are: 
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=

b
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(17) 

where   holds the wave velocity elements, gx  includes the state variable, R is a derivative of the 

transformation matrix: 
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2.1.5. Thrust and drag force of air 

The aerodynamic force consists of thrust force and drag force, with an approximation for thrust 

force applied at the thrust center: 
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tC  is the drift factor, with the variables including the tip speed ratio (TSR),  , and the pitch angle, 

 . The 𝜌 and rA  are density and blade area, respectively. Average velocity to the surface of the rotor 

blades, nv , can be computed by: 
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And the norm of this speed is: 
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relv  is the relative wind velocity. tilt represents the measurement of the angle formed between the 

rotor axis, and horizontal wind direction and   stands for the angle between the nacelle and tower.   

Wind disturbance is the wind velocity vector relative to the rotor's thrust center: 
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TurbSim [56] created a wind disturbance profile resembling real-world conditions, with an 

average wind speed of 18 m/s and a 20° prevailing angle. This tool creates consistent wind profiles 

for FAST and the proposed model, requiring a singular 3-D wind velocity vector. The wind vector's 

orientation in relation to the world frame at a hub height of 90 meters (the original position of the 

FOWT's center of thrust) is illustrated in Fig. 3. It is assumed that the wind vector consistently acts 

upon the center of thrust of the FOWT. 

Due to FAST software limitations, a single frequency wave was used, its frequency and magnitude 

determined using the Pierson-Moskowitz Ocean wave spectrum [57], assuming a fully developed 

wave profile. 

 

( )
42

0

5
exp ,

s g
S s






 

  
=      

 

 

The parameters s , g and s are constants, whereas 0 is determined by:  
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19.5U  represents the wind velocity at a height of 19.5 meters above sea level. Because our reference 

height is significantly greater, we may estimate 19.5U  using the power law approximation. 
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In this context, 19.5U  signifies wind speed at a height of 90 meters, whereas 19.5h  and 90h  are the 

specified heights for reference in 19.5 and 90 meters, correspondingly. The wind power exponent κ, 

with a quantity of 0.11 in open sea circumstances, is also a crucial element. Based on the 

aforementioned characteristics, the Pierson-Moskowitz spectrum, exposed in Fig. 4, may be used to 

calculate significant wave height and peak spectral period for the provided wind circumstances. 

These resulting values can then be used as inputs for the FAST model. 

The wave disturbance gets reduced as a series of n wave velocity vectors ,1 , -[m/s],v v nw w  n wave 

acceleration vectors 2
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 n wave heights ,1 , -[ ]h h nw w m , and n dynamic pressure terms 

,1 , -[ ]p p nw w Pa , all related to the global frame. Subsequently, we will delineate the wave disturbance 

vector: 
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If the aerodynamic power is expressed by: 
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Where pC  is the power constant. The balance of torque around both the rotor and generator axes 

results in: 
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(23) 

Where grN  is the gear ratio and gT  generator torque. 

 

2.1.6. Drag force of cables 

The mooring system connects wind turbine cables to the sea bottom, responding to wind and wave 

disturbances. The Gaussian model cable involves nonlinear coupling equations, varying depending 

on the rope's position on the sea bottom or direct interaction. 

The vector ,t ix  is the connection point to the FOWT given by: 

 
, ,= - - b

t i a i g gcix x x Rr  
(24) 

The vector of ,t ix  is decomposed into its components as: 
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Therefore, the drag forces of cables on the x and y sides are as follows: 
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(26) 

with cW  and cP  as the weight of the cable and the 6×2 known constant, respectively. 

The FOWT calculation of this paper is based on a model in the National Energy Laboratory. The 

proposed turbine concept contains three fluctuating cylinders and a central control cylinder. The 

structure’s properties are as Table 1.  

The system aims to achieve uniform energy by tracking wind direction, utilizing a controlled 

trajectory, and maintaining consistent aerodynamic power. The actuator constraint ensures seamless 

implementation and minimizes instantaneous power changes: 
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where the power ( )P t is obtained from Equation (22). Owing to the low dependency of captured 

power to state variables variation, by ignoring the state section in Equation (27) and inserting the 

relevant inputs, 
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the variational quantity of β angle as the control goal is: 
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(29) 

The final control input involves adjusting generator torque based on changes in generator speed, 

with the strategy being to maintain a consistent rotor speed: 
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which gives:  
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(31) 

With solving Equation (31), the generator torque is computed.  
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3. Controller and observer design of FOWT 

 

3.1. Drafting the black-box nonlinear observer 

Assuming a group of multi-input multi-output (MIMO) nonlinear uncertain dynamical system 

characterized by: 

 ( ) ( ), + ,=x h x x G x x u  
(32) 

where ( ) nx t   denotes the states, ( ) ru t   is the control action, and ( , ) : n n nh x x   →  and 

( , ) : n r n rG x x   → are indeterminate nonlinear functions. 

The following assumptions will be required in the proof section. 

Assumption 1: ( , )h x x  and ( , )G x x  are made of 2C functions. 

Assumption 2: The control input ( )u t  includes 
2C  functions and ( ), ( )u t u t  . 

