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Abstract 

Cardiogenic shock, resulting from cardiac dysfunction, poses a dire threat during cardiac 

emergencies, necessitating prompt inpatient transfers to intensive care units and aggressive 

interventions for blood pressure management and adjunctive therapies. Hence, developing an 

optimal non-invasive decision support system for clinicians is paramount for prognostication and 

efficient patient transfers to specialized care units. This study aims to enhance the medical referral 

process for cardiogenic shock patients through Machine Learning (ML) algorithms. Analyzing 

data from 201 heart patients admitted to emergency wards in 2020, the study employs an Artificial 

Intelligence (AI)-based model with feature selection and decision phases. The feature selection 
†phase entails analyzing 34 parameters related to the patient's health status, while the decision 

phase determines treatment outcomes using ensemble-based ML algorithms. Results reveal a mean 

patient age of 69.44 years, with 57.2% being male, and a concerning 47.7% succumbing within 30 

days. Notably, the model's decision phase demonstrates an impressive predictive accuracy of 86% 

in determining treatment efficacy. Thus, the imperative for an optimal non-invasive decision 

support system for clinicians is emphasized, enabling proactive prognostication and informed 

patient transfers to specialized care facilities. 
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1. Introduction 

This paper aims to address two critical components essential for managing the medical referral system 

catering to cardiac patients specifically focusing on cardiogenic shock hfand heart failure (HF). The 

identification component employs machine learning (ML)-based feature selection techniques. Cardiogenic 
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shock denotes a state wherein tissue perfusion diminishes due to cardiac malfunctioning, leading to reduced 

tissue blood oxygenation and symptoms indicative of lower cerebral blood flow [1]. Heart failure manifests 

as a clinical syndrome stemming from structural or functional abnormalities in the heart, resulting in 

reduced blood pumped from the heart or increased intra-cardiac pressure. It presents symptoms such as 

dyspnea, orthopnea, and lower limb edema; clinical examination often reveals pulmonary congestion and 

increased jugular vein pressure [2]. In cardiogenic shock, ischemia, decreased myocardial contractility, and 

cardiac output contribute to an extensive shock necessitating immediate diagnosis and treatment [3]). 

Studies indicate that age above 73, a history of cerebrovascular accident, high blood glucose, and serum 

creatinine at admission are among the risk factors for early and intra-hospital mortality in these patients [4]. 

Additionally, the therapeutic measures undertaken significantly influence patient mortality rates [5, 6]. 

Despite recent advancements in science and technology, the management of cardiogenic shock remains a 

challenge, albeit with a decreasing trend in mortality rates among cardiac patients worldwide [7, 8]. 

Recent years have witnessed exponential growth in medical device production, data storage capabilities, 

and data integration, leading to the accumulation of extensive data in repositories. This influx necessitates 

advanced analytical approaches to extract meaningful insights. While traditional statistical methods such 

as Generalized Linear Mixed Models (GLMM) focus on analyzing relationships between a limited number 

of variables, they face limitations in modeling non-linear relationships and handling large-scale data. In 

contrast, ML techniques excel in modeling complex, non-linear relationships and are adept at handling 

large-scale data [9, 10]. The healthcare industry generates vast amounts of clinical and administrative data, 

offering immense potential for personalized care, improved treatment quality, and cost reduction [11]. Data 

mining techniques play a pivotal role in uncovering patterns and interdependencies within healthcare data, 

aiding in disease treatment determination, drug efficacy assessment, prediction of medical intervention 

success rates, and mortality prediction for various diseases. Given that HF is the leading cause of 

cardiovascular shock, numerous studies have sought to identify predictive factors for cardiovascular shock 

in HF patients. Identifying these factors can significantly enhance the management of HF patients on 

cardiovascular medications. 

This study aims to identify significant predictive factors for cardiovascular shock in HF patients aged 18 

years and above receiving cardiovascular medications, leveraging ML techniques to optimize mortality 

prediction. 

 

2. Review of the literature 

Several studies have explored HF in patients with cardiogenic shock, investigating various aspects such as 

in-hospital mortality prediction, occurrence of cardiogenic shock, predictors of 30-day mortality in elderly 

patients with cardiogenic shock, and determinants of disease progression and prehospitalization in HF 

patients. ML algorithms have emerged as promising tools in predicting, evaluating, and managing diseases 

while aiding in clinical decision-making. 

For instance, Nicolai P. Ostberg et al. (2022) conducted a study focusing on predicting in-hospital mortality 

among cardiogenic shock patients. Their research found that the LASSO model, with an AUROC of 0.94, 

outperformed the logistic regression model in predictive performance. Noteworthy predictor factors in the 

LASSO model included age, Glasgow coma score, D-dimer, lactate, bilirubin, and pH [12]. 

In another study by Faisal Rahman and colleagues (2022), various ML classification algorithms such as 

decision trees, random forests, support vector machines, linear discriminant analysis, k-nearest neighbors, 
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and logistic regression were employed to anticipate cardiogenic shock onset in hospitalized patients with 

acute HF. Although all algorithms yielded similar results to logistic regression, an algorithm was developed 

to identify high-risk patients for future cardiogenic shock occurrences. This model facilitated timely 

adjustments in clinical care [13]. 

In the 2022 study by Feng Ning Rang and colleagues, entitled 'ML for Predicting Outcomes in Cardiogenic 

Shock’, various models were utilized, including the Cox regression model, the least absolute shrinkage and 

selection operator (LASSO) regression model, and the Cox regression model. Within the training set, three 

distinct models were developed. Initially, in the traditional Cox regression model, univariate analysis was 

employed to select eight predictors with a significance level set at 0.05. Subsequently, predictions 

underwent two rounds of screening via multiple regression analysis, culminating in the final Cox regression 

model. Ultimately, six predictors were identified, namely age, heart rate, temperature, white blood cell 

(WBC) count, anion gap, and blood lactate [14]. 

Additionally, Xin Li et al. (2022) investigated mortality predictor factors and therapeutic interventions in 

hospitalized cardiogenic shock patients. Their findings underscored the effectiveness of variables such as 

age, blood glucose, and heart rate in mortality prediction, guiding appropriate treatment strategies [15]. 

