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In today's competitive business environment, companies need to manage their limited resources. The Multi-Floor 

Facility Layout Problem (MFLP) is an approach to managing limited space and budgets. The goal of MFLP is to 

determine the placement of facilities in a multi-floor building without any overlapping with the aim of minimizing 

costs. In this study, a Multi-floor Multi-row Facility Layout Problem (MFMRFLP) model is proposed. The proposed 

model presented an MFLP with a multi-row layout on each floor. Besides the layout of the facilities, the model also 

determines the elevator location based on both horizontal and vertical movements. Since the problem is NP-hard, a 

genetic algorithm (GA) was also employed to solve the problem. The proposed GA is compared against an exact 

method to evaluate their performances. The results demonstrate the GA's efficiency in solving the MFMRFLP within 

a reasonable timeframe, outperforming the exact method, particularly in large-scale instances. Specifically, the GA 

achieved optimal or near-optimal solutions, showing its superior performance in solving complex, real-world facility 

layout optimization problems.  

 

Keywords: Facility layout, Multi-Row Facility Layout Problem, Multi-Floor Facility Layout Problem, Genetic 

algorithm, nonlinear programming, material flow. 

 

1. INTRODUCTION 

The Facility Layout Problem (FLP) is a critical issue in manufacturing management intended to find an optimal 

configuration for a set of facilities to minimize the overall cost associated with predicted interactions between 

facilities [1]. A multi-level or multi-floor layout problem (MFLP) is a type of FLP that seeks to locate the position 

of each facility on each factory floor without overlapping between facilities to optimize a specific objective function, 

usually the sum of material flow costs [2]. 

     

          MFLP is a central problem in facility design, which can be a solution to issues like limited available space, 

high material handling costs, limited capacity of transportation means, air conditioning problems, traffic problems, 

and accessibility to facilities [3]. Environmental considerations and other pertinent criteria are occasionally 

considered when planning multi-floor structures. For example,  in tropical regions, the efficiency of air-conditioning 

systems is expected to be higher in multi-floor buildings compared to those with a single floor. [4]. According to 
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experts' estimations, applying improper layout is likely to result in the loss of more than 65% of the system's 

efficiency. Moreover, facility design and material handling account for a significant portion, ranging from 20% to 

50%, of the total operating expenses in the manufacturing sector. [5]. Nowadays, due to the generally expensive 

land supply, the utilization of multi-floor buildings in facility layout is deemed more favorable compared to single-

floor structures [6]. In many situations, the land is limited in supply or very expensive; hence, it is more efficient to 

construct the facility in a multi-floor building [6].   

          This research presents an MFLP model with a multi-row layout on each floor. In other words, each floor is 

used to arrange in a multi-row layout structure. The multi-row facility layout problem (MRFLP) determines the 

arrangement of facilities in a fixed number of rows to minimize materials transportation costs [7]. MRFLP can be 

applied in a variety of real-world situations. It is a common form of layout problem which may be used with most 

layouts and material-handling equipment [8]. The layout problem literature is rather extensive; however, more 

research is needed in the field. Surprisingly, the existing literature does not encompass research on MFLP with a 

multi-row configuration on each floor. To fill this research gap, the present work has proposed a new model. 

 

         The combination of MFLP and MRFLP to arrange the facilities in several rows on each floor of the factory 

is the underestimated issue of this case to achieve the optimal solution of minimum material handling costs. The 

main purpose of this study is to provide a Multi-Floor Multi-Row Facility Layout Problem (MFMRFLP) with 

unequal area facilities that intend to minimize the material flow cost between facilities and elevators or among the 

facilities themselves. The combination of MFLP and MRFLP has not been considered before, furthermore, the 

location of the elevator is another decision variable which has not been worked on before. Given the NP-Hard 

nature of the problem and the limited computational feasibility of exact methods in achieving timely solutions, this 

research introduces a Genetic Algorithm (GA) approach to address the model. In the proposed model, the location 

of the elevator is also a decision variable. Since the problem is NP-Hard and the exact methods are incapable of 

solving the model in a reasonable time, a GA approach is proposed to solve the model.. In this context, our 

research seeks to address the following research questions: 

1. How does the incorporation of multi-row layouts within multi-floor structures contribute to improved 

space utilization and material flow efficiency? 