Assumption 3: The states are restricted permanently, that is, ( ), ( )x t x t  . 

The assumptions above are reasonable in the outline of state observation in nonlinear systems. 

Our purpose is to propose an observer to approximate the unmeasurable derivative signals ( )x t  only 

based on the position/orientation measurements. Precisely, let 1̂
nx   indicate the estimated surge, 

sway, heave, roll, pitch, and yaw, respectively, and 2ˆ
nx   the corresponding derivative of the 

mentioned state variables. Also, the estimation errors ( ), ( ) ne t e t  , respectively, are described by: 
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(33) 

Therefore, we plan to guarantee that ( ) 0e t →  and ( ) 0e t →  as t → only through quantities of 

( )x t . 

 

3.1.1. Observer Formulation 

We suggest the subsequent nonlinear observer to explain the above-mentioned dynamical system: 
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with 0 1 2, , n nK K K   being diagonal constant matrices, 1 2 , nK K I  denoting the n n  unit matrix, 

and sgn( )  being well-defined as following: 
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(35) 

where sgn( )  is the typical signum function. 

To obtain the error dynamics, we take the derivative of Equation (33) and replace the equivalent 

of variables: 

 ( ) ( )0 1 2 2
ˆ- sgn - + - -ne K e K I x K e x=  

(36) 

Assuming the signal 
nr  be declared as follows. 

 = +r e e  (37) 
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After the time derivative of Equation (37) and replacing Equations (32) and (36), we have 

 ( ) ( ) ( ) ( )0 1 2 2
ˆ=- sgn - + - - , - , +nr K e K I x K e h x x G x x u e  (38) 

Considering Equation (33), Equation (34) yields to 

 ( ) ( ) ( )0 1 2 1= , , - sgn - - -or N x x u K e K r K K e  (39) 

in which 

 ( ) ( ) ( ) ( )1, , - , - - += ,o nN x x u h x x G x x u K I x  (40) 

Returning to Assumptions 1-3, we conclude that ( , , ), ( , , )o oN x x u N x x u  . 

 

3.1.2. Globally Asymptotic Convergence Analysis 

Lemma 1: ( )L t   as an auxiliary function is defined as follows: 

 ( )( )0- gn= sT

oL r N K e  
(41) 

If the matrix 0K , presented in Equation (34), is designated to fulfill the following acceptable 

condition: 

 ( ) ( )0 , , + , ,i oi oiK N x x u N x x u
 

  
(42) 

with the indices =1,2, ,i n  being the i -th component of the vector or diagonal matrix and   

signifies the   norm, therefore 

 
( )

0

t

oL d   „  
(43) 

where the positive constant o  is described as 

 

( ) ( ) ( )0

=1

0 - 0 0=
n

T

o i i o

i

K e e N   

(44) 

Proof: After replacing Equation (37) with Equation (41) and then integrating in time, 

 
( ) ( ) ( ) ( )( )

( )( )
( )

( )( )
( )

0
0 0

0

0
0

, , ,

, , ,

t t
T

o

T
t

o

T
t

L d = e N x x u -K sgn e d

d e
+ N x x u d

d

d e
- K sgn e d

d

    


 








 





 

(45) 

Integrating the second element on the right side of Equation (45), we have 

 
( ) ( ) ( ) ( )( ) ( ) ( )

( )
( )( )

( )

( ) ( )
( )( )

( )

( ) ( ) ( ) ( ) ( ) ( )

0
00 0

0
0

0

0
0 0

0 0

, , , , , ,

, , ,

, ,
, ,

, , 0 0 0

t t t
T T

o o

t
nt

oT
i i

i=1

nt t
oT

o i i

i=1

n n
T T

o o i i i i

i=1 i=1

L d = e N x x u -K sgn e d +e N x x u

d N x x u
- e d - K e

d

d N x x u
= e N x x u - d - K e d

d

e t N x x u -e N - K e t + K e

      


  



   


   
   

  
  

+

 



 

 

 

(46) 

Now, we obtain the highest amount of the right-hand side of (46) as follows: 
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( ) ( ) ( )
( )( )

( ) ( )( ) ( ) ( ) ( )

0
0 0

0 0

, , ,
, , ,

, , 0 0 0

t t
o

o

n n
T

i oi i i i o

i=1 i=1

d N x x u
L d e N x x u + -K d

d

+ e t N x x u -K + K e -e N


    



 
 




 

 

„

 

(47) 

From Equation (47), it is concluded if 0K  is selected based on Equation (42), so Equation (43) is 

true. This ends the proof. 

Now, the major outcome of the current paper is expressed in the subsequent Theorem. 

Theorem 1: The derivative of observer defined by Equation (34) provokes global asymptotic 

alignment of ( )e t  and ( )e t , that is, ( ) 0e t →  and ( ) 0e t →  as t → , as long as the matrices 2 1K K  

and 0K  is chosen to hold the satisfactory condition (42). 