Furthermore, ML models have proven valuable in predicting in-hospital mortality following medical 

interventions, as demonstrated by Krittanawong et al. (2022). Their research identified chronic kidney 

disease as a prominent mortality predictor using neural network models [16]. 

Moreover, Chang Y et al. demonstrated that utilizing ML models, in conjunction with data from patients' 

electronic medical records, could predict cardiogenic shock two hours earlier. They also identified 

associations between cardiogenic shock and several factors, including advanced age, male gender, higher 

troponin, higher glucose, lower body temperature, lower pulse pressure, an average level of immature 

granulocytes, higher oxygen saturation, and lower bicarbonate [17]. 

Awan SE et al. conducted research employing ML techniques, revealing that a small set of variables 

selected using ML matched the performance of models utilizing the full set of 47 variables in predicting 

30-day readmission or death in patients with HF. Furthermore, they found that the predictive model's 

performance could be significantly enhanced by transforming the original variables using ML methods 

[18]. 

Similarly, Ritu et al. introduced a sequential feature selection method aimed at identifying mortality events 

in patients with heart disease during treatment by isolating the most critical features. They employed various 

ML methods, including LDA, KNN, RF, SVM, DT, and GBC. Furthermore, they utilized the confusion 

matrix, receiver operating characteristic curve, precision, recall rate, and F1-score to validate the results of 

the sequential feature selection (SFS) algorithm. Their experimental findings showcased that the SFS 

technique achieved an accuracy of 86.67% for the RF classifier [19]. 

In a separate study, Alotaibi et al. explored the effectiveness of ML techniques in predicting HF. Leveraging 

the Cleveland Foundation dataset, they employed diverse ML algorithms such as decision tree, logistic 

regression, RF, naive Bayes, and support vector machine (SVM) for prediction. Notably, the results 

indicated that the decision tree algorithm exhibited the highest accuracy in predicting heart disease at 

93.19%, followed closely by the SVM algorithm at 92.30%. Alotaibi et al. underscored the potential of ML 

techniques as effective tools for HF prediction, particularly highlighting the decision tree algorithm for 

future research endeavors [20]. 
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Hasan & Bao investigated an efficient feature selection method for predicting cardiovascular disease, 

comparing several algorithms. They evaluated models including RF, SVM, Nearest Neighbor, Naive Bayes, 

and XGBoost to assess their comparative accuracy and identify optimal predictive analysis. Utilizing 

artificial neural network (ANN) as a standard for comparison, their results revealed the XGBoost classifier, 

along with the wrapper method, achieved the highest accuracy at 73.74%, followed by SVC at 73.18%, and 

ANN at 73.20% [21]. 

In their 2019 study, Rahma Atallah and Amjed Al-Mousa introduced a ML ensemble technique designed 

to enhance the accuracy and robustness of predicting the likelihood of heart disease. Their approach 

combined multiple ML techniques to construct an ensemble model, which, through a majority voting 

mechanism, achieved a notable accuracy rate of 90%. This surpassed the accuracy attained by individual 

classifiers such as the Stochastic Gradient Descent (SGD) Classifier, K-Nearest Neighbor Classifier, 

Random Forest Classifier, Logistic Regression Classifier, and Ensemble Classifier [22]. 

In contrast to prior studies, as demonstrated in Table 1, which predominantly focused on specific age groups 

or mortality predictors, the current study endeavors to leverage data from patients visiting the hospital's 

emergency department. The objective is to discern predictive factors for 30-day mortality among 

cardiogenic shock patients aged over 18 years. Additionally, this study aims to harness ML algorithms to 

optimize the prediction of 30-day mortality in this patient population. Furthermore, modeling uncertainty 

is another important feature of the proposed method. 

 

Table (1) literature review table 

 

 

3. Materials and methods 

Given that cardiogenic shock is the most prevalent heart disease, constituting a medical emergency, 

optimizing proper therapeutic interventions and reducing mortality rates are paramount. To achieve this 

optimization, ML methods are employed to uncover patterns, hidden interdependencies, and identify a set 

of key features. By selecting a subset of these key features, machine training time is reduced, and prediction 

performance is enhanced [23]. Additionally, such predictive models enable physicians and medical staff to 

focus solely on the minimum necessary variables for outcome prediction. In this study, the feature selection 

phase involves the utilization of all factors recorded in patients' medical files (state parameters) and employs 

ML techniques to rank the factors influencing patient status. Subsequently, in the decision-making phase, 

ensemble techniques are utilized alongside the effective factors identified in the state feature selection phase 

to predict optimal behavioral therapies and facilitate patient transfer to appropriate treatment departments. 

The classification framework for patients is illustrated in Figure 1. The core components of the proposed 

method encompass data preprocessing, the state feature selection phase, and the determination of 

therapeutic behaviors. The aim is to propose an optimal non-invasive decision support system for 

cardiogenic shock patients. 

Figure 1. The diagram of the research stages 
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3.1. The data preprocessing stage 

Preprocessing of the dataset is crucial to ensure effective representation of data quality. Techniques such 

as elimination of missing values, standard scaling (SS), and Min-Max Scaling were applied. Missing value 

management, an essential preprocessing technique, involved determining and handling missing values 

within the dataset [24, 25]. Various strategies for managing missing values were explored, including 

ignoring them, substituting with numerical values, or replacing them with the mean feature value. In the 

HF patient dataset used in this study, two missing values were identified and replaced with the mean feature 

values. 

3.2. Feature selection phase 

After calculating the missing values, identifying important features with a strong and positive correlation 

with the target variable (labels) becomes essential. Extraction of effective features eliminates useless 

features for prediction and irrelevant ones. The aim of feature selection is to identify the most important 

features of HF patients with cardiogenic shock manifestations. Additionally, selecting effective features 

helps develop a more precise model, minimizes learning time, and enhances learning performance. The 

method of feature selection in the experiments and analyses is presented in Section 3-4. 

