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Abstract: The goal of the current study is to examine how the magnetic dipole effects on 

nanofluid flow over an extended surface. Based on a constant, non-porous material with a velocity 

slip condition, this investigation has been reported. The effects of the variable viscosity and 

thermal conductivity are explored for two different types of nanofluids. The experiment's findings 

involved dispersing in water and ethylene glycol base solutions. For both types of nanofluids, the 

fundamental governing equations are converted into nonlinear ordinary differential 

equations using the suitable transformation and solved using the bvp4c technique. The viscosity 

and porosity parameters decay the velocity field. Furthermore, the transport of heat is decaying 

function of viscous dissipation factor, growing function of Prandtl factor. 

Keywords: Magnetic dipole; Variable viscosity, Nanofluid, Porous medium, Newtonian 

heating; Heat sink/source 

1. Introduction 

Currently, nanofluids have concerned a boundless deal of consideration because of their 

prospective in increasing the heat transport. The nano-sized metallic elements, that is, gold, iron, 

copper, aluminum, or their oxides are utilized as colloidal representatives with greatest collective 

base liquids for instance, glycol,  water, ethylene, or lubricant so that value-added thermo-physical 
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aspects of heat transport of base fluid. Choi and Eastman [1] established a brand-new type of fluid 

named nanofluid. Nanofluids have uses in a number of industries, comprising transportation, 

energy production, electrical structures like microprocessors, and biology. Numerous scholars 

have looked into the topic of nanofluids both mathematically and experimentally for heat transport 

characteristics. The studies related to nanofluid are explored in Refs. [2-11]. Furthermore, 

Manigandan and Narayana [12] examined variable properties of thermal conductivity on hybrid 

nanofluid with slip mechanisms. Irfan [13] elaborated Joule heating influence and activation 

energy in Maxwell nanofluid.  

 Furthermore, an innovative kind of nanofluid that has newly been used in research is a hybrid 

nanofluid. It is formed by dissolving two different kinds of nanoparticles throughout the base fluid. 

The rapid growth of theoretical studies has led to the proposal of many new mathematical models. 

Scientists and researchers formed hybrid ferrofluids, which have nanoparticles distributed 

throughout, in an effort to increase fluid efficiency. However, a study of the works reveals that 

only a small number of studies [14–17] have concentrated on the flow and heat transmission of 

hybrid ferrofluids. Research on MHD hybrid ferrofluid and the impact of erratic heat sources and 

sinks on the flow of radiative thin films was suggested by Kumar et al. [18]. Tlili et al. [19] studied 

MHD hybrid ferrofluid under the impact of asymmetrical heat (rise/fall) was then continued. 

Manhet al. [20] investigated the role of radiation in the heat transmission of an MHD hybrid 

ferrofluid submerged in porous media. In a mixed convection flow on a hybrid ferrofluid 

3 4 2 2  ,( )Fe O CoFe Fe−  Zainodin et al. [21] examined exponentially deformable sheets at stagnation 

points with the effects of heat source/sink and velocity slip.  

The study analysis of the works revealed that no study of hybrid nanoparticles that affect the 

thermal growth of heat in ferrofluid when it is exposed to a magnetic dipole. The mathematical 

model by Tiwari and Das [22] has been employed to address this issue. The current article explores 

the theory of nanofluid [23-25] in view of convective conditions on ferro-magnetic hybrid 

nanofluid [26-27] with variable viscosity [28-32], thermal conductivity in porous surface 

considering magnetic dipole. The bvp4c method utilized for solutions. 

2. Description of the problem 

Here the flow of ferromagnetic nanofluid ( )2 3 2 2 3 2 6 3   ,     Al O H O Al O C H O   along stretched 

surface is taken into consideration. This flow is stable, two-dimensional, and incompressible. 



 

2.1.Model assumptions and conditions 

The following assumptions are taken into account when analyzing the mathematical model: 

• Nanoparticles 

• Variable thermal conductivity 

• Magnetic dipole 

• Varying viscosity 

• Porous substance 

• Heat sink/source 

The sheet is stretched with velocity   U cx =  denotes the velocity of the extended sheet. The 

temperature 𝑇 of a fluid temperature of the surface and T  and cT  denote the initial and ambient 

temperatures, respectively, i.e., cT T T   . The magnetic dipole study are also considered shown 

in Fig.[1]. 

 

 

 

The governing equations are 

                                                    0
u v

x y

 
+ =

 
        (1) 

( ) 0

nf

nf nf

vu v u H
u v T M u

x y y y x k


  

       
+ = + −   

       
   (2)  

( ) ( )
( )

( )

( )
00 1 c

nf

p p pnf nf nf

Q T TT T M H H u
u v T u v K T

x y T x y y yc c c



  

−           
+ + + = +     

           
 (3) 

Here ( )  ,   , ,ε,   ,nf nf nf p nf
v K c   , nfK  , , M H , 0,pc Q  denotes the dynamic viscosity, density, 

kinematic viscosity, Porosity and permeability of porous medium, specific heat, thermal 

conductivity of the nanofluid, magnetization, magnetic field, specific heat and heat sink/source 

coefficient, respectively. 