2. What factors influence the optimal placement of elevators to facilitate efficient horizontal and vertical 

material movements in the MFMRFLP? 

3. How does the proposed GA solution approach compare to traditional exact methods in terms of 

computational efficiency and solution quality when applied to the MFMRFLP? 

Here the aim is to provide practical solutions that address the real-world complexities faced by industries operating 

in multi-floor environments. Through a combination of theoretical modeling and numerical examples based on real-

world cases, we demonstrate the effectiveness of our approach in optimizing facility layouts and improving 

operational efficiency. 
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          The rest of the paper is organized as follows. Section 2 is devoted to a literature review. Next, the proposed 

model and the solution approach are presented. Computational results are shown in the next section, and managerial 

implications are then provided. Finally, conclusions and future research directions are provided. 

2. LITERATURE REVIEW 

This section provides a literature review on MRFLP and MFFLP separately, including the background research 

conducted on FLP in the past decade. Finally, the findings and key insights from the literature review are summarized 

(Table 1). 

2.1 Multi-Row Facility Layout Problem 

There are three different types of facility layouts based on the space allocated to the facilities: one-dimensional, two-

dimensional, and three-dimensional layout problems. Single Row Layout Problem (SRLP) is a one-dimensional 

layout problem and seeks to locate the facilities given along a single row to minimize the material handling cost [9]. 

Initially, the MFLP is solved using a hybrid version of the Dantzig-Wolfe decomposition algorithm [10] An inquiry 

into the dynamic extended row facility layout problem is conducted, considering the dynamic nature of the 

manufacturing process [11]. 

          MRLP is an extension of SRLP. In the MRLP, a set of rectangular facilities, a fixed number of rows, and 

weights assigned to each pair of departments are considered. The objective is to determine an assignment of 

departments to rows and their positions within each row to minimize the total weighted sum of the center-to-center 

distances between all pairs of departments. This problem seeks an optimal layout solution that minimizes the overall 

interaction costs among departments. The MRLP addresses the complex task of efficiently organizing departments 

in a multi-row facility layout while considering the spatial relationships and interdependencies between them [12]. 

Aims to provide improved solutions to an MRLP model of prefabricated factories in the construction industry, Chen, 

Huy, Tiong, et al. proposed a simulation-based non-dominated sorting GA[13]. MRFLP is the primary layout 

problem that determines how to design facilities in order to cut down the materials transportation cost. Koosha and 

Safarzadeh presented a mixed-integer programming model with fuzzy constraints, and then solved it with the genetic 

algorithm [7]. Dickey and Hopkins used TOPAZ to provide a solution to the arrangement of buildings on a university 

campus [14].  

           

Hungerländer and Anjos developed a semidefinite relaxation technique to address the discrete optimization 

formulation. They also demonstrated the applicability of their recent approach for the Space-Free Multi-Row Facility 

Layout Problem to a more general MRFLP. By constructing a semidefinite relaxation, they provided a method to 

efficiently tackle the optimization problem and extend the solution framework to accommodate the complexities of 

Multi-Row Facility Layout. This research contribution highlights the advancement in addressing layout optimization 

challenges by introducing a flexible approach that can handle various layout configurations and facilitate improved 
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decision-making processes [12]. Uribe, Herran, Colmenar, et al. focused on the Multiple Row Equal Facility Layout 

Problem (MREFLP) and proposed a Greedy Randomized Adaptive Search Procedure (GRASP) to select the solution 

[15]. Miao and Xu improved A hybrid algorithm which is the superposition of GA and Tabu Search [4] is proposed 

to solve the MRFLP [16]. Wan, Zuo, Li, et al. proposed an MRFLP with Extra Clearances. To address this problem, 

they proposed an approach that combines an enhanced multi-objective greedy randomized adaptive search procedure 

(mGRASP) with linear programming (LP) [17].  