Feature selection refers to the process of selecting a subset of features from a set of main features based on 

a special selection criterion [26]. The main advantages of feature selection methods include reducing 

algorithm computational time, improving prediction performance, identifying relevant features, enhancing 

data quality, and saving resources in subsequent stages of data collection. 

The primary objective of feature selection is to identify a subset of features that significantly enhance 

decision-making processes. 

_max ( _ , ) ,selected featuresimize DS selected features A                                               (1) 

In Equation (1), DS serves as the decision-making function which, through the application of algorithm A 

on the selected features, yields optimal results. These features are selected using the following model:  

arg ( ,.),features features Featuresselected Max FS features where=                                     (2) 

arg ( ) : { : ( )

(_ ) _

features FeaturesMax FS features feature Features FS features

FS feature for feature Features

 =  


 

In Equation (2), FS stands for the feature selection function in which _features denote a subset of features, 

while Features represents the complete set of selected features. 

Feature selection methods can be classified into three groups: wrapper, filter, and embedded (a combination 

of filter and wrapper methods). The filter method selects statistics-based features independently of the 

learning algorithm, resulting in shorter computational time. Statistical criteria such as information gain, chi-
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square test, Fisher score, correlation coefficient, and variance threshold are used to understand the 

importance of features [26]. 

In contrast, the wrapper method's performance heavily depends on the classifier, where the best subset of 

features is selected based on classification results. In the wrapper feature selection method, a ML model is 

used to select important features. Initially, all features in the data are input into the model. Then, the ML 

model runs on all different combinations of available features, and for each combination, the accuracy of 

the learning algorithms is calculated on the data. Based on resulting accuracy for each combination, 

important and less important features are identified, and features that increase the accuracy of the learning 

algorithms are selected as the chosen features for the model [27-30]. 

The advantage of the wrapper method includes its higher accuracy in feature selection compared to filter 

methods. Another advantage is its ability to generalize to different algorithms. However, this method may 

not be efficient for high-dimensional data due to expensive, time-consuming calculations and sensitivity to 

the choice of the ML model. Examples of wrapper methods include recursive feature elimination, sequential 

feature selection algorithms, and genetic algorithms [31-33]. 

3.3. Recursive feature elimination (RFE) 

In this study, the Recursive Feature Elimination (RFE) method has been utilized to select the most crucial 

predictive features. RFE algorithm stands out for its simplicity and effectiveness in feature selection, 

making it a popular choice in predictive modeling tasks. This method aims to identify the features within 

the training dataset that are most relevant for predicting the target variables while discarding less 

informative features. The process involves recursively training the model and iteratively eliminating 

features with the least importance, based on the weights assigned by the algorithm [32, 33]. The primary 

steps involved in the RFE method are outlined below: 

1. Feature Initialization: All features are initially selected from the main dataset. 

2. Initialization of Feature Selection: The process begins by setting the parameter 

'n_features_to_select' to an initial value, typically 5. 

3. Model Training: The predictor is trained using the selected features, and the importance of each 

feature is assessed using coefficients or feature importance functions. 

4. Feature Elimination: Features with the lowest importance are eliminated from the current set 

iteratively until the desired number of features is reached. 

5. Iterative Process: Steps 3 and 4 are repeated for different values of 'n_features_to_select', ranging 

from 6 to the total number of features in the dataset. 

6. Optimal Subset Identification: Using the results obtained in the previous steps, the optimal subsets 

of features are determined for each specified number of features.1 

This iterative approach allows for the identification of the most informative features while gradually 

reducing the feature space, thus optimizing the model's predictive performance. The effectiveness of the 

RFE method lies in its ability to systematically evaluate the importance of each feature and select the most 

relevant ones for prediction, leading to improved model accuracy and generalization across different 

algorithms. While the RFE method offers notable advantages in feature selection, it may pose challenges 

for high-dimensional datasets due to its computational complexity and sensitivity to the choice of ML 

learning models. 

3.4. Decision-Making Phase (determining treatment outcomes) 
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This phase initiates the design of a noninvasive medical decision support system based on classifier models 

with the effective features identified in the patient’s state analysis phase. Classifier methods employed in 

this stage are among the popular and commonly used methods in heart disease patient data [34, 35]. 

Classification of the 30-day mortality was trained and evaluated using individual methods of ML learning 

models. Specifically, 80% of the data (160 patients) were considered for the training dataset, and 20% of 

the data (41 patients) for the test dataset. 

3.4.1 Individual ML Algorithms 

Classification is the process of labeling a specific dataset with different classes, applicable to both structured 

and unstructured data. The goal of classification prediction modeling is to estimate the mapping between 

input variables and discrete output variables. While various classification algorithms exist, determining the 

superior algorithm depends on the problem scope and dataset characteristics [33]. 

Several classic classification methods have been utilized to compare results with the proposed architecture. 

Given their familiarity, these methods will be briefly introduced. 

3.4.1.1 Logistic Regression 

Logistic regression, a widely used ML method falling within the category of supervised learning, predicts 

a categorical dependent variable based on a set of independent variables. For example, it is employed to 

extract statistically significant cases from the model or predict data trends [34, 35]. The dependent variable 

in logistic regression is a binary variable, with data coded as 1 (e.g., Yes, Success) or 0 (e.g., No, Failure).  

3.4.1.2 Support Vector Machine  

Support Vector Machine (SVM) stands as a formidable classifier situated within the supervised ML domain, 

adeptly employed for both classification and regression tasks. This algorithm proficiently partitions data 

into distinct categories through the utilization of hyperplanes. SVM showcases prowess in handling multi-

dimensional data and effectively managing complex datasets [36]. 

3.4.1.3 Random Forest  

Random Forest stands as one of the methods for classifying datasets, representing an advanced and widely 

used hybrid method within supervised classification. In this method, a large number of decision trees are 

constructed for various datasets during the training phase. In the testing phase, each tree within this set 

assigns a class label to individual data points. Subsequently, following the prediction of class labels by each 

tree, the final decision for each data point is determined by a majority vote among the members of the tree 

set. The class label garnering the highest number of votes is deemed the correct label for the test data, 

thereby enhancing prediction accuracy. This methodology is applied to each data point within the dataset 

[28]. 