Proof: Let the supplementary function ( )oP t   be described as: 

 
( ) ( )

0
= -

t

o oP t L d    
(48) 

where o  and ( )L t  are expressed in prior Lemma. From Lemma 1, it is conceivable to conclude 

( ) 0oP t … . Therefore, we express the subsequent function 2
+ + +( , ) : n

oV t y    → : 

 
( )2 1

1 1
+ - +

2 2

T T

o oV r r e K K e P=  
(49) 

where =
T

T
oy z P 

 
 with =

T
T Tz r e 

 
. oV  is a positive-definite Lyapunov function in terms of 

, , oe e P . 

The time derivative of Equation (49), along with replacement from Equation (41) and the 

derivative of Equation (48), results in: 

 ( ) ( ) 

( ) ( ) 
0 1 2 1

2 1 0

= - sgn - - - +

- - - sgn

T

o o

T T

o

V r N K e K r K K e

e K K e r N K e
 

(50) 

Applying Equation (39) to Equation (50), we have 

 ( )1 2 1=- - -T T

oV r K r e K K e  (51) 

Henceforth, ( )oV t  is a positive-definite Lyapunov function which brings about the negative 

semidefinite time derivative ( )oV t . Since ( ) 0oV t   yields to 0r   and 0e  , regarding Equation 

(33), we have 0e  . Besides, considering Equations (41) and (44), this paper yields 0L   and =0o

, that is, 0oP  . Through LaSalle's theorem, we conclude ( ) 0e t →  and ( ) 0e t →  as t → . This 

section finishes the proof. 

 

3.2. Implementation of DRL 

DRL is a kind of data-oriented approach working with Markov Decision Process (MDP). Fig. 5 

illustrates the design where an agent experiences an observed state ts and a reward r  so that it takes 

action ta  in a situation, with the purpose of catching the cumulative reward r  during the time. 

Section 3.1 describes the estimation of FOWT states using an observer, which is then fed into a 

designed DRL, which based on reward, ensures structure stability and global stability. 

The training technique of the agent is the DQN, a black-box approach. The agent comprises two 



12  

neural networks, so-called Q-online, Q , and Q-target, Q . The Q  network approximates the 

maximum Q-values of the observation 𝒔𝒕, considering the possible actions. On the other hand, Q  

computes the maximum Q-values of the observation +1ts based on the same possible actions. 

Consequently, main target value is computed as follows.  

 

+1

stopsat j+1

=
+ max , ;     otherwise 

j

j
aj j

r

y
r s a


 




  
  

 
 

 
 Q

 

(52) 

where jr  denotes reward,   shows the discount factor and   represents the weights of Q-online 

network. The reward is heuristically defined as: 

 
1

2

, | |
=

, | |

lim

lim

r x x
r

r x x





 

(53) 

where limx  is the extreme permissible oscillation for the tower throughout the simulation task, 

while 1r  and 2r  are: 

 ( )22 2

1= | + | + ur r r rr A x B C D  
(54) 

 
2 1= + rr r E  (55) 

The optimal action in DRL involves choosing parameters like 
-1 -2 -2 210 , 10 , 50, 10 , 10r r r r rA B C D E= = = = = − , with rewards and punishments to minimize error. The 

choice of multiplier depends on the problem's characteristics and tracking performance. Intuition 

helps determine optimal parameters, but lower multipliers result in slower convergence, while higher 

multipliers have the opposite effect. The reward function's second element is utilized to implement 

punishments. 

The logic-based reward function provides a clear, easily understood method for assigning rewards 

or penalties to agents based on defined thresholds, allowing for easier interpretation and debugging 

of their behavior, ensuring focus on crucial task elements [58]. 

We addressed the sparsity issue in our DQN algorithm by: 

Reward Shaping: Intermediate rewards and continuous penalties. 

Hindsight Experience Replay (HER): Learning from near misses. 

Intrinsic Rewards: Incentives for exploration. 

Pre-Training with Expert Data: Bootstrapping with expert actions. 

Supplementary Tasks: Additional auxiliary tasks for feedback. 

Multi-step Returns: Efficient distribution of future rewards. 

These strategies ensure effective learning and desired control policy. 

The DRL initializes its work with arbitrary weights. Next, the agent reacts in the environment to 

save information in an experience range of dimension D. Each element within the spectrum of the 

encounter encompasses four distinct components )( , ', ,s a r s , where 's  represents the system’s 

observed state after acting ta . Therefore, to get the optimal Q-value, the Mean Squared Error (MSE) 

will be minimalized: 

 
( )( )

2

= - , ;MSE j j jL y Q s a   
(56) 

By backpropagating the derivative of Equation (56) concerning the weights, the update of weights 

in Q-online is carried out. However, to avoid the divergence in update phase after some epochs, the 

update is executed for weights in Q-target with application of Polyak-Ruppert Averaging with the 
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parameter   as [59]: 

 ( ) ( ) ( ) ( )-1
 = + 1-

t t t
       

(57) 

This procedure is reiterated until the ideal policy is found. The explained process is shown in Fig. 

6 for clarification purposes and in Table 2 as a pseudo code for the coding aim. 

Fig. 6 carries three nominated actions. This figure actually records a time interval, as action values 

1a , 2a , and 3a  indicate distinct steps when the agent can perform. These steps are derived from a 

stochastic policy rather than any just three consecutive actions in real time. Put another way, every 

action corresponds to one point of operational control decision: something that an agent might do at 

a certain state. The distinction between these actions is critical for our understanding of the agent’s 

decision-making process and resultant Q-values. 