 

2.2 Multi-Floor Facility Layout Problem 

Recently, the significance of expanding applied models for MFLP has a wide appeal among researchers. For the 

first time, Moseley was a pioneering researcher, concentrating his attention on MFLP [18]. He proposed a model in 

which facilities were permitted to be  in  predetermined locations on multiple floors [19].  

          Meller and Bozer presented a two-step approach in which the assignment of facilities to the floors is followed 

by layout determination of facilities on each floor [20]. Notably, some experimenters in designing multi-floor 

structures assumed that all departments have different shapes in three-dimensional space for chemical plants 

[21],[22],[23]. Kia and colleagues presented a mixed-integer programming model for addressing the dynamic multi-

floor layout design of cellular manufacturing systems (CMSs). [24]. Ahmadi and Akbari Jokar presented a multi-

stage mathematical programming method for multi-floor problems, which can also be applied to single-floor 

problems [2]. They used five nonlinear programming models and a mixed-integer programming model in the stages. 

Izadinia, Eshghi, and Salmani recommended a discrete MFLP that all departments were placed without any 

overlapping in predetermined locations with an elevator set [25]. Prior to this research, the focus was primarily on 

avoiding overlaps solely in continuous space layouts. The authors addressed this limitation by proposing a model 

that effectively handles overlapping restrictions in predetermined locations. Additionally, the authors introduced a 

robust approach for incorporating interval uncertainty in material demand, which had not been previously explored 

in the context of multi-floor layout problems [26]. 

          Some articles used a GA metaheuristic approach to solve MFLP. For instance, Kochhar and Heragu presented 

a GA-based metaheuristic method to optimize MFLP by generating block layouts [18]. Krishnan and Jaafari 

designed a Memetic Algorithm (MA). A comparative analysis was conducted between the proposed approach and  

a GA approach for large-scale test problems, as well as a LP solver solution for small-scale test problems [27]. 

Matsuzaki, Irohara, and Yoshimoto proposed a GA method for MFLP, considering the capacity constraint of the 

elevator [28]. Lee, Roh, and Jeong introduced an extension for GA to obtain solutions to MFLP featuring elevator 

characteristics. The proposed GA adopts a gene structure comprising a chromosome divided into five segments [29]. 

 

Insert Table 1 here. 
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         As maintained by our investigation of the MFLP literature, and a summary is provided in Table 1, this problem 

has attracted a lot of interest over the past few years. However, The absence of studies on MFLP, focusing on multi-

floor layouts and the arrangement of facilities across rows and floors, highlights a significant research gap warranting 

further investigation. MFMRFLP is an approach that can be adopted to fill the gap in the extant literature. To the 

best of our knowledge, there is no known published study investigating the MFMRFLP. 

 

3. MATHEMATICAL MODELING  

Here, a mathematical programming model for MFMRFLP is provided. In the proposed model, the placement of 

facilities in a factory is determined by minimizing the cost of material flow between facilities. The model also 

determined the optimal location of the elevator. Meanwhile, manufacturing the process can be performed on multiple 

floors, and the number of floors is also known. In this section, after expressing the assumptions, a nonlinear 

mathematical model is presented. Finally, the nonlinear model is converted to a linear one. 

 

3.1 Assumptions 

In this section, the mathematical model is formulated based on the following set of assumptions:     

1)  The travel distances between facilities are calculated using rectilinear distance. 

2) The center of each facility is considered as the coordinates of located facilities in the proposed layout. 

3) The origin is defined as the southwest corner of each floor.  

4) All facilities have rectangular shapes and overlapping is not allowed with another and the elevator set (none 

of the facilities are allowed to be located in an elevator area). 

5) It is assumed that the costs and time associated with material loading and unloading is disregarded. 