 

3.4.2 Decision Component 

 

In the feature selection phase, the identification of factors influencing a patient's condition entails the 

analysis of 34 parameters pertaining to the patient's health status. Subsequently, in the decision phase, 

treatment outcomes were determined utilizing ensemble-based ML algorithms. The decision component 
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implies ML techniques in their hierarchical approaches to create a suitable model for effective referral 

system.   

The following section outlines the main approach to combining ML techniques and then proposes a method 

for decision-making systems (DS). 

 

3.4.2.1 Hybrid ML Algorithms 

 

Hybrid ML methods, or group models, constitute a subset of  ML methods wherein several models, referred 

to as weak learners or base models, are trained to solve a problem and subsequently combined to yield 

improved results [28]. When appropriately amalgamated, weak models can generate models boasting higher 

accuracy and more precise predictions. The hybrid methods employed in this research encompass 

averaging, weighted averaging, majority voting, and gradient boosting machine (GBM). 

For example, GBM Model stands as one of the ML algorithms developed based on decision trees. 

Leveraging the gradient descent method alongside a set of decision trees, this algorithm comprehensively 

grasps the intricacies of the training data, thus delivering enhanced performance in predicting new data. In 

the GBM model, a decision tree is initially constructed, and predictions are made for the training data 

accordingly. Subsequently, prediction errors are computed for each training sample, and a new tree is 

generated with the objective of minimizing this error via the gradient descent method. This iterative process 

is repeated frequently to derive the optimal prediction model. Within the GBM model, each decision tree 

is bestowed with a weight denoted as the learning rate coefficient. This weight allocates varying degrees of 

contribution to the final prediction of the model for each decision tree. Additionally, this algorithm employs 

the regularization method as a means to forestall overfitting and reduce model complexity [37].The GBM 

model finds widespread utility across diverse ML applications owing to its commendable performance and 

stability. 

The component of combining for DS to select an appropriate therapeutic behavior is modeled according to 

Figure 2. Initially selected features enter the combination phase, aiming to construct a fitting ensemble of 

models. Subsequently, the output results of the model are entered into the behavior selection component in 

the form of a probability distribution vector, upon which an appropriate outcome is determined. Feature 

selection is formulated as Equation (1). 

 

 

Figure 2. General structure of decision-making component 

 

To select appropriate therapeutic behavior for a patient, the parameters of the patient's condition, extracted 

from the stages, are applied to a hierarchical combined model. This model, with an appropriate combination 

of well-known ML algorithms such as Logistic Regression, SVM, and RF, creates a suitable hierarchical 

structure for predicting therapeutic behavior. To create an appropriate combination, based on the selected 

features, considering Equation (3), function H, which is a combinatorial function of ML algorithms for 

selecting appropriate combinations and predicting outcomes, generates the best suitable combination. In 

this function, various combinations of ML algorithms, are performed, and based on the appropriate output, 

the suitable combination is chosen.  MLs in this Equation represents the selected set of algorithms for 
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creating suitable combinations. and HMLs represents a subset of MLs which are selected for Hybrid Model. 

Also, Function H, returns the best combination of HMLs. 

arg ( ),HMLs MLsHMLs Max H HMLs where=                                                         (3) 

arg ( ) : { : ( ) ( _ ) _HMLs MLsMax H HMLs HMLs MLs H HMLs H HMLs for HMLs MLs =     

In this component, based on conducted studies, RF, SVM, and Logistic Regression models have been 

selected as the candidate ML models for creating an ensemble model. Then, based on the selected 

appropriate features in the feature selection phase, a combination of these ML models that produces the 

best result is used as the final model. 

Moreover, to model uncertainty in predicting therapeutic behavior, Equation  )4) is utilized. In this equation, 

firstly, according to Equation (5), the outputs of the ML models are filtered, then by creating a probability 

distribution, the appropriate option for therapeutic behavior is selected. 

( ) : Pr( | )id choose h d h h= = =                                                                                            (4) 

In this equation, ℎ is the hypothesis vector of different models, which represents the accuracy (probability 

distribution) of the models. The function Pr also calculates the probability of selecting each hypothesis 

based on the probability distribution of each one (ℎ𝑖).  

: { : }i ih h H h  =                                                                                                               (5) 

Accordingly, in the hybrid modeling stage, the output results of each model are expressed as a probability 

function, and then a continuous probability distribution is created. This distribution function is employed 

in Equation (4), and the final result is presented for selecting therapeutic behavior. For cases where the 

probability function is discrete, the categorical distribution (as stated in Equation (6)) is used to create the 

distribution function and apply it in Equation (4). 

[ ]

1( ) k x i

i if x P P =

= =                                                                                                                               (6) 

In this Equation, x represents the desired therapeutic behavior to be selected given the probability 

vector(𝑃). The probability vector p consists of output results from models used in the hybrid stage. 

 

4. Data Analysis and Results 

 

Various assessment criteria were utilized in this study, including precision, F1 score, accuracy, and recall. 

These metrics were derived from the confusion matrix to assess the effectiveness of 30-day mortality 

prediction techniques. The confusion matrix enables researchers to evaluate the performance of 

classification models based on four key factors: true positive (TP), false positive (FP), true negative (TN), 

and false negative (FN). Enhanced identification of high-risk 30-day mortality cases by the model reflects 

its precision [38-41]. 

• True Positives (TP): The number of samples correctly predicted as positive. 
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• True Negatives (TN): The number of samples correctly predicted as negative. 

• False Positives (FP): The number of samples incorrectly predicted as positive. 

• False Negatives (FN): The number of samples incorrectly predicted as negative. 

The specificity measures how precise is attribution to the positive class, which is calculated by the equation 

(7): 

TN
specificity

TN FP
=

+                                                                                                  (7)  

Accuracy can be calculated by the Equation (8): 

( )

TP TN
Accuracy

TP FP TN FN all data

+
=

+ + +
                                                                (8) 

Precision, known as the sum of properly identified cases, refers to the ratio of patients for whom 30-day 

mortality has been prognosed and actually have the risk of mortality. Precision is calculated by Equation 

(9): 

Pr
TP

ecision
TP FP

=
+                                                                                                       (9) 

Recall and F1 score are calculated by Equations (10) and (11) respectively in which F1 score represents the 

harmonic mean of Precision and Recall. 