The boundary conditions are: 
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Here 
sh  the heat transfer coefficient. 

The viscosity and thermal conductivity as an exponential function of temperature 
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2.2.Thermo-physical properties of 2 3 2 2 3 2 6 3 and − −γAl O  H O γAl O  C H O : 

A few features associated with nanofluids, their dynamic viscosity, effective density, specific 

heat capacity and thermal conductivity. 
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The relations determine the values of density, dynamic viscosity, specific heat and thermal 

conductivity of nanofluids. Base fluid and nanoparticles thermal conductivities are characterize as  

  s fandk k , while   denotes the volume of solid in the nanofluid ,   s fand   represent the 

densities of the base fluid and nanoparticles, respectively. 

2.3. Magnetic dipole 

The magnetic field created by the magnetic dipole affects the flow of ferrofluid caused by 

stretching the sheet. 
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  is the magnetic scalar potential of a ferrofluid.                       (11) 

Here, 𝛾 denotes the strength of the magnetic field at the source, and 𝑑 denotes the separation 

between the magnetic field’s centre and the x-axis.  and x yH H , which are defined as 
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Making use of the following similarity variables 
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Equations [6-7] and [15-16] with [18-19] gives Eqs. [2 – 4]  
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subject to boundary conditions 
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Here (Prandtl number) Pr , (porosity parameter) m , (Curie temperature ratio)  ٍ, (Newtonian 

heating parameter)  1 , (Viscosity parameter) m , (Viscous dissipation)  , (ferro hydrodynamic 

interaction parameter)  , (dimensionless distance)   and (heat sink/source) hQ . 
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3. Physical interest 

The Skin fraction and Local Nusselt mathematically as: 
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Dimensionless form 
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where ( ) /x fRe U x x v=   is local Reynold number. 

 

4. Discussion 

Here numerical approach has been worked for solutions and present graphically and in tables form. 



 

The values of fixed parameters taken are 

1 10.8 ,  0.1,  0.01 ,  0.15,  0.5 ,   0.8 ,  0.5 , 2,Pr 6.2.h mm Q    = = = = = =  = = = = ٍ  Figures 

(2–5) elaborate on the implications 1 1 , ,   mm and    and  on velocity profile. Figure 2 depicts the 

influence of viscosity change 1m  for the two nanofluids. This has dealt with a fall in Ferro-fluid 

velocity brought about by rise in exponential viscosity. The momentum boundary layer thickens 

as a result of the increase in viscous forces relative to inertial forces brought on by an upsurge in 

viscosity. Additionally, increasing the fluid's concentration through the inclusion of nanoparticles 

slows down the nanoliquid. The graph illustrates that, in the scenario of 2 3 2 Al O H O −  the fluid's 

velocity falls as the concentration of nanoparticles rises. The axial velocity of the nano fluid 

decreases when the density of the base fluid is increased with solid particles. The consequences of 

𝛽 are apparent in Figure 3. In the existence of 2 3 2 Al O H O −   and 2 3 2 6 3 Al O C H O − , as revealed 

in figure 3, the fluid viscosity increases and causes the axial velocity to decrease for increasing 

values of 𝛽. Figure 4 displays declining performance of  ∧𝑚 in flow of 2 3 2 Al O H O −  and 

2 3 2 6 3 Al O C H O −  for the velocity distribution. Biological applications use porous media that 

contain pore structures filled with fluid. The 1  graph is explored in fig 5. The escalation in 1  

alter the nanofluid axial velocity, which decreases velocity for 1 . The impact of the viscosity 

parameter and the ferromagnetic parameter on the fluctuation in the temperature profile is explored 

by employing figures 6 and 7. The change in viscosity the resistive forces produced and results 

display the temperature rises. The temperature of the nanofluid is revealed to be elevated by deeper 

values of   as in Figure 7. This arises from the interaction of a magnetic field's action with 

nanoparticle motions, i.e., rise of temperature field caused decay in nanoparticle activities. Figures 

8 and 9 illustrate a boost in Curie temperature relation, leading to an enhancement in the fluid's temperature 

profile. The influence of   (viscous dissipation parameter) on the temperature contour is perceived 

in Figure 10. Regardless of the growing  , it appears that the temperature contour improves. 1  

impact on temperature profile reports in figure 11. Increase in 1  increase heat transport and 

intensifies temperature. Figure 12 illustrates a pattern towards cooling in the temperature profile. 