6) A minimum travel distance or clearance between the facilities and elevators has been considered. 
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3.2. Notations 

The related notations are illustrated below: (Measurements are in meters for distance and square meters for area) 

Indices Description 

i.j ∈ {1,2,…,I}  Facility index 

e ∈ {1,2,…,E} Elevator index 

I Total number of facilities  

E Total number of elevators  

Z Total number of floors   

Parameter Description 

𝑓𝑖𝑗     

 

The flow between facilities 𝑖 and j  
 

𝑑𝑖𝑗 
 

  

 

Minimum distance between facility 𝑖 and j  
 

  

𝐶ⅇ 

    

Cost per unit of vertical flow among the floors 

𝐶𝐻 
 
   

Cost per unit of horizontal flow on the floor 

 
   

The dimensions of facility i, length and width, respectively  

 

    

The dimensions of the elevator set, respectively, length and 

width 
 

 
   

Length and width of each floor, respectively  

 
   

Coordinates of location e for elevator set   

Decision variable  Description   

(xi, yi, zi) 
   

Coordinates of facility i   

 

    

Coordinates of elevator set  

 

    

Floor index that indicates the number of each floor  

       𝑤𝑒                                                     0 or 1 depending on the location of the elevator 

 

 

 

 

𝑙𝑖 , 𝑏𝑖 

𝑙𝑒 , 𝑏𝑒 

𝑙, 𝑏 

(𝑎𝑒 , 𝑏𝑒) 

𝑍𝑖 

(xe, ye) 
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3.3. Objective function 

In this mathematical model, the main objective is to minimize material flow costs among facilities and between 

facilities and elevators. In this study, it is assumed that the total material flow costs can be determined by the 

summation of 𝑓1  and 𝑓2. When the flow between facilities is on the same floor, the condition 𝑓1 is established. 

However, if it is on two different floors, the condition 𝑓2 is set. According to the explanation above, both cost 

functions are formulated as follows:   

1

1 1

(| | | |)
I J

H ij i j i j

i j

f C f x x y y
= =

= − + −                                                                      (1) 

11

2

1 1

1 1

(| | | |) (| |)

(| | | |)

I J E

H ij i e e i e e e ij i j

i j e

E E

H ij e e j e e j

e

E

e

e

f C f x a w y b w C f z z

C f a w x b w y

= = = =

= =

= − + − + − +

− + −

  

 

              (2) 

 

 

          Therefore, for each pair of facilities, only one of the abovementioned formulations (f1 or f2) will be active. 

For better simplification and based on equations (1) and (2), the objective function  is considered in the following 

form: 

1 1 2 2

1 1

( ( . . . ) ( . . . . ))
I J

ij i j i j ij i j i j e

i j

min f x x y y f x x y y w 
= =

+                        (3) 

 

3.4. Mathematical constraints 

        Constraints (4) and (5) are used to establish only one of the cost functions. 

1 21 ij i ijj Mz z −  −                      ,i j                                                    (4) 

1 2 1ij ij + =              ,i j                                                   (5)     

          Constraint (6) is employed to assign the elevator to a single location.             

1

1
E

e

e

w
=

=                      e                                                      (6) 
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            Constraints (7)-(10) are utilized to prevent any overlap of facilities and elevator sets. These constraints 

represent an extension of the ABSMODEL [30]. 

1
)

2
(i j i j i ji ij jM z z x x M l l d− + + ++ −                          ,i j             (7) 

( )1 (
2

)
1

ji ij i ji j ijM z z y y M b b d− + − + ++ −                ,i j             (8) 

1

(
1

)
2

ei e ei

E

e e i i

e

a w x M l l d
=

− + + +                                       ,i e                (9) 

( )
1

1 (
1

2
)

E

e e i ie e

e

i eib w y M b b d
=

− + − + +                            ,i e             (10) 

           

Considering the binary variables µ𝑖𝑗 and µ𝑒𝑖, either constraint (7) or (8) is enforced. To do this, a large positive value 

M is used in equations (9) and (10). 

          Constraints (11)-(14) are imposed to ensure that the layout is entirely contained within the building area as 

shown in Figure 1. The visual depiction of constraints (13) and (14) under specific scenarios can be observed. 