Deep Q-Networks (DQN) use Q-values to evaluate potential actions within various states, guiding 

decision-making and balancing exploration and exploitation. The network computes Q-values for 

possible actions 1( , )Q s a , 2( , )Q s a , and 3( , )Q s a , where s  is the state and 1a , 2a , and 3a  are actions. 

These Q-values serve three main purposes: 

 

1. Action Evaluation: The network assesses potential rewards for each action, helping to select 

the most profitable one. 

 

2. Improving Policy: Q-learning refines the agent’s decision-making by updating the relationship 

between states and actions, thereby improving the policy over time. 

 

3. Balancing Exploration and Exploitation: The agent must balance exploring new actions and 

exploiting known strategies to optimize performance in uncertain environments. 

 

The DQN architecture typically includes an input layer, multiple hidden layers, and an output 

layer. The input layer captures the state representation, hidden layers derive hierarchical features, 

and the output layer generates Q-values for possible actions. This architecture is distinct in that it 

starts with fewer neurons in early layers, increasing in deeper layers, which is particularly effective 

for controlling complex systems like Floating Offshore Wind Turbines (FOWTs). 

Key considerations in this DQN architecture include: 

 

1. Handling Nonlinearities and Disturbances: FOWTs operate in nonlinear environments with 

significant disturbances. Starting with fewer neurons and gradually increasing helps manage these 

complexities (Table 3). 

 

2. Avoiding Overfitting: Beginning with fewer neurons prevents overfitting in high-dimensional 

spaces with limited data, while deeper layers accommodate complex features. 

 

3. Empirical Success in DRL Applications: Studies ([60, 61]) show that customized neural 

networks improve performance in dynamic environments, supporting flexible structures for FOWT 

control ([62, 63]). 

 

4. Experimental Validation: MATLAB simulations confirm that the proposed DQN architecture 

outperforms traditional methods like LQR and Luenberger observers under uncertainty. 

 

The DQN's design, including neuron counts and connections, directly impacts the number of 
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weights in the network. Hyperparameters like learning rates, activation functions, and exploration 

techniques are crucial for optimizing DQN performance, often requiring extensive tuning. The 

training process involves iteratively updating network weights based on the temporal difference error 

between predicted and target Q-values, refining the control policy over time. 

Computational complexity is a significant consideration in DQN development, driven by factors 

like network architecture and dataset size. To mitigate these challenges, optimization techniques such 

as mini-batch training, parameter sharing, and distributed computing are used. Additionally, 

hardware accelerators like GPUs can greatly reduce training time by leveraging parallel processing 

capabilities. Careful consideration of these factors is essential for the practical application of DQNs 

in real-world scenarios. 

Table 3 shows the numerical computing costs based on common scenarios and findings in the field 

of DRL for FOWT.  

 

3.2.1. Stability analysis 

The transition from the current state ts  to the next state +1ts  is characterized by the probability 

( )+1P | ,t t ts s a , where ta  is the action chosen by the controller from various possible actions. The value 

of an action can be determined based on the cost function ( ) ( ) +1| ,, =
t t

t t tP s ac s a sE . Stability of the 

stochastic system is ensured if ( )
t

lim =0t s tc s→ E  for any initial state 0s . The likelihood of 

transitioning to the next state is given by ( | ) |s,( ') ( ' )
A

P s a s P s a da  . The state distribution at time 

t , denoted as ( )P s| , ,t  , is recursively defined by ( ) +( ' ) ( 'P )| , , +1 = | P s| , , d ,
S

s t P s s t a t Z      , 

with ( ) ( )| , ,0 = sP s   . Assuming an ergodic policy  with steady-state distribution 

( ) ( )=lim | , ,tq s P s t  → , the Region of Attraction (ROA) is the set of initial states 0s  that lead the 

system to stabilization. Convergence to equilibrium is guaranteed if the system starts within the ROA. 

 

Theorem 2: The casual system is well-defined steady under mean lost definition if a function 

+:L S →  and non-negative coefficients 1 , 2  and 3  are available, 

 ( ) ( ) ( )1 2c s L s c s     

( ) ( )~ ~~ 3
( )- -s ss P

L s L s c s
   


 
 
 

E E E  
(58) 

where,  

 

( ) ( )
=0

1
= lim = | , ,

N

t
N

t

s P s s t
N

  
→

  

(59) 

is the unrestricted distribution. 

 

Proof: If the example distribution sequence ( ) +, , ,P s t t Z    reaches ( )q s  when t  goes to 

infinity, then according to Abelian theorem, the set ( ) +=0

1
, , ,

N

t
P t N Z

N
 

 
 

 
 also converges and

( )= ( )a q s  . Integrated with the form of  , Equation (59) accomplishes that first, on the left-

hand-side, 2( ) ( )L s c s  for all Z  based on Equation (58). Since the probability density function 

( | , , )P s t   is a restricted function over S  for all t , consequently a factor M  is obtainable such that  
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 ( ) ( ) ( )2 +| , , , ,P s t L s M c a s S t Z        (60) 

Second, the series ( ) +=0

1
( , , ) ,

N

t
P s t L s N Z

N
 

 
 

 
 approaches element-wise to (s) (s)q L . 