Re
TP

call
TP FN

=
+                                                                                                              (10)  

2 Pr Re

Pr Re

ecision call
F Measure

ecision call

 
− =

+
                                                               (11) 

For performance evaluation, a comparison is made between individual models such as SVM, RI, RF, and 

ensemble models such as AVERAGE, WEIGHTED AVERAGING, MAJORITY VOTING, along with 

the proposed method using the aforementioned criteria to demonstrate the effectiveness of the proposed 

model [42-44]. 

The programming codes utilized in this study were derived from the R programming language version 4.2.2 

in the R Studio environment, serving as a robust tool for ML processes. Appropriate packages were 

employed for the implementation of individual and group models. Additionally, confusion matrices and all 

Receiver Operating Characteristic (ROC) curves were generated using R software. 

 

4.1 Dataset 
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The dataset comprised information from 201 patients, each with 34 features (see Appendix), and their 

respective 30-day mortality rates. These patients, aged above 18 years, were diagnosed with HF and 

developed cardiogenic shock at the time of referral to Babol Rouhani Hospital. Comprehensive 

demographic, clinical, and preclinical data were collected via detailed questionnaires, while one-month 

mortality outcomes were investigated through phone interviews. A census sampling method was employed 

for data collection. This study, conducted in 2020, constituted a prospective cohort analysis focusing on HF 

patients exhibiting cardiogenic shock symptoms upon admission. 

Patient information, including demographic details, clinical records, and para-clinical data, was 

meticulously recorded in predefined checklists. Both intrahospital and 30-day mortality rates were 

ascertained through subsequent phone inquiries. Inclusion criteria encompassed patients above 18 years 

with HF and cardiogenic shock manifestations at the time of referral or during hospitalization. Table 1 

provides a comprehensive overview of the dataset, with output features classified into two categories, 

indicating 30-day mortality and improvement of HF symptoms with cardiogenic shock manifestations. 

The R programming language, executed within the R Studio environment, served as a robust tool for feature 

selection, model development, and analytical evaluation. Findings are presented in accordance with the 

research stages. A cohort of 201 HF patients experiencing cardiogenic shock was identified from the cardiac 

emergency ward of Babol Rouhani Hospital. The mean age of the study population was 69.44±15.71 years, 

with 47.7% mortality and 52.3% survival rates observed. Gender distribution revealed 57.2% male and 

42.8% female patients. Notably, mortality rates among men and women were 45.2% and 51.17%, 

respectively, while survival rates were 54.8% and 48.83%, as shown in Table 2. 

Table 2. The frequency percentage of the prediction variable in terms of gender 

 

 

4.2 Experiments 

Based on the fundamental components of the proposed method, including the selection of appropriate 

features and the selection of suitable therapeutic behavior, experiments evaluating the proposed method 

have been conducted in two groups. In the first experiment, the issue of selecting appropriate features has 

been explored. In the second experiment, the creation of a hierarchical composite model has been examined.  

 

4.2.1 Feature selection 

Feature extraction is crucial for identifying relevant variables and eliminating redundant ones in datasets. 

Our goal in feature selection is to pinpoint key factors among HF patients with cardiogenic shock.  

Partial dependency analysis in databases plays a pivotal role in understanding the intricate relationships 

between variables. This type of dependency unveils how a variable directly influences one or more others 

within the dataset, disregarding external factors. Such insights are indispensable for meticulous data 

analysis and elucidating the underlying relationships within databases [45].  
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Figure 3, illustrates the partial dependence of numerical variables on the 30-day mortality of patients with 

HF and cardiogenic shock in the cardiac emergency ward of Rouhani Hospital. Notably, increasing age 

(above 57 years) correlates with higher 30-day mortality rates. This trend is particularly evident in HF 

patients with cardiogenic shock. Moreover, elevated systolic blood pressure above 75, and diastolic blood 

pressure above 50, are associated with increased mortality risks compared to their respective lower 

thresholds. Additionally, the risk of 30-day mortality exceeds 20% for the LVEF feature. Figure 3, further 

underscores the inverse relationship between hospitalization duration and 30-day mortality risk. Delayed 

hospital arrival exacerbates mortality risks, while a decrease in pH below 3.7 and elevated lactate levels 

above 2 are also linked to heightened mortality risks. Notably, a study by Davoodian et al. titled 'The Time 

and Causes of Mortality in Acute Myocardial Infarction with Cardiogenic Shock' highlights age, time of 

hospital arrival, high lactate levels, and elevated systolic blood pressure as key factors influencing 

mortality[46]. 

Figure 3. Partial dependence of the numerical variables on mortality of patients 

 

 

The feature selection algorithm RFE has been configured to examine all possible subsets of features. All 

34 features have been included in this study. However, while Figure 4 provides an overview of the impact 

of all 34 features on the 30-day mortality of patients, it is noteworthy that only five features produce results 

that are reasonably comparable, which can lead to more accurate predictions. 

Figure 4. The diagram of accuracy of effective feature selection 

 

Figure 5, indicates the diagram ranking five features selected in the feature selection model via Recursive 

Feature Elimination (RFE) method. The confusion feature has been identified as the most important one, 

followed by age of patients, and then CABG, Lactate, and Na. 

Figure 5. The bar chart of ranking the features affecting the 30-day mortality prediction 

 

4.2.2 Hierarchical ensemble 

In this section, the proposed model is applied to the selected features (with an exception of using main 

feature in table 3 for performance evaluation) from the previous section, and its results are evaluated against 

each of the compared models. 

Table 3 illustrates that individual models predicting 30-day mortality with the main features, such as SVM 

and RF, exhibited the best performance, achieving an accuracy score of 0.79. Furthermore, the Precision 

values for SVM and RF were 0.93 and 0.80, respectively. While Accuracy serves as a fundamental measure 

of a classifier's quality, it does not distinguish between false negatives (FN) and false positives (FP). In the 

context of managing cardiogenic shock patients, a higher value of FP is more valuable. According to 

Formula (17), a lower Precision value for individual models indicates better performance. Therefore, it can 
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be concluded that the RF model outperformed the SVM model in predicting 30-day mortality in patients 

with cardiogenic shock using the main features.   