1

2
i ix l                         i                               (11)    

1

2
i iy b                        i                               (12) 

1

2
i ix l l −                    i                              (13) 

1

2
i iy b b −                   i                              (14) 

 

Insert Figure 1 here  
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3.5. The Proposed Linear Model 

To apply an exact integer programming for solving the model,  The nonlinearity of the model is first addressed, by 

substitution of the nonlinear parts with linear counterparts is employed. To simplify the model's complexity, we 

redefine the objective function as depicted in equation (15): 

2

1

2 2

1

1( ( ) ( ) ( ) ( )
I J

H ij ij ij H ij ie ie e ij ij jij ej

i

ij ij H ej

j

ij imin C f p u C f r s C f t C f v m   
= =

+ + + + + +               (15) 

Where: 

| |i j ijx x p− =               (16)                      | |i j ijy y u− =                        (17) 

| |i j ijz z t− =                  (18)         

1

E

e e e

e

a w x
=

=                 (19)                      
1

E

e e e

e

b w y
=

=                         (20) 

| |i e iex x r− =                 (21)                       | |i e iey y s− =                        (22) 

| |e j ejx x v− =                (23)                       | |e j ejy y m− =                      (24)    

         Some new variables are defined as follows in (25) to (31): 

1ij ij ijp pp =            (25)         1ij ij iju uu =           (26)            2ij ie ijer rr =         (27)   

2ij ie ijes ss =             (28)          2ij ij ijt tt =             (29)              2ij ej ijev vv =        (30)   

2ij ej ijem mm =         (31) 

By incorporating equations (25)-(31) into the model, A linear objective function is able to be derived, which is 

represented by equation (32).  By applying linearization techniques to (25)-(31) and using these new variables,  the 

linear model will be obtained as (33) to (67). 

( )
1 1

( ( ) ( ) ( ) ( ) )
I J

ij H ij ij H ije ije e i H i ej ij je

i j

min f C pp uu C rr ss C tt C vv mm
= =

+ + + + + +           (32) 

S.t:  

jji ix x p−                                     ,i j                    (33) 
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( )i ijjx x p−−                                 ,i j                   (34) 

jji iy y u−                                        ,i j                   (35) 

( )i ijjy y u−−       ,i j                  (36) 

jji izz t−                                          ,i j                   (37) 

( )i ijjz z t−−                                    ,i j                  (38) 

eei ix x r−                                          ,i e                   (39) 

( )i ieex x r−−                                   ,i e                   (40) 

eei iyy s−                                        ,i e                    (41) 

( )i ieey y s−−                                ,i e                      (42) 

je j ex x v−                                       ,e j                    (43) 

( )je ejx x v−−                               ,e j                     (44) 

je j eyy m−                                     ,e j                    (45) 

( )je ejy y m−−                             ,e j                     (46) 

1ij ijpp M                                     ,i j                     (47) 

ij ijpp p                                            ,i j                    (48) 

( )1 1ij ij ijpp p M + −                  ,i j                     (49) 

1ij ijuu M                                        ,i j                    (50) 

ij ijuu u                            ,i j                     (51) 
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( )1 1ij ij ijuu u M + −                   ,i j                     (52) 

2ije ijrr M                                    , ,i j e                 (53) 

ije ierr r      , ,i j e                    (54) 

( )2 1ije ie ijrr r M + −      , ,i j e                  (55) 

2ije ijss M        , ,i j e                  (56) 

ije iess s        , ,i j e                 (57) 

( )2 1ije ie ijss s M + −       , ,i j e                 (58) 

 2ij ijtt M       ,i j                       (59) 

ij ijtt t        ,i j                       (60) 

( )2 1ij ij ijtt t M + −       ,i j                      (61)  

2ije ijvv M        , ,i j e                  (62) 

ije ejvv v        , ,i j e                 (63) 

( )2 1ije ej ijvv v M + −             , ,i j e                (64) 

2ije ijmm M        , ,i j e                 (65) 

ije ejmm m               , ,i j e                (66) 

( )2 1ije ej ijmm m M + −      , ,i j e                  (67) 
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          Now, to linearize constraints, we rewrite them as (68) to (73). 

