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Abstract 

The study focuses on controlling the angle and position of a high-friction Inverted Pendulum on a 

moving Cart (IPC) system. An experimental setup with a low-quality, high-friction gearbox is built 

to make the problem more challenging. The friction force is measured and found to be dependent 

on the Cart position. A simple position-dependent friction curve is fitted to the experimental 

measurement and added to the dynamic model of the plant for simulation purposes. Since the IPC 

dynamic equation is not input-output linearizable, an approximate feedback linearization method 

is employed, followed by a Sliding Mode Control (SMC) approach. A Direct-Adaptive Fuzzy 

Sliding Mode Control (AFSMC) approach is then tailored to mimic the feedback linearization part 

using an adaptive fuzzy engine, reducing the model-based part of the control. The uncertainty 

bound is estimated online and used in the switching part of the controller to reduce control input 

chatter. Both SMC and the less model-dependent AFSMC are implemented in simulations and 

practical implementations. While both methods perform well in the nominal case, the superior 

performance of AFSMC is revealed when intentionally induced uncertainty and noise are applied 

to the model and to the Cart position sensor, respectively. 
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1. Introduction 

The purpose of the present paper is to study and experimentally verify the effectiveness of the 

SMC and AFSMC approaches in preserving the stability of an IPC with highly nonlinear and 

unknown friction over the cart movement. 

IPC is an Under-actuated Mechanical System (UMS), i.e., a two-degree of freedom system 

controlled by just one input [1]. Furthermore, IPC has a fast and unstable dynamics [2] and hence 

can serve as a benchmark problem for testing various control methods [3]. The shortcoming of 

traditional control methods for control of UMSs was observed about three decades ago [4]. IPC is 

built and studied in various forms, e.g., linear, rotational, single-joint and multi-joint [5]. 

In the case that dynamic equations of the IPC are uncertain, the control problem turns out to be 

even more challenging [6]. Irfan et al. [7] proposed a comparative analysis of linear and nonlinear 

feedback control techniques to obtain better control performance for the inverted pendulum system 

by considering time, control energy, and tracking error. The implemented control methods are as 

follows: Linear Quadratic Regulator (LQR), SMC through feedback linearization, Integral Sliding 

Mode Control (ISMC), and Terminal Sliding Mode Control (TSMC). The designed control laws 

were examined with various signals, knowing the position of the moving cart and the angle of the 

inverted pendulum, to determine their regulation performance. 

Shokouhi et al. [8] applied the SMC approach to deal with high and nonlinear frictions in an 

inverted pendulum. By applying an additional control force to the moving base of the pendulum, 

they dealt with the high and non-linear friction between the cart and rail by using an approximate 

linearization method. In [9], Schwab et al. used two different approaches to control the inverted 

pendulum system without friction on the moving cart: on the one hand, they used SMC to control 

the pendulum angle and angular velocity, and on the other hand, Predictive Control Model (PCM) 

was used to control the position of the moving cart.  Liu et al. [10], Nafa et al. [11], Hung et al. 

[12] and Younsi et al. [13], designed and implemented a type of AFSMC approach on the inverted 
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pendulum system theoretically. In this research, the existence of friction was ignored and no 

practical implementation was performed.  

A nonlinear friction model was used in [14] to include the friction between the moving cart and 

rail into the system equations. A Linear Quadratic Regulator Controller (LQRC) was proposed and 

compared with the conventional SMC approach. Experimental verifications, reveal that the 

suggested SMC approach provides a superior performance. 

Based on the control strategy defined in [15], an adaptive fuzzy inference system was embedded 

within the boundary layer to improve the balancing efficiency. In [16], Chen et al. considered 

friction between the moving cart and the rail, as well as friction at the pivot, and applied an AFSMC 

technique. No experimental verifications are reported, however.  

Considering that various approaches have been introduced under the common title of AFSMC in 

the past, in this paper a special version of direct-AFSMC proposed in [17] is employed. 