Table 3. Comparison of the performance evaluation criteria of 30-day mortality prediction models with principal 

characteristics 

 

The findings of 30-day mortality prediction of individual models (not combined) with the selected features 

are summarized in Table 4. It indicates that in the individual models predicting the 30-day mortality, the 

highest accuracy and precision is associated with the SVM model, with a value of 0.80. The highest F1 

score value is observed in the SVM model, with a value of 0.83. Thus, based on the findings presented in 

Table 4, it can be concluded that the SVM individual model provides the best 30-day mortality prediction 

for each patient with cardiogenic shock using effective features.  

Table 4. Comparison of performance evaluation criteria  of the 30-day mortality prediction models with individual 

models 

 

The evaluation of the proposed methods in Table 5 reveals that in the ensemble models for predicting 30-

day mortality, the highest balanced accuracy is associated with the proposed model, measured at 0.87. 

Similarly, the proposed model exhibits the highest precision, with a value of 0.95. Additionally, the 

proposed model achieves the largest F1 score value, calculated at 0.86. Consequently, the proposed 

ensemble model emerges as the most effective predictor of 30-day mortality among patients with HF and 

cardiogenic shock using the identified features.  

Table 5. Comparison of the performance evaluation criteria of the 30-day mortality prediction models of the 

ensemble models with effective features 

 

The comparison presented in Table 6 evaluates the components of the evaluation criteria for the prediction 

of 30-day mortality between two models: SVM, an individual ML algorithm, and Proposed Model which 

is an ensemble-based ML algorithm. The results demonstrate an enhancement in system performance 

during the determination of patient therapeutic behavior phase when utilizing the proposed ensemble 

method as the optimal model with highest accuracy (86.0%). 

Table 6. Comparison of the performance evaluation criteria of the individual SVM model with Proposed model 

 

Figure 6 depicts comparison of the two confusion matrices reveals that in the Proposed Model, there are 

more false positives (FP) compared to the SVM method, indicating that patients receive more therapeutic 

interventions due to more FP in the Proposed Model, indicating increased detectability of the risk of death 

with Proposed Model. Consequently, enhancing awareness among healthcare providers regarding 

subsequent therapeutic actions enhances accuracy, thereby leading to improved outcomes for patients with 

cardiogenic shock. 
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Figure 6. Comparison of the confusion matrix of SVM, individual model, and the proposed model in decision-

making phase 

 

The ROC Curve is a crucial tool for evaluating classification model performance, illustrating the 

relationship between TP Rate and FP Rate. TP Rate represents correctly identified positive samples, while 

FP Rate indicates negative samples incorrectly identified as positive. A curve moving upwards and towards 

the left signifies better model performance. The Area Under the Curve (AUC) reflects model performance, 

with a larger AUC indicating better performance. This curve serves as a powerful tool for comparing and 

selecting the best classification model, aiding in the evaluation of classification algorithms. 

According to Fig. 7, in ensemble models 30-day mortality prediction with effective features, the proposed 

model emerges as the optimal model with the highest accuracy (0.86). The ROC plot is a valuable measure 

for evaluating classifier performance, providing insights into the performance of each algorithm. 

Figure 7. Comparison of the ROC curve for individual models and ensemble models predicting the 30-day mortality 

 

Figure 7 illustrates a comparison of the area under the curve (AUC) for individual and ensemble models 

predicting 30-day mortality based on effective features. The ROC values for the individual models in 

predicting 30-day mortality for HF patients with cardiogenic shock manifestation using the effective 

features were 0.88 for logistic regression, 0.85 for RF and 0.85 for SVM, respectively, with the SVM 

showing the highest accuracy among individual models based on Table 4. Regarding the ensemble models, 

the Proposed Model achieved the highest ROC value of 0.88, indicating superior performance. These 

findings suggest that while the use of ensemble models enhances system prediction accuracy during patient 

state analysis, there is minimal difference in the ROC index between the SVM individual and Proposed 

ensemble models. The results in Figure 8 compare the ROC curves of two of the most optimal models, 

SVM and Proposed Model, in the decision phase, showing that with an increase of 3% in Proposed Model, 

it is accompanied by an improvement in performance. 

Figure 8. ROC curve comparison for two SVM and Proposed Model in the decision-making phase 

 

 

5. Discussion and Analysis 

In today's medical research landscape, accurately predicting mortality in heart patients is a crucial endeavor, 

leading researchers to explore various classification methods. Our study employs meticulous feature 

selection from the dataset, including confusion, age, CABG, lactate, and Na, are selected from a pool of 34 

main features, employing a hybrid approach rooted in recursive feature elimination (RFE) to identify critical 

features. Evaluation of these models is based on key performance metrics such as accuracy, specificity, F1 

score, and precision. In our study, we applied SVM, Logistic Regression (LR), and RF classifiers, achieving 

accuracies of 0.79, 0.76, and 0.79, respectively. However, recognizing the potential for improvement, we 

turned to ensemble learning techniques, which involve combining results from different classifiers. 
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There are several methodologies to model and analyze uncertainty in areas such as logistics, Covid-19 

pandemics, and energy so that prediction and robustness were aimed [47, 48, 49, 50]. Ensemble learning 

has gained attention for its ability to strengthen weaker classifiers, making them more accurate. Unlike 

using a single algorithm, ensemble methods leverage a mix of classifiers, each contributing its strengths. 

By carefully selecting these classifiers and how they're combined, ensemble methods can produce more 

accurate predictions. Our study focused on two key stages: selection of effective features and developing a 

hierarchical ensemble model for enhancing system performance in selecting an appropriate therapeutic 

behavior. 

There are several ensemble methods available, each with its advantages, such as bagging, stacking, 

boosting, voting, and averaging. Our study addressed a common issue in medical decision support systems: 

while many prioritize accuracy, they often ignore uncertainty. To tackle this, we proposed a new ensemble 

method that not only boosts accuracy but also considers uncertainty. 