Considering the Lebesgue's theorem [59], it offers the convergency of a set ( )nf s  element-wise to f

defining with some integrable function 𝑔 such that,  

 ( ) ( )

( ) ( )
+

, ,

lim = lim d

n

n n
s Sn n

f s g s s

n f s ds f s s
→ → 

  

  

S
 

(61) 

Consequently, the left side of Equation (61) is written: 

 
( ) ( )( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

, , , ,

, ,

, , ) ( )(

N

N
t=0

N+1 N

P s| t P s| t
N

t=1 t=0

P s| N+1 s
N

1
lim P s| t P s |s L s ds -L s ds

N

1
lim L s - L s

N

1
lim L s - L s

N



   

  

 
→

→

→

  

 
 
 
 

 

 

S S

E E

E E

 

(62) 

Hence, considering above-mentioned relations, Equation (62) supposes  

 

( ) ( ) ( ) ( )( )
( ) ( )

, ,

, ,

sP s| N+1N

3 P s| tt

1
lim L s - L s

N

- lim c s

 

 

→

→


E E

E
 

(63) 

Since ( ) ( )s L sE  is a limited quantity and 𝐿 is non-negative definite, it leads to,  

 

( ) ( ) ( ) ( ), , sP s| tt N 3

1 1
lim c s lim L s =0

N
   → →

 
  
 

E E  

(64) 

Supposing a state ( ) 0 0 0s s |c s b  and a positive d are available such that 

( )0
t P s|s , ,tlim c (s)=d→ E  or ( )0

t P s|s , ,tlim c (s)=→ E . Since ( )0s 0   for all initial states in 

( ) 0 0s |c s b .   It follows that ( )
t P .t ts ~ ( , )lim c s 0  → E  which is inconsistent with Equation (64). 

Thus ( ) 0 0 0s s |c s b ,    ( )0
t P s|s , ,tlim c (s)=0.→ E  So, the system is steady in mean lost. 

In each sea state, the DRL algorithm adapts to environmental conditions to identify the optimal input 

actions necessary for consistent energy harnessing from FOWTs. It adjusts the FOWT’s position to 

face the wind, ensures the generator operates at the desired shaft speed, and aligns blade angles with 

the wind flow. Actions, executed by the yaw motor, generator circuit, and pitch motor units, are 

periodically reassessed. Rewards accumulate based on control inputs and absolute values of 

translation and orientation Eqs. (54) and (55).  The algorithm computes the average input action over 

a specified horizon H within a wave cycle where state ns  and action -1na vary, and then determines 

a new action na  by instantaneously modifying the state to +1ns .  

State Space: As previously mentioned, the situational factors are expected to represent the 

position, orientation and their corresponding derivatives so that the assumed DRL state space is:  

 : ,

: ,
, , , , :[ ; ]

j=1 J

k=1 K
j k l s j z k l l=1 LS= s|s =x + + x 

 
 
 
  

 

(65) 
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To prevent overfitting, balance data quantity with state representation, considering J , K  from 

FOWT configuration, and L as discrete time sequence values.  

Action Space: The action series comprises three levels determined by the chosen state space, as 

outlined below:  

 
( ) , ,yaw generator pitchA= a T   

(66) 

Equivalent extreme states, i.e., maxx  and max , takes certain measures to prevent the controller 

from exceeding the limits of the state space.  

Reward: In DRL, the reward function aims to maximize performance by giving positive rewards 

for correct actions and negative rewards for incorrect ones, focusing on state and control actions. 

Therefore, in the context of the black-box nonlinear observer-oriented DRL control system for 

FOWT, the compensation function is deemed relevant in relation to the absolute values of states and 

control actions.  

In conclusion, there exist =sn J K L   states, number of possible combination actions out of Equation 

(66), which are chosen via Equations (27) through (29), and accumulated rewards according to 

Equations (54) and (55). The block diagram of the aforementioned plan is seen in Fig. 7. Also, the 

accumulated reward during training is shown in Fig. 8, which demonstrates the progress of the 

training process typically and finally takes the maximum reward. 

 

4. Numerical Results and Discussions 

Along with the Maximum Energy Tracking controller with nonlinear model, the NREL 5-MW controller defines 

the gain-scheduling PI controller for FOWT as  

 ( )
( )

, des  des 2 r rat

P

g

J
k v

P
N v

  



=




 

and 

 ( )
( )

2

, des 
,

r rat

I

g

J
k v

P
N v

 



=




 

In this equation, J  represents rotor inertia, , rat  r  is the rated rotor speed, and gN  is the gearbox ratio. Parameters 

des   and des   are user-configurable. The term ∂P/∂β(v) indicates wind-speed dependent sensitivity. Fig. 9 shows 

MATLAB simulations comparing the suggested nonlinear controller with a gain-scheduling PI controller, 

highlighting minimal differences from NREL's work and validating the proposed strategy. 