Experimental verification and comparison between the SMC and the AFSMC approaches is 

performed to depict the effectiveness of the AFSMC approach, which is a robust approach with 

much less reliance on the dynamic model of the system. Main characteristics of the previously 

introduced approach are summarized in Table 1.  

The presence of high and non-linear friction between the cart and rail in real IPC systems poses a 

challenge. Previous studies employed approaches to find the exact friction model, such as Dahl's 

model, Bliman-Sorine Model, and LuGre Model [18], but these practices are costly, time-

consuming, and impose restrictions on simulations and practical implementations. The method 

proposed in this paper provides a way for researchers to significantly reduce their dependence on 

friction modelling methods. This approach is novel and highly useful for simulations and practical 

implementations, as it can inspire researchers in their future investigations. 

This paper is organized as follows: In section 1, an introduction and an overview of the control 

approaches for the inverted pendulum system is presented. In sections 2, dynamic equations with 

and without the effect of the friction is shortly reviewed and the system model is changed into an 

approximate feedback linearized form. In  section 3, a brief account of SMC is given and in section 

4, the propose direct-AFSMC approach is introduced. In section 5, simulation studies for 

comparing SMC and AFSMC approaches are performed for four cases, namely, Nominal system, 
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Nominal System with Position Sensor Noise, Uncertain System - Friction Added, Uncertain 

system -Pendulum Length Changed, and the superiority of the proposed AFSMC approach is 

depicted clearly. Also, at the end of this section, there was a comparative report on uncertainty 

bound in the AFSMC approach. The specifications of the built experimental setup are discussed 

in section 7. The performance of the SMC and the AFSMC approaches are compared in section 7 

and concluding remarks are given in section 8. 

2. Dynamic Modelling 

Inverted pendulum systems have been used for more than half a century as a reference system to 

evaluate control systems due to their nonlinear, unstable, and non-minimum phase characteristics. 

In Figure 1, the inverted pendulum is connected to the moving cart with a rotating shaft, and the 

moving cart is connected to a direct current electric servo-motor with a belt. Thus, the IPC has two 

Degrees of Freedom (DoF), where 𝑥 is the cart displacement and   is the pendulum angle position. 

The purpose of the research is to keep the inverted pendulum near the upright (unstable) 

equilibrium point by introducing the force ( )F t  to the moving cart.  

Active friction compensation is usually required to improve the dynamics of mechanical systems. 

Different friction models, such as Dahl's Model, Bliman-Sorine Model, and LuGre Model, are 

commonly used for friction compensation. However, friction modelling remains a difficult and 

time-consuming task. Recent efforts have focused on canceling out the friction force effect in 

mechanical systems through robust online friction compensation procedures. These procedures 

involve applying a force or torque command equal and opposite to the instantaneous friction force, 

assuming adequate actuation bandwidth is available. There are two main approaches to active 

friction compensation: Model-based compensation as considered in [18] and Compensation 

without having an explicit friction force model, as considered in the present study. 

A new characterization of the feedback linearized equation by considering total force applied to 

the moving cart, 
tF  , is obtained as, by re-defining the total force as  

(1) 
1 2 3( ( ))t s sF F F F x x sign x= + + + +  
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where F  is the control force acting on the moving cart, 
sF  is the average friction force which can 

be determined experimentally. 
sF  is the bounded uncertain friction force deviated from 

sF . 

Equations of motion of the system by neglecting the friction can be obtained as follows [8, 19]:  

 

(2) ( ) cos sin
t

M m x mL F  + + − =  

cos sin 0x L g  + − =  

where x  is the position of the moving cart relative to the centerline of the rail,   is the angle of 

the pendulum with respect to the vertical upright, m is the pendulum mass, M  is the moving cart 

mass, L  is the pendulum length and 
tF   is the total control force applied to the moving cart. 