Our hybris hierarchical approach involved combining different classifiers, leveraging each one's strengths 

while compensating for their weaknesses. We also introduced a new way to combine their results, aiming 

for both high accuracy and acknowledging uncertainty. Comparing our ensemble method to individual 

classifiers and previous studies showed significant improvements in classification results, leading to 

selection of suitable therapeutic behavior. 

Implementing our improved algorithm demonstrated its effectiveness, achieving an accuracy of 0.86 

compared to the existing algorithm's 0.79. Notably, our ensemble method outperformed individual 

classifiers, highlighting its potential to enhance classification models. This reinforces the value of ensemble 

learning techniques in improving predictive accuracy in medical research, particularly in predicting 

mortality in HF patients with cardiogenic shock. 

 

6. Conclusion 

In conclusion, optimizing the referral system for providing medical services to cardiac patients with 

cardiogenic shock manifestation under uncertainty is essential for improving patient care and reducing 

mortality rates. Through the application of ML techniques, this study has successfully identified key 

predictive factors and developed accurate prognostic models for 30-day mortality prediction. By leveraging 

feature selection and ensemble modeling, particularly the proposed model, we have demonstrated the 

efficacy of ML algorithms in accurately predicting mortality outcomes with high accuracy. 

The integration of these predictive models into clinical decision-making processes offers valuable support 

for healthcare providers, enabling informed treatment strategies, resource allocation, and patient 

prioritization. By streamlining predictors and optimizing patient management protocols, ML models 

facilitate efficient and effective healthcare delivery in emergency cardiac settings. 

Looking forward, future research endeavors should focus on advancing predictive analytics and 

personalized medicine approaches in managing cardiogenic shock in HF patients. By refining predictive 

models and incorporating real-time clinical data streams, healthcare providers can enhance the accuracy 

and timeliness of mortality predictions, thereby improving patient outcomes. Furthermore, ongoing 

interdisciplinary collaborations between clinicians, data scientists, and healthcare stakeholders are crucial 

for driving innovation and translating research findings into clinical practice. By harnessing the power of 

artificial intelligence and emerging technologies, such as deep learning and precision medicine, we can 

tailor interventions to individual patient profiles and optimize treatment strategies. 
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In summary, by embracing technological advancements and fostering collaboration across disciplines, we 

can pave the way for a future where cardiac patients receive timely and personalized medical services, 

leading to improved quality of life and better health outcomes. 

Since patient mortality in cardiogenic shock is linked to hospitalization days, early discharge increases 

mortality risk. Future studies should evaluate predictive factors for post-discharge mortality in cardiogenic 

shock patients to enhance post-discharge patient outcomes. Additionally, predicting mortality risk in other 

HF groups using ML algorithms is recommended for further research. 
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No. 
Variable’s name Variable’s type 

Variable’s 

scale 
Variable’s role Measurement unit Descriptions 

1 Mortality Qualitative Nominal Dependent Yes/No Intrahospital death + 30-day death 

2 Systolic blood 

pressure 

 

Continuous 

quantitative 
Ratio Independent mmHg Min=55, max=89, mean=81 

3 Diastolic blood 

pressure 

 

Continuous 

quantitative 
Ratio Independent mmHg Min=30, max=71, mean=53.26 

4 
Pulse rate 

Discrete 

quantitative 
Ratio Independent  Min=71, max=178, median=97 

5 
Cardiac rhythm Qualitative Nominal Independent 

Sinusoidal/non-

sinusoidal 
1(N=121),2(N=80) 

6 Cold extremities Qualitative Nominal Independent Yes/No Yes (N=193), No (N=8) 

7 Igory Qualitative Nominal Independent Yes/No Yes (N=112) – N0 (N=89) 

8 Confusion Qualitative Nominal Independent Yes/No Yes (N=128), No (N=73) 

9 
LVEF 

Continuous 

quantitative 
Ratio Independent % Min=5, max=45, mean=21 

10 
LVEDD 

Continuous 

quantitative 
Ratio Independent Mm Min=38, max=91, mean=58 

11 
Na 

Discrete 

quantitative 
Ratio Independent Mmol/L Min=113, max=160, mean=134 

12 
K 

Discrete 

quantitative 
Ratio Independent Mmol/L Min=2.6, max=7.1, mean=4.4 

13 Arterial blood 

lactate 

Discrete 

quantitative 
Ratio Independent Mmol/L Min=0.8, max=15, mean=3.5 

14 
Arterial blood pH 

Continuous 

quantitative 
Ratio Independent  Min=6.8, max=7.5, mean=7.3 

15 
Cr 

Continuous 

quantitative 
Ratio Independent Mmol/L Min=0.9, max=6.2, mean=2.13 

16 Time taken from 

initiation of 

clinical symptoms 

until arriving at 

hospital 

Discrete 

quantitative 
Ratio Independent Minute 

Hospitalized 0-(64) up to 3(58) – 3 up 

to 6 (32) – 6 to 12 (21) – 12-24 (17) – 

more than 24 (6) 

17 
Duration of 

hospital stay 

Discrete 

quantitative 
Ratio Independent Day 

Minimum days of hospitalization (1 

day) – Maximum days of 

hospitalization (37 days) 

18 Type of received 

inotrope 
Qualitative Ratio Independent Three groups 

Group I (N=33), Group II (N=146), 

Group III (N=23) 

19 Duration of 

received inotrope 

Discrete 

quantitative 
Ratio Independent Days Min=1, max=9, mean=7 
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No. 
Variable’s name Variable’s type 

Variable’s 

scale 
Variable’s role Measurement unit Descriptions 

20 
MSI 

Continuous 

quantitative 
Ratio Independent  Min=1.73, max=7.45, mean=3.80 

21 
Shock Index 

Continuous 

quantitative 
Ratio Independent  Min=0.86, max=2.20, mean=1.22 

22 
Age 

Discrete 

quantitative 
Ratio Other Years Min=19, max=96, mean=69 

23 Gender Qualitative Ratio Other Male/female Male (115) – Female (86) 

24 History of 

coronary artery 

disease 

Qualitative Nominal Independent Yes/No Yes (113) – No (88) 