The proposed adaptive DRL controller outperforms the gain scheduling PI controller in several 

key areas: 

 

1. Adaptability: The DRL controller flexibly adapts to changing conditions and disturbances, 

unlike the gain scheduling PI controller, which relies on predetermined gain values, limiting real-

time adjustments crucial for offshore floating wind farms. 

 

2. Power Regulation and Stability: DRL maintains stable power output and overall system 

stability, outperforming the PI controller, particularly under disturbances. 
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3. Handling Complexity: DRL excels in controlling nonlinear and complex systems like FOWTs, 

improving performance through its online-target network structure. 

 

4. Robustness: DRL shows superior performance under uncertainties and disturbances, 

surpassing traditional methods like the LQR and Luenberger observer. 

 

The simulation process of observer is initiated with the deliberate introduction of random initial 

values for the system states as defined in Equation (34). The numerical values assigned to the 

system's gain parameters, denoted as 0K , 1K , and 2K , are carefully selected, taking into account 

certain predefined assumptions and considerations. The amounts of these parameters are as follows. 

 

0

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

0 537 -0 433 0 725 1 409 0 488 0 888

1 833 0 342 -0 063 1 417 1 034 -1 147

-2 258 3 578 0 714 0 671 0 726 -1 068
K

0 862 2 769 -0 204 -1 207 -0 303 -0 809

0 318 -1 349 -0 124 0 717 0 293 -2 944

-1 307 3 034 1 489 1 630 -0 787 1 438




=



1

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . .

0 325 0 319 1 093 -0 006 -1 089 -1 491

-0 754 0 312 1 109 1 532 0 032 -0 742

1 370 -0 864 -0 863 -0 769 0 552 -1 061
K

-1 711 -0 030 0 077 0 371 1 100 2 350

-0 102 -0 164 -1 214 -0 225 1 544 -0

-0 241 0 627 -1 113




 
 
 
 
 
 
 

=

2

. . .

. . . . . .

. . . . . .

. . . . . .

. . . . .

. . .

. . .

615

1 117 0 085 0 748

-0 384 -0 354 -1 608 -2 295 -0 164 0 200
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(67) 

The exact gain levels are crucial for optimal control, ensuring accurate state tracking by minimizing errors 

between measured and estimated outputs (Figs. 10 and 11). The system effectively reduces estimation errors to 

zero, although convergence times vary across states. The results confirm the observer's effectiveness, robustness, 

and reliability, emphasizing the practical benefits of the proposed control technique in real-world applications. 

 

4.1. LQR controller 

Optimal control seeks strategies to find the best solutions by optimizing a performance index while 

adhering to constraints. 

In order to determine the equilibrium point, the state variables on the right-hand side of Equation 

(1) are equated to zero: 

 ={3.90 ,1.76 , -9.91

-0.50 ,1.60 , -0.00

0.20

           0, ,0

12.1 ,1173.8 }

x m m m

rpm rpm

  


 

(68) 
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Linearizing Equation (1) around the equilibrium point Equation (68) results in the derivation of 

the linear state space model: 

 = +x Ax Bu  (69) 

Given the LQR cost function upon the model (69): 

 

( ) ( )
0

1 1
= + +

2 2

, 0, 0

ft
T T T

f f f
t

f

J X S X X QX U RU dt

S Q R 


 

(70) 

leads to the optimum state feedback control action =-u kx  and thus, 

 =( - )x A Bk x  (71) 

Within the wind turbine facility discussed in this article, the zero end-point weight denoted as fS  

is responsible for producing the subsequent basic configuration: 

 ( )= +T TJ x Qx u Ru dt  
(72) 

The specified weighting matrices R  and Q  are employed to determine the limitations of actuator 

size and cost. 

 100 1

= 100 , 1

100 1

R Q

   
   
   
      

=  

(73) 

The observation matrix c  is derived based on the configuration of the output measurement 

system.: 

  1 2 5 63 4= =
T

y cx x x x x x x  
(74) 

The Kalman gain matrix k  is derived through a specific computational process: 

 -1= Tk R B P  (75) 

The positive definite matrix P  is generated by finding the response of the algebraic Riccati matrix 

problem as follows: 

 -1+ - + =0T TA P PA PBR B P Q  (76) 

The outcomes of implementing the previously discussed LQR on FOWT are illustrated in Figs. 

12-17. 

To compare and assess the impact of measurement noise on the DRL-based control system's 

performance, white Gaussian noise with various Signal-to-Noise Ratios (SNRs) is introduced. This 

tests the DRL controller's resilience and accuracy amidst real-world noise. The performance of the 

DRL controller is contrasted with the standard LQR controller under minimal noise conditions. Figs. 

12–17 illustrate how noise affects the tracking errors of the DRL system compared to noise-free 

conditions and the LQR controller. These figures provide insight into the DRL system's robustness 

and effectiveness, highlighting its advantages in noisy environments and demonstrating its real-world 

applicability. 

As shown in Figs. 12-17, even in settings with a significant amount of noise, particularly at the 

lowest SNR, the DRL-based controller successfully regulates noise and mitigates its negative effects. 