By defining state variables  1 2 3 4
( )

T T
t x x x x x x = =  x  , equation (2) is 

rewritten: 

(3) 

( )

( )

( )( )

( )

( )( )

( )

3

2

2

3 3 4
1

22

332

43

2
33 4 3 34

22
33

0

cos sin sin 1

sinsin

0

cossin cos sin

sinsin

t

s s

F

x

mg x x mLx xx

M m xM m xx
F F F

xx

xM m g x mLx x xx

M m x LM m x L



   
   − +    
    ++
    = + + +
    
    −+ −     
  + +    

 

 

Note in equation (3) that the two-state variables 
1x  and 

3x  are not directly affected by the total 

control force, but indirectly through 
2x  and 

4x . In order to simplify the equations, a virtual control 

input v  is defined in the form of 
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(4) 

( )

2

3 3 4 3

2

3

cos sin sin

sin

tv
mg x x mLx x F

M m x
=
− + +

+
 

Now, equation (3) can be re-written as  

(5) 

 

2
1

2

4
3

3 3
4

0

0 1

0

sin cos

x
x

x
vx

x
g x x

x
L L

   
     
     
  = +   
     
     −        

 

 

or in vector form as 

(6) ( ) ( )x x v= +x f g  

2.1. Approximate Input-Output Feedback Linearization  

For the SMC approach to be applicable to inverted pendulum, it must be converted to a standard 

form by the Input-Output Feedback Linearization (IOFL) technique. For this purpose, a suitable 

diffeomorphism, namely a transformation matrix including the output and its derivatives [20] must 

be obtained as follows: 

(7) 

(1)

(2)

(3)

( )

y

y

y

y

= =

 
 
 
 
 
 

z T x  

One possible choice for the output signal ( )y h x=  is proposed [8] 

 

(8) ( )1 3 3( ) ln tan secy h x x L x x= = + +  
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By differentiating y  and by using the Lie derivative ( ) ( )
h

L h
x


=


f x f x , it turns out that 

(9) 
( ) ( )(1) 1 0 4

2

3
0

cos
y

Lx
L h L L h x

x
= + = +f g fx x  

 

(10) 

( ) ( )(2) 2 1 4
3

3
0

tan
cos

y
Lx

L h L L h x g
x

 
= + = + 

 
f g fx x  

  

(11) 

( ) ( )

( ) ( )

(3) 3 2

0

3

4 4 4 33 2

33 3

2 1 3
2 2 tan

coscos cos
ignore

y L h L L h

g
Lx g x x x v

xx x

= +

   
= − + − −   
   
   

f g fx x

 

 

(12) 
( ) ( )

( ) ( )

3(4) 4

z z

y L L hL h v

f g v

= +

= +

g ff xx

x x
 

wherein, 

(13) 

( )
( ) ( ) ( )

( ) ( )

4 23 3 3
4 44 2 3

3 3 3

2 3 3 3
4 3 2

33 3

6sin sin 6 sin

cos cos cos

2 sin sin sin 3
3 2

coscos cos

z

x x g x
f Lx x

x x x

g x g x g x g
x g

x Lx x

 
= − + 

 
 

   
+ − + −   

   
   

x

 

(14) ( )
( )

2
2 34
42

33

2 cos6 3
3

coscos
z

g xx g
g x

L x Lx

−
= + − +x  
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In equation (11), the term 
4 32 tanx x  becomes very small and may be neglected near the 

equilibrium point. This condition holds exclusively in the proximity of the equilibrium point. 

Based on this condition, the reference input must be zero or extremely close to zero. Wherever this 

approximation is valid, a suitable controller can be designed for 𝑣  to stabilize the nonlinear system 

and drive the output y  to 0. However, far from the equilibrium point, the relative degree of the 

system is altered or reduced due to the presence of certain disturbances or uncertainties. This can 

lead to several consequences in the closed-loop control system with conventional SMC: Loss of 

uniqueness, Loss of attractivity, Stability issues, and Disturbance rejection issues. This implies 

that the diffeomorphism obtained with the defined output is a local diffeomorphism. Consequently, 

such a system is classified as a regulation system rather than a tracking system. 