25 History of MI Qualitative Nominal Independent Yes/No Yes (78) – No (123) 

26  PCI Qualitative Nominal Independent Yes/No Yes (46) – No (155) 

27  CABG Qualitative Nominal Independent Yes/No Yes (29) – No (172) 

28 Hypertension Qualitative Nominal Independent Yes/No Yes (105) – No (96) 

29 
Kidney failure Qualitative Nominal Independent Yes/No 

 

Yes (25) – No (176) 

30 Diabetes Qualitative Nominal Independent Yes/No Yes (61) – No (140) 

31 Asthma Qualitative Nominal Independent Yes/No Yes (16) – Np (185) 

32 Atrial fibrillation Qualitative Nominal Independent Yes/No Yes (77) – No (124) 

33 Stroke Qualitative Nominal Independent Yes/No Yes (20) – No (181) 

34 Ischemic Qualitative Nominal Independent Yes/No Yes (113) – No (88) 
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Figure 1. The diagram of the research stages 

 

 
Figure 2. General structure of decision-making component 
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Figure 3. Partial dependence of the numerical variables on mortality of patients 

 
 

 
Figure 4. The diagram of accuracy of effective feature selection 
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Figure 5. The bar chart of ranking the features affecting the 30-day mortality prediction 
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Figure 6. Comparison of the confusion matrix of SVM, individual model, and the proposed model in decision-

making phase 
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Figure 7. Comparison of the ROC curve for individual models and ensemble models predicting the 30-day mortality 
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Figure 8. ROC curve comparison for two SVM and Proposed Model in the decision-making phase 

 

 

Table (1) literature review table 

Authors Novel Approach Effective Features Disease & Dataset 

Nicolai 2022[12] LASSO, Random Forest, 

Gradient Boosted Tree, SVM, 

Elastic Net 

Age, Glasgow coma score, 

Glasgow coma score, PH, lactate, 

Bilirubin 

Heart Shock - MIMIC-IV 

Rahman F 2022[13] logistic Regression, Random 

Forest, KNN, Decision tree, 

SVM, LDA. 

Age, systolic blood pressure, 

heart rate, temperature, blood urea 

nitrogen, sodium, oxygen 

saturation, venous pH, 

hemoglobin, white blood cell 

count, hydralazine use, trend of 

respiratory rate, and trend of 

systolic blood pressure were 

associated with risk of developing 

CS 

 

24,461 heart failure 

patients, 256 patients 

of cardiogenic shock 

Rong F 2022[14] Least Absolute Shrinkage and 

Selection Operator (LASSO), 

Cox Boost model 

Age, heart rate, SBP, DBP, 

respiratory rate, temperature, 

SpO2, WBC count, RDW INR, 

PT, anion gap, bicarbonate, blood 

lactic acid, serum urea nitrogen, 

and tumor 

919 patients from MIMIC-III 

Affiliated and Hospital 

Yuying Medical University 

Children's Hospital of 

Wenzhou 

Xin Li MD 2016[15] Statistical analysis Age, Blood Glucose Heart Beat  

Cardiogenic Shock,253 

patients 

Krittanawong C 

2021[16] 

Random Forest, SVM, Decision 

tree, KNN, Boosting 

Chronic kidney disease  

severe mitral regurgitation 

Chang Y 2022[17] XGB, Multiple Layer Perceptron Age, Sex, Troponin, Glucose, 

Low Body Temperature, Lower 

pulse pressure 

 

Cardiogenic Shock, EHR 
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Awan SE 2019[18] Random Forest, SVM, logistic 

Regression 

Age Hospitalization period, 

Hospitalization period, chronic 

kidney disease 

 

Heart Failure, HMDC 

Alotaibi 2019[20] Random Forest, Decision tree, 

logistic Regression, SVM, Naïve 

Bayes 

Predict of heart disease without 

feature selection 

303 patients collected from 

Kaggle platform 

Atallah R  2019[22] LR, RF, KNN, SGD, Hard voting 

ensemble model 

No mention of feature selection 

Limited to one dataset 

Cleveland Clinic Foundation 

Heart Disease dataset 

Current Study Feature selection, hybrid model 

with a hierarchical approach 

Age, History of open-heart 

surgery, Confusion, Lactate level, 

Na 

 

Cardiogenic Shock,201 

patients 

 

 

 

Table 2. The frequency percentage of the prediction variable in terms of gender 

Sex Alive Mortality Total 

Male % 54.8 % 45.2 % 57.2 

Female % 48.83 % 51.17 % 42.8 

 

 

 

 

Table 3. Comparison of the performance evaluation criteria of 30-day mortality prediction models with principal 

characteristics 

Index Logistic regression RF Model SVM Model 

Specificity 0.91 0.86 0.65 

Precision 0.75 0.80 0.93 

F-measure 0.92 0.83 0.76 

Accuracy 0.76 0.79 0.79 

ROC 0.83 0.85 0.89 

 

 

Table 4. Comparison of performance evaluation criteria  of the 30-day mortality prediction models with individual 

models 

Index Logistic regression RF Model SVM Model 

Specificity 0.72 0.61 0.72 

Precision 0.79 0.74 0.80 

F-measure 0.80 0.80 0.83 

Accuracy 0.78 0.75 0.80 

ROC 0.88 0.85 0.85 
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Table 5. Comparison of the performance evaluation criteria of the 30-day mortality prediction models of the 

ensemble models with effective features 

Index Average Model Majority model Weighted 
Average model 

Proposed 
Model 

Specificity 0.72 0.72 0.72 0.94 

Precision 0.79 0.8 0.79 0.95 

F-measure 0.81 0.83 0.81 0.86 

Balanced Accuracy 0.77 0.80 0.78 0.87 

 

 

Table 6. Comparison of the performance evaluation criteria of the individual SVM model with Proposed model 

Index SVM Model Proposed Model 

Specificity 0.72 0.94 

Precision 0.8 0.95 

F-measure 0.83 0.86 

Accuracy 0.8 0.86 

ROC 0.85 0.88 
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