In striking contrast, traditional LQR-based controllers struggle to sustain performance in the face of 

measurement noise, resulting in considerable differences when compared to the DRL system working 

in noisy environments. In summary, these data demonstrate the traditional controller's failure to 

adequately manage these unwanted phenomena, resulting in a significant decrease of system 
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responsiveness. As a result, the deterioration of system states, which amounts to an extremely small 

0.1% tracking error in compared to the noise-free scenario, emphasizes the superiority of the DRL-

based controller as the best control system for FOWTs. Notably, the successful control system 

achieves the required equilibrium point in a short amount of time, usually about 7 seconds. This 

speedy convergence and ability to sustain accurate control demonstrate the proposed DRL-based 

controller's speed and efficacy when compared to traditional alternatives. Table 4 contains 

quantitative data and statistical studies that indicate the system's resilience under different noise 

levels and disturbance situations. 

 

4.2. Luenberger observer 

The Luenberger observer estimates unmeasured states in dynamical systems using available 

measurements when not all states are observable. A system's dynamics can be described using state-

space equations: 

 = +

= +

x Ax Bu

y Cx Du
 

(77) 

Here, x  is the state vector, 𝑢 is the input vector, y  is the output vector, A , B , C , and D are the 

system's matrices, and x  is the derivative of x  relevant to time. The Luenberger observer takes the 

following form: 

 ˆ ˆ ˆ= + + ( - )x Ax Bu L y Cx  (78) 

The estimated state vector is x̂ , the observer matrix is L , and the measured output is y . 

The observer gain matrix, L , is intended to reduce the error between the real system state ( x ) and 

the predicted state. The algebraic Riccati equation is frequently solved during the construction of an 

L . 

The algebraic Riccati equation of the observer matrix L  is given by: 

 + - + =0T TA P PA PC CP Q  (79) 

P solves the Riccati equation, Q  is a positive definite matrix for desired observer performance. 

The Luenberger observer’s impact on FOWT is shown in Figs. 18 and 19. 

 

 

Our investigation reveals several limitations of the Luenberger observer despite its benefits: 

 

1. Sensitivity to Model Mismatches: Errors arise if the system model differs from reality. 

2. Limited Applicability to Nonlinear Systems: Designed for linear systems, requiring 

linearization for nonlinear systems, which can introduce errors. 

3. Noisy Output: Susceptible to inaccuracies from measurement noise. 

4. Convergence and Stability Issues: Stability and convergence depend on proper observer 

gain selection. 

5. Initial State Estimation: Initial estimate affects convergence time and accuracy. 

6. Limited Information from Outputs: States not directly observable from outputs may be 

inaccurately estimated. 

7. Computation Complexity: Implementation can be computationally intensive, especially in 

real-time applications. 

8. Design and Tuning Challenges: Difficulties in selecting appropriate observer gains. 

9. Robustness: Lacks inherent resilience to disturbances; may require alternative approaches for 

improved robustness. 
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Despite these drawbacks, Luenberger observers are widely used for their practical state estimation 

capabilities in control engineering. 

 

5. Conclusion and final remarks 

The application of Deep Reinforcement Learning (DRL) to Floating Offshore Wind Turbines 

(FOWTs) introduces a novel approach in renewable energy research. FOWTs are ideal for deep 

waters where fixed-bottom turbines are impractical, but optimizing control algorithms to maximize 

energy and maintain stability is challenging. DRL, a machine learning method, addresses this by 

dynamically adjusting the turbine's pitch ( ) and yaw ( ) angles based on changing wind conditions 

and wave dynamics. 

 

In this study, DRL was employed to develop an intelligent control system for FOWTs. Data from 

simulations and real-world prototypes were used to train and validate the DRL model, which resulted 

in significant performance improvements: 

 

1. Increased Energy Capture: DRL-controlled FOWTs showed higher energy capture compared 

to traditional fixed techniques, with increased power output ( P ) under varying wind conditions. 

2. Adaptive Response: The DRL model adapted to environmental changes, optimizing turbine 

orientation ( ,  ) for efficiency. 

3. Enhanced Stability: The DRL control system improved stability by reducing the impact of 

waves ( w ) on the floating platform. 

 

Additionally, a nonlinear observer was designed to reconstruct system derivatives using 

displacement ( d ) and orientation ( )  data, reducing the need for specialized modeling. The 

observer's global asymptotic convergence was verified using Lyapunov’s method. The DRL-based 

control system showed superior performance compared to traditional methods like the LQR 

controller and gain-scheduling PI control, proving its effectiveness in managing uncertainties and 

nonlinearities. Future research will focus on the sensitivity of the DRL system and the effects of 

observer gains 0K , 1K , and 2K on system response. The MATLAB simulations confirm the DRL 

system's robustness against noise and its practical application for FOWTs. 
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Fig. 1. Overall Force Diagram of the nonlinear Model 

 
Fig. 2. Components of the system under control. 