Finally, the input-output linearized form is obtained, i.e., 

(15) 

( )

( )

( )

( ) ( )

1(1)

2(2)

3(3)

(4)

0

0

0

zz

L hy

L hy
v

L hy

gfy

=

    
    
    = +
    
    
      

f

f

f

z

x

x

x

xx

 

In vector form, the resulting system is in a suitable form for application of the SMC approach: 

(16) ( ) ( )(4)

z zy f g v= +x x  

Now, from equations (2), (3), and (16) , it can be deduced that  

(17) 
( )( )2 2

3 3 3 4 3sin cos sin sin s sF M m x v mg x x mLx x F F= + + − − −  

Finally, equation (16) turns into the desired form 

(18) ( ) ( )(4)

z zy f g v= + +x x  

wherein 

(19) ( )
( )( )2

3sin

s
z

F
g v

M m x


 = +

+
x  
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Since 
3, ,sinM m x , and 

sF  are bounded and by equation (14) all components of the function 

( )zg x  are also bounded (except for 
3 90ox =  ), i.e., there exists an upper bound   such that 

(20) | |    

3. SMC Approach 

The SMC approach is a well-known technique for control of nonlinear systems under Bounded 

Unknown External disturbances (BUE-disturbances) and parametric uncertainties [21]. Based on 

the feedback linearized dynamic system (16), the conventional SMC approach is applied to 

compute the control input 𝑣. By considering a regulation problem, the closed-loop error is 

(21) 0dy

de y y e y== − ⎯⎯⎯→ =   

 

and, hence, the sliding function (Sliding variable: 0s → , Sliding surface: 0s = ) can be proposed 

as [8] 

(22) 

3

(3) (2) 2 (1) (3)3 3
d

s e y y y y
dt

   
 

= + = + + + 
 

 

where   is a positive parameter and furthermore  

(23) ( )( ) ( )(3) 2 (2) 3 (1)3 3z zs f y y y g v  = + + + +x x  

The control input during the reaching phase is denoted by 
eqv , and during the sliding phase by 

( ).swv Q sign s= . In the SMC approach, robustness during reaching phase is not guaranteed. In 

the so-called Constant Rate Reaching Law (CRRL) [22], the overall control input is obtained as  

(24) 
( )( )

( )
( )

(3) 2 (2) 3 (1)3 3
. , 0

z

eq sw

z

f y y y
v v v Q sign s Q

g

  − + + +
= + = + 

x

x
 

where 0 Q  is a design parameter. It is well-known that by selecting a sufficiently large Q , the 

closed-loop stability is guaranteed for any given   [8]. The following approximation is used to 
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reduce excessive control input chattering [23]; other researchers have also utilized this 

approximation [24, 25]:  

(25) 

2
( ) , 0

s
sign s

s



 

+

 

The candidate function ( )V x  should be a pseudo-energy and non-incremental function that 

represents the energy of the dynamic system and it decreases with time. In other words, its 

derivative must be negative. 

(26) 21
( )

2
V s=x

 

(27) ( )( )
2

2
( ) . 0, 0

Qs
V ss s Q sign s

s



= = −  −  

+
x  

 
It is clear from equation (24) that based on the Lyapunov stability theory, this studied system is 

stable and the convergence of the sliding mode is guaranteed. 

By applying the control strategy (24) to the system (17), the actual control force can be described 

as 

(28) 
( )( )2 2

3 3 3 4 3sin cos sin sin sF M m x v mg x x mLx x F= + + − −  

4. AFSMC Approach  

The indirect-AFSMC approach relies on fuzzy inference system to approximate the uncertain 

nonlinear system and is based upon these approximations [26]. 

An AFSMC approach is adopted in this paper to address the problem of angular position control 

and vibration suppression of rotary flexible joint systems. Considering that various methods under 

the common title of AFSMC approach have been introduced in the literature, in this article, a 

special version of this approach is used, which requires little information about the dynamic of the 

system, proposed in [17]. As shown in [6, 27], an additive fuzzy inference system can uniformly 

approximate any real continuous function on a compact domain to any degree of accuracy. In the 
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direct-AFSMC approach, instead of identifying the dynamic model of the system, which is a time-

consuming process, the control input is estimated directly by a tunable fuzzy inference system. 