( ) ( ) (
1

)
2

ij ij ij i j ijM uu pp M l l d+ + + +                        ,i j                   (68) 

( ) ( ) ( )
1

1 ( )
2

ij ij ij i j ijbqqM uu M b d+ + +− +  ,i j                  (69) 

1

2
( )e eiei ei ioo M l l d+ + +     ,i e              (70) 

( )
1

1 )
2

( e eiei ei ikk M b b d+ +− +    ,i e                  (71) 

11 ij ijuu−        ,i j                 (72) 

( )2 2 jij ij iM uu z z  − −     ,i j                (73) 

   

          Where:    

i ijjx x pp− =                     (74)                                    i ijjy y qq− =                 (75)                 

i ijjz z uu− =                       (76)                                  ee iix x oo− =                  (77)           

ee iiy y kk− =                   (78)                            

            

Where the model needs to include the following additional constraints: 

S.t: 

jij iu u zu z −                                      ,i j               (79) 

( ) ( )1jij ijiz Mz auuu − + −       ,i j              (80)   

( )i ijij ju Mz z auu − − +                             ,i j              (81)   
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( ) ( )1jij ijix Mxppp − + −                   ,i j             (82) 

( )i ijij jp Mxp xp − − +        ,i j              (83) 

( ) ( )1jij ijiy Myqqq − + −      ,i j              (84) 

( )i ijij jq Myq yq − − +     ,i j              (85) 

( ) ( )1iie e eix Mxooo − + −     ,i e               (86) 

( )e eiie io Mxo xo − − +      ,i e              (87) 

( ) ( )1iie e eiy Mykkk − + −        ,i e              (88) 

( )e eiie ik Myk yk − − +      ,i e               (89) 

( ), , , , 0,1ij ij ij ei ei                                                         (90) 

  

4. NUMERICAL RESULTS AND ANALYSIS  

In this section, we present the results of applying our proposed model to a simulated real-world scenario inspired by 

a job shop company located in Mashhad, Iran. While the test problems are designed to reflect the challenges faced 

by such companies in multi-floor facility layout planning, the data are generated randomly to create representative 

test cases for evaluating the performance of our approach. In the generation of the six test problems (small-scale, 

medium-scale, and large-scale problems), we establish specific conditions and constraints that reflect the 

characteristics of the problem under investigation. These conditions include parameters such as the dimensions of 

the facility layout, material flow rates, minimum distance requirements between facilities, and costs associated with 

vertical and horizontal material flow. With these defined conditions, we then employ a randomization method to 

generate problem instances that adhere to the specified constraints. The model and analyses are conducted on six 

defined test problems, with their respective characteristics presented in Table 2. 

 

Insert Table 2 here 
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Here, a three-floor factory building with the following measurements is considered. Six test problems are defined to 

study the presented model. In the first example, the length and width of each floor are 20×20m2, and for the second 

problem are 8×8m2. To ensure safe and efficient material flow within the facility, a minimum clearance of 1m is 

maintained between all facilities. Additionally, material flow costs are incorporated into the model, with the vertical 

material flow cost between floors set at 40 units and the horizontal material flow cost on each floor set at 60 units 

for both examples. (Table 3). 

Insert Table 3 here 

 Here, we present a GA-based solution method and compare it with the exact method. Finally, the analysis of results, 

including sensitivity analysis is presented.   

 

4.1 The proposed GA   

GA which was first introduced by Holland has increasingly gained in popularity in optimization during the last 

decade than other evolutionary computation algorithms [31]. This algorithm uses historical data about algorithm 

inheritance to use in the search process. Pearce, Markandya, and Barbier created the fundamental principles of the 

genetic algorithm [32]. The most significant characteristics of GA are efficiency, ease of programming, and 

exceptional robustness with regard to input data. In contrast to GA generates a group of solutions, then assesses and 

improves them rather than a single solution. Due to its benefit, this parallel procedure is a qualified option even for 

NP-hard problems [33],[34]. The approach relies on the encoding of each set of solutions into a genetic code known 

as a chromosome. Each chromosome represents a potential layout that includes the arrangement of facilities on 

multiple floors. The chromosome can be represented as a sequence of genes, where each gene corresponds to a 

facility and its location in the layout. The proposed chromosome structure can be represented as a sequence of genes, 

where each gene represents a facility location and includes information about its coordinates and its floor 

assignment. Each gene i.e. facility is represented by the following values: (x,y,z). x and y show the coordinates on 

the location map and z shows the floor. This representation allows the GA to explore layout configurations 

considering both the facility locations within each floor and the assignment of facilities to different floors. 