 

 

 
Fig. 3. Wind trajectory of the paper [11] 
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Fig. 4. Pierson-Moskowitz spectrum 

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Roadmap organization of the DRL approach. 
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Fig. 6. Workflow scheme of DQN in DRL approach.   
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Fig. 7. Schematic representation of the comprehensive observer and controller system in 

MATLAB. 
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Fig. 8. Cumulated reward during simulation of DRL. 
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b) 

Fig. 9. Desired system simulation in MATLAB for a) translational, b) rotational states 

 

 
Fig. 10. Displacement and orientation estimation error 
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Fig. 11. Linear and angular velocity estimation error 

 

 

Fig. 12. Assessing the performance of DRL controller of the surge with noise 

 

Fig. 13. Assessing the performance of DRL controller on sway with noise 
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Fig. 14. Assessing the performance of DRL controller on heave with noise 

 

Fig. 15. Assessing the performance of DRL controller on roll with noise 

 

 

Fig. 16. Assessing the performance of DRL controller on pitch with noise 
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Fig. 17. Assessing the performance of DRL controller on yaw with noise 

 

 

 

 
Fig. 18. Displacement and Orientation estimation error using Luenberger observer 
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Fig. 19. Linear and angular velocity estimation error using Luenberger observer 

 

 

Table 1. FOWT’s properties 

Property Sign Value Unit 

Water density      1025 kg/m3 

Physical mass   
gm  14,072,718 kg 

Inertia around x-axis    xxI  1.695e10 kg.m2 

Inertia around y-axis    
yyI  1.695e10 kg.m2 

Inertia around z-axis    zzI  1.845e10 kg.m2 

Air density   a  1.225 kg/m3 

Effective rotor radius   rR  62.94 m 

Distance vector from FOWT’s center to 

thrust center 
  

gtr  

-5

0

99.889

 
 
 
  

 m 

Rotor Inertia   rJ  3.5444e7 kg.m2 

Generator Inertia   
gJ  5.34116e2 kg.m2 

Driveshaft stiffness on rotor side   rk  8.676e8 N.m/rad 

Driveshaft damping on rotor side   rb  6.215e6 N.m.s/rad 

Gear ratio grN  97 - 

 

Table 2. Pseudo code of the training of the DQN algorithm 

Algorithm 1: deep Q-learning 

Initialize action-online network Q  with random weights   

Initialize action-target network Q  with weights =   

For interval =1, K  do 

      Reset system observation  1 1=s x  and preprocessed sequence ( )1 1= s   
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      For =1,Tt do 

            Generate a random number between zero and one i.e., k  

            If k   

                From given state, pick a random action ta  with possibility    

            else 

                Select ( )( )=argmax , ;t a ta Q s a   

            Perform action ta  on environment and detect reward tr  and state 1tx +  

            Set +1 +1= , ,t t t ts s a x  and preprocess state ( )+1 +1=t ts   

            Store experience in Replay Buffer ( )+1, , ,t t t ta r   in buffer D  

            Sample a random batch ( )+1, , ,j j j ja r   of experiences from Replay Buffer D  

            Set the target value 

+1

stopsat j+1

=
+ max , ;     otherwise 

j

j
aj j

r

y
r s a


 




  
  

 
 

 
 Q

 

            Execute a gradient descent step on ( )( )
2

- , ;j j jy Q a   regarding the network parameters 𝜗 

            Every M  steps reset Q Q =  

      End For 

End For 

 

 

 

 

 

 

Table 3. Computational complexity and time for DRL featured FOWT 

Aspect Description Numerical Example 

Model Complexity Number of parameters in the 

DNN architecture 

1-10 million parameters 

 
Depth of the DNN (number of 

layers) 

5-20 layers 

Training 

Complexity 

Number of training epochs 100-1000 epochs 

 
Size of training dataset 10,000-1,000,000 

samples  
Computational power (e.g., 

GPUs, TPUs) 

High-performance 

computing cluster 

Inference 

Complexity 

Forward pass time for a single 

input 

1-100 milliseconds 

 
Inference time variability (due 

to input size, network 

architecture) 

10-50 milliseconds (for 

real-time control) 
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Computational Time 

(Training) 

Total training time 1-2 weeks (on a high-

performance computing 

cluster)  
Average time per epoch 10-100 minutes 

Computational Time 

(Inference) 

Average time per inference 1-10 milliseconds 

Computational 

Resources 

Number of GPUs/TPUs used 

for training 

4-16 GPUs/TPUs 

 
Memory requirements for 

training data and model 

parameters 

100 GB - 1 TB 

 

Table 4. Statistical specifications of tracking errors of adaptive observer-oriented DRL controller with 

noise compared with under-noise LQR. 

 

 

 

 

 

 

  

 

State 

Variables 

Optimal LQR with 

noise SNR=145 

Adaptive black-box 

observer-oriented DRL 

controller with noise 

SNR=15 

Mean 
Standard 

Deviation 
Mean 

Standard 

Deviation 

Surge(m) 4.467 9.219 -0.526 1.0618 

Sway(m)     -1.0614 2.4535 0.1105 0.3833 

Heave(m) -0.762 0.845 -0.0463 0.3934 

Roll(deg) 0.0276 0.1178 0.0152 0.0469 

Pitch(deg) 0.0573 0.1210 -0.0216 0.1187 

Yaw(deg) 0.4960 0.4039 0.2066 0.1065 