Consider the dynamic model of the inverted pendulum with uncertainties due to the model and 

also the friction force as obtained in equation (18), repeated here for convenience, 

( ) ( )(4)

z zy f g v= + +x x  

If the model of the system was known completely as in equation (6), then the ideal stabilizing 

controller *v could be obtained by feedback linearization method. i.e.,  

(29) 
( ) ( )

1
* 1 1 1

1

n
n n i

z z i

i

v g f C D e
−

− − −

=

 
= − + 

 
x x  

By replacing equation (29) in equation (6), the error dynamics is obtained: 

(30) 1
1 1

1

0
n

n n n i

i

i

D C D e
−

− −

=

 
+ = 

 
  

By choosing a Horowitz polynomial with identity coefficients, the error dynamics becomes stable 

and ( )lim 0
n

e t
→

= . 

However, since the system is not fully known, the ideal controller *v  be obtained directly. An 

alternative to the ideal controller (29) can be approximated by a fuzzy inference system by using 

the universal approximation capability of fuzzy system. 

An input-output fuzzy inference system with 4 -inputs and 1-output with three fuzzy rules is 

considered, in which the IF-THEN rules are as follows: 

(31) ~ ~ ~

1: ...
i i

r r r

i n nRule r IF x is A and and x is A THEN y b=  

Where  1 2 3 4
( )

T
t x x x x=x  and y , the input and output of the fuzzy inference system, 

respectively, and 
~rb    the single output for the 𝑟th base and ~ ~

1 i

r r

nA A  is a fuzzy set with Gaussian 

membership functions. 
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(32) 

( )
2

expr
j

r

j j

j rA
j

x C
x



  −
 = −     

 

Where r

jC  and r

j  are "center" and "width of Gaussian membership function" respectively [11, 

17]. Using Singleton fuzzifier, product inference and center average defuzzifier, the output of the 

fuzzy inference system is obtained as follows: 

(33) ( )

( )

~

1 1

1 1

ir

r
j

ir

j
i

nn r

jAr j

nn

iAr i

b x
y

x





= =

= =

=
 

 
 

The input value of the firing strength for the rth base 

(34) ( )

( )

1

1 1

i

r
j

ir

j
i

n

jAjr

nn

iAr i

x
w

x





=

= =

=


 
 

Therefore, the output of the fuzzy inference system can be rewritten as: 

(35) Ty B w=  

where ~1 ~3
T

B b b =  
 and 

~1 ~3
T

w w w =  
. Therefore, the ideal controller (29) 

can be approximated by an ideal fuzzy inference system ( )* *,fuzv s B  such that 

(36) ( )* * * *ˆ, T

fuzv v s B B w = + = +  

where   is approximation error or uncertainty which is assumed to be bounded. 

(37) | |    

  is the approximation of real uncertainty bound and *B  is the optimal parameter vector. 

(38) ( )* *argmin | |T

BB B w v−  

The fuzzy IF-THEN rules of this fuzzy inference system are as follows: 
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(39) ~ * ~: r r

fuzRule r IF s is A THEN v b=  

In implementation, the optimal parameter vector *B  and perhaps   are unknown. Let ( )ˆˆ ,fuzv s B

be a fuzzy inference system to approximate: 

(40) ( )ˆ ˆˆ , T

fuzv s B B w=  

where B̂  is the estimated value for *B . The control law for the AFSMC system is considered in 

the following form: 

(41) ( ) ( )ˆˆ ,fuz swv v s B v s= +  

where the fuzzy controller ˆ
fuzv  is designed to approximate the ideal controller *v  and ( )swv s  is 

designed to compensate the difference between the ideal controller and the fuzzy controller. 