For higher quantities of Pr , the temperature field drops. As thermal diffusivity falls, heat is 

isolated, missing from the heated sheet and enhancing the surface temperature gradient.  

Thermo physical properties of nanomaterial are shown in Table 1. Numerical worth of skin friction 



 

for two nanofluid for   ,  ,Pr    parameter is provided in Table 2. The skin friction is increased 

by the higher levels of these limitations. Skin friction is exacerbated by a rise in resistance force 

attributed to an elevation in the volume fraction of nanoparticles and a greater range of magnetic 

restrictions. The consequence is comparatively prominent when 2 3 2 Al O H O −   nanofluid is 

employed. As shown in Table 3, larger values of Pr raise the cooling influence and, as a 

consequence, raise the Nusselt number, leading to greater skin friction and slow the heat 

transmission rate. Because of the  2 3 2 6 3 Al O C H O −   Nano fluid’s strong thermo physical 

characteristics, cooling occurs quickly while Prandtl number is increased. The Nusselt number 

decreases as the hydrodynamic interaction constraint   and viscous dissipation term   have 

rising values. The Nusselt number decreases as the amount of these parameters rises given that 

they physically enhance the Nano fluids' capacity to boost heat transfer. Also, tables 2 and 3 

characterize the comparison exploration in a limiting manner with the results of [33]. The 

discrepancy between numerical numbers and values from the literature demonstrates the 

applicability of the chosen technique whose step size has been set to h = 0.001 with an error 

tolerance of  10−6  and has been meticulously designed for convergence. 

 

5. Conclusion 

Here the magnetic dipole in ferromagnetic flow considering nanofluid has been examined 

numerically. The aluminum oxide nanoparticles utilizing water and ethylene glycol as the base 

fluid with variable viscosity and thermal conductivity have also studied. The key insight of the 

mentioned paper is 

• The velocity profile was decreased by altering the viscosity parameter, while temperature 

profile enhanced. 

• Temperature raised with higher values of the Curie temperature ratio, and temperature of the 

fluid decayed with increasing values of the Prandtl number. 

• The temperature field enhanced for the rising value of ferromagnetic interaction factor. 

• Up surging values of Curie temperature parameter raised the temperature field. 

• The increasing 1 and    caused the temperature field to become stronger, and that the nanofluid 

2 3 2 Al O H O −  has a relatively better influence on this consequence. 
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Table 1: List of the current study's (thermo-physical characteristics). 

Contents Density Specific heat Thermal conductivity 

Water ( )2H O  998.3 4182 0.6 

Ethylene glycol ( )2 6 3C H O  1116.6 2382 0.249 

Gamma-alumina ( )2 3Al O  3970 765 40 

 

Table 2: shows numerical quantities of skin friction coefficient  ( )
1

2
1

2 xx fRe C  for two nanofluids 

when 1 1, 0.1,  0.5m = = = ٍ .  Obtained results are compared with the results of Abbas Khan [33]. 

Khan et al. [33] Present 

      
2 3 2 Al O H O −  2 3 2 6 3 Al O C H O −  2 3 2 Al O H O −  2 3 2 6 3 Al O C H O −  

0.01 1 0.2 0.529705 0.52471 0.529700 0.52461 

0.03   0.897501 0.879547 0.897491 0.879536 

0.05   0.54147 0.50264 0.54137 0.50252 



 

 2  2.00877 1.96994 2.00863 1.96982 

 3  2.47608 2.43724 2.47600 2.43711 

  0.3 3.68432 3.1646 3.68421 3.1632 

  0.4 4.68448 4.14641 4.68436 4.14653 

 

Table 3: Comparison of numerical results reported by of local Nusselt number for two 

nanofluids when 0.1 , 0.2,  0.5 = = = ٍ . 

Khan et al. [33] Present 

Pr      
2 3 2 Al O H O −  2 3 2 6 3 Al O C H O −  2 3 2 Al O H O −  2 3 2 6 3 Al O C H O −  

5.6 1 0.3 1.8123 1.89077 1.8112 1.89068 

6.6   2.29341 2.39237 2.29331 2.39227 

7.6   2.77451 2.89397 2.77462 2.89297 

 2  1.85614 1.93647 1.85602 1.93637 

 3  0.937765 0.978975 0.937763 0.978964 

  0.35 0.47953 0.501218 0.479532 0.501207 

  0.4 0.0212945 0.0234611 0.0212941 0.0234601 

 

 

 

 

 

 

List of Figures 



 

 

Fig 1: 

Fig 2:



 

Fig 3:

Fig 4: 



 

Fig 5



 

Fig 6:

 

Fig 7:

Fig 8: 



 

 

Fig 9:

 

Fig 10: 



 

 

Fig 11: 

 

Fig 12 