Definition of approximate errors as: 

(42) * ˆ
fuz fuzv v v= −  

and 

(43) * ˆB B B= −  

and using equations (36) and (40): 

(44) T

fuzv B w = +  

In addition, the estimated uncertainty bound of ̂  is as follows: 

(45) ( ) ( )ˆt t =  −  

Theorem 1. Consider the system (18) and the controller given by equation (41), where the 

parameter vector of the fuzzy inference system is adjusted adaptively by 

(46) 
( )1B̂ B s t w= − =  

and the switching control law is in the form of  
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(47) ( ) ( )( )ˆ ( )sw zu sign s t sign g=  x  

with the given rate of change of ̂    

(48) 
( )( )2

ˆ | ( ) | zs t sign g = − = x  

Also the positive constant parameters of the learning rates 
1  and 

2  in (46) and (48) are selected 

to be positive constants, then the closed-loop stability of the system is guaranteed (Proof given in 

[28]). 

Figure 2 illustrates the membership functions for the normalized inputs, which are composed of 

Gaussian functions with variable means and variances. The parameters of these membership 

functions are chosen so that the sliding variable s remains close to zero. The initial output 

membership functions were arbitrarily chosen as ( )  ˆ 0 1 0 1
T

B = −   and also the initial value is 

selected as (0) 0.1 = − . The positive constant parameters of the learning rates were chosen to be 

10 2 =  and 
20 4 = . It should be mentioned that although the closed-loop performance of 

the system can be somewhat affected by selected shape of the member function, but the closed-

loop stability is guaranteed, as shown in Theorem 1. 

Finally, the actual control force applied to the system (28) can be obtained from  

(49) ( )( )2 2

3 3 3 4 3sin cos sin sin sF M m x v mg x x mLx x F= + + − −  

where 
sF  is the average friction force which can be determined experimentally.  

5. Simulation Studies: SMC vs AFSMC 

In equation (11), the term 
4 32 tanx x  could be neglected exclusively in the vicinity of the 

equilibrium point. Accordingly, the regulation problem is considered in the sequel. For all 

simulations and experiments, the initial conditions are as follows: 80.7 0 0
180

T
 

 
 and in 

equation (27) the parameter   is set to 20. Further specifications are provided in Table 2. 
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Figure 3 to 

Figure 6 present the simulation results for the cases shown in Table 2. Control of Nominal System  

Evaluating control designs on the nominal model allows for understanding the basic behavior and 

performance of SMC and AFSMC without initially being encumbered by complexities such as 

uncertainties, disturbances, or unmodeled dynamics 
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Figure 3 depicts the comparable response of SMC and AFSMC approaches. It is important to note 

that SMC approach is strongly model-based for the feedback linearized part of the control input. 

While, while for the AFSMC approach, the equilibrium control part is estimated adaptively. One 

of the reasons for the close operation of SMC and AFSMC is the lack of friction, noise, and 

parametric uncertainty changes in the nominal system. 

5.1. Nominal System with Position Sensor Noise  

In this section, by applying a sinusoidal type noise  

30,50,70

( ) 0.003 sin( )
n

n t t
=

=   

 to the cart position sensor, the simulation results for SMC and AFSMC approaches are compared 

in  
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Figure 4, depicting the superior performance of the AFSCM. 

For the SMC, the values 8Q =  and 6 =  in equations (23), (24), and (25) were obtained by trials 

and errors to just retain the closed-loop stability while for the AFSMC case, the values of 4 = , 

1 2 = , and 
2 4 =  were determined more easily, considering the guaranteed closed-loop stability 

property devised in Theorem 1. 

 Uncertain System 1: Nominal System + Friction added 

According to the experimental implementation reported in [8], the approximate friction value 

1 111.1216 –  2.8256 32.34  ( 2 –  2.5  ) 7 (3 .34 )cos si xnx  was considered for the simulation 

purposes and added to the equations of plant. 
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As shown in 

Figure 5, AFSMC provides a relatively better performance in controlling the system and 

overcoming the friction uncertainty, although, despite the AFSMC, the SMC is utilizing the full 

information of the dynamical model to generate the control input.  

5.2. Uncertain System 2: Nominal System with Pendulum Length Changed 

One of the commercial applications of the IPC, is for design and production of the so called two-

wheel Segway [29]. In order to study the robustness against the height of the human driver, the 

effect of the length of the pendulum on the performance can considered as a parametric uncertainty. 

With such motivation, in our study, the length of the inverted pendulum, L , is increased from 

0.3729 to 0.5 meter (about 34% change). The behaviors of SMC and AFSMC are then examined 
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Figure 6. 

The superior performance of AFSMC over SMC is evident in the situations where the parameters 

of the system model change during the control process.  

5.3. Uncertainty Bound Estimation: AFSMC Approach 

In the conventional SMC, information about the upper bound of uncertainties is a crucial 

requirement for designing a robust controller. While it is commonly assumed that this information 

is available, obtaining it in practical scenarios might be challenging. The adaptive approach 

devised in the AFSMC approach, provides a solution for an indirect estimation of such an upper 

bound, leading to improved control performance, robustness, and reduced chattering effects. Based 

on (45) and (48) the time history of the estimated  

uncertainty bound, ̂ ,  defined as the difference between the equilibrium control generated by the 

AFSMC and the one generated based on the fully model-based feedback linearization in the SMC 

approach, is shown in 
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Figure 7.  

The key idea is to utilize an adaptive fuzzy system to estimate the bound of uncertainties affecting 

the system. This estimated bound is then incorporated into the AFSMC switching gain 

computation to ensure the reachability condition is satisfied despite uncertainties. The adaptive 

fuzzy approach provides an effective way to learn these bounds online without requiring explicit 

uncertainty models. 

6. Experimental Setup 

To validate the proposed approach, an experimental setup consisting of an inverted pendulum on 

a moving cart is designed and built. A belt drives the moving cart over a 2-meter guide rail. The 

belt is by a DC servo motor and a planetary gearbox. The rail on which the moving cart moves is 

deliberately designed to bring in a high and non-linear friction between the cart and rail. Figure 8 

depicts the general structure of the setup. Further specifications are shown in Table 3.   
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7. Experimental Validation 

In the experimental implementation, the design parameters for the SMC are set as 6 =  and 8Q =

. Similarly, for the AFSMC, the parameter values are chosen as: 4 =  , 
1 2 =  , and 

2 4 =   The 

initial conditions are set equal to 150 0 0
180

T
 

 
. 

The control behavior of the closed-loop system is investigated with two control approaches, SMC 

and AFSMC. It is shown that in the absence of an accurate mathematical model of the friction, 

both the SMC and AFSMC approaches can maintain the position of the moving cart and the 

inverted pendulum to an acceptable level near the equilibrium point . 

Figure 9 shows the comparison between the position of the moving cart in two control approaches. 

The dotted line diagram is for the SMC approaches and the solid-line diagram is for the AFSMC 

approaches. In this figure, it can be seen that both controllers are able to keep the moving cart near 

the equilibrium point after 3 seconds. Although the AFSMC approaches is less dependent on the 

model, it provides a relatively better performance.  

Figure 10 shows the comparison between the inverted pendulum angle in two control approaches, 

SMC and AFSMC. The initial angle was about 15 degrees, and the moving cart was able to keep 

the inverted pendulum almost in the upright direction after several turns of going back and forth 

near the equilibrium point. It can be seen that the fluctuations with the SMC is considerably more 

than the AFSMC. 

Figure 11 compares the time history of control inputs for the SMC and AFSMC cases. It can be 

seen that the presence of nonlinear friction between the moving cart and the rail prevents the 

control force to converge to zero value. 

8. Discussion and Conclusion 

In this study, an attempt was made to study the effectiveness of the SMC approach as well as the 

recently developed direct-AFSMC approach in controlling an inverted pendulum on a moving cart 

in the presence of highly nonlinear and uncertain friction force. The problem with the dynamic of 

an inverted pendulum is that it cannot be completely feedback linearized and hence transformed 

into the regular form so that the SMC-like approach becomes applicable. Instead, the system was 
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approximately linearized and the ignored dynamic was considered as uncertainty which can be 

more or less handled by the control input.  

The comparison of the performance results of these two controllers showed that, although the 

existence of nonlinear unknown variable friction factor has negative effects on the performance of 

the closed-loop system, in general, both control approaches were able to control the inverted 

pendulum and the position of the moving cart to an acceptable extent. It was experimentally 

revealed that unlike the SMC approach, whose control logic is mainly dependent on the dynamic 

model, the AFSMC approach used in this paper is considerably less independent on the pendulum 

dynamic model, and even in the presence of high-friction and large parametric uncertainty, 

provided a better performance.  

Nomenclature 

Abbreviation Term 

(AFSMC) Adaptive-Fuzzy Sliding Mode Control 

(CRR) Constant Rate Reaching 

(Direct-AFSMC) Direct-Adaptive Fuzzy Sliding Mode Control 

(DoF) Degrees of Freedom 

(IOFL) Input-Output Feedback Linearization 

(IPC) Inverted Pendulum on a Moving Cart 

(ISMC) Integral Sliding Mode Control 

(LQR) Linear Quadratic Regulator 

(LQRC) Linear Quadratic Regulator Controller 

(PCM) Predictive Control Model 

(SMC) Sliding Mode Control 

(TSMC) Terminal Sliding Mode Control 

(UMS) Under-actuated Mechanical System 
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Figure 1. The structure of the inverted pendulum system and moving cart 
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Figure 2 . Input fuzzy membership functions 

 

Figure 3 . Comparative Response for Nominal System 
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Figure 4 . Comparative Response for Nominal System with Position Sensor Noise 

 

Figure 5 . Comparative Response for  System with Friction Force 
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Figure 6 . Comparative Response with Pendulum Length Changed 

 

Figure 7 . Estimated Uncertainty Bound in AFSMC 
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Figure 8 . Inverted pendulum made with high-friction between the moving cart and the rail 

 

 

Figure 9. Moving cart position 
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Figure 10. Pendulum angle 
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Figure 11. Control Input 

 

Table 1.  Summary of selected literature for control of an IPC. 

Reference 

No. 

Experimental 

Verification 
Control Approach 

Friction 

force 

Considered 

Angle 

control 

only 

( )  

Position and angle 

control  

( , )x   

[7] - LQR, SMC, ISMC, TSMC ✓  - ✓ 

[8] ✓ SMC ✓ ✓ ✓ 

[9] - SMC + MPC  - - ✓ 

[14] - FSMC + LQRC ✓ ✓ ✓ 

[10, 11, 

12, 13] 
- AFSMC - ✓ ✓ 

[6, 15, 16] - AFSMC ✓ ✓ ✓ 

Proposed 

Approach 
✓ AFSMC ✓ ✓ ✓ 

  

Table 2. A Guide to Simulation System Categories 

 

Name 

Syste

m 

Posit

ion 

Sens

or 

Frict

ion 

Adde

d 

Pendu

lum  

Lengt

h 
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Nois

e 

Adde

d 

Chang

ed 

Figure 3 

Nomi

nal 

Syste

m 

- - - 

Figure 4 

Nomi

nal 

Syste

m 

with 

Positi

on 

Senso

r 

Noise 

✓ - - 
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Figure 5 

Uncer

tain 

Syste

m 1: 

Nomi

nal 

Syste

m + 

Frictio

n 

Added 

 - ✓ - 

Figure 6 

Uncer

tain 

syste

m 2: 

Nomi

nal 

Syste

m + 

Pendu

lum 

Lengt

h 

Chang

ed 

 - - ✓ 

 

 

Table 3. Laboratory system physical characteristics 

Name Symbol Quantity and unit of measurement 

Pendulum mass m 0.650 [Kg] 
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Moving cart mass M  2.1 [Kg] 

Pendulum length L  0.3729 [m] 

Monetary radius of pendulum base drive belt pR  
0.03184 [m] 

Constant current electric motor torque constant 
tK  0.49 [N.m/A] 

Planetary gearbox conversion ratio Kg  5 

 

 