          To deploy GA, the following steps are followed: First, the initial population is created by generating random 

solutions and then evaluated by the proposed fitness function. Then, the fittest individuals are selected for producing 

the next generation by using cross-over and mutation operators. Finally, if the stop conditions are not met, we return 

to the previous step. Otherwise, the algorithm is terminated [35]. 

          To select the chromosomes for cross-over or mutation, the fitness function is used to identify the best 

chromosomes and then the population is sorted based on the fitness function values, with the best solutions placed 

at the beginning of the population. There exist various methods for determining the probability of selecting 

chromosomes. In this study, we use the Boltzmann method based on equations (91) and (92) which are as follows. 

This method is one of the most popular methods [36]. 
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          Where 𝑛𝑝𝑜𝑝 is the population of the major chromosomes, 𝑝𝑖 represents the probability associated with the 

selection of chromosome 𝑖 as the parent, the parameter 𝛽 shows the impact of the fitness function value on the 

probability of selecting a chromosome to make the next generation, and 𝑐𝑖  represents the value of the fitness 

objective function determined for per chromosome 𝑖.  

          The crossover should be carried out once the chromosomes have been selected. Among the existing 

approaches, the uniform crossover usually demonstrates superior performance. It exhibits faster convergence 

towards the optimal solution compared to alternative methods such as single-point and double-point crossover, 

which tend to exacerbate exploration. 

          In comparison to traditional methods that utilize an array of bits, the proposed method employs a single-bit 

function. However, it is worth noting that excessive exploration can potentially result in convergence to a suboptimal 

local solution. This limitation is inherent to the uniform crossover method. To address this issue, a hybrid approach 

combining both single-point and two-point crossovers was employed. By leveraging the benefits of each method, 

this hybrid approach aims to overcome the shortcomings of the uniform crossover and improve the overall 

performance of the genetic algorithm [35]. Figure 2 shows the flowchart of the proposed GA. 

          To perform the crossover operation, we exchange the genes of the parents from the crossover point onwards. 

This step involves swapping the facility location genes between the parents' chromosomes while keeping the floor 

assignments intact. 

         As illustrated in Figure 3, crossover operators demonstrate this process effectively. Some individuals from the 

population are randomly selected (based on mutation rate pm) and mutated by applying the mutation operator. The 

operator randomly changes the value of the gene at the mutation point. For example, if the gene represents the floor 

assignment, it can be mutated to a different valid floor. After performing crossover and mutation operations, the 

resulting individuals are added to the existing population. This merged population contains a mixture of parent 

individuals, offspring individuals, and mutant individuals. Finally, for each population, the best solution and its 

fitness value are recorded. 

 

Insert Figure 2 here 

 

Insert Figure 3 here 
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4.2 Parameter tuning of the algorithm 

Parameter tuning in meta-heuristic algorithms plays a crucial role in optimizing their performance by selecting the 

most suitable values for their parameters. The effectiveness and efficiency of the proposed algorithm heavily rely 

on the appropriate selection of parameter values. The process of accurately determining these values significantly 

impacts the overall algorithm performance. To attain this objective, the Taguchi method, renowned for its robustness 

and efficiency in parameter optimization, was employed. Through systematic experimentation and analysis, the 

Taguchi method was utilized to fine-tune the algorithm's parameters and identify the optimal values for each 

parameter. This approach ensures that the algorithm operates at its peak performance, enhancing its effectiveness in 

solving the problem at hand [37], [38]. 

    The performance of an algorithm is greatly impacted by the selection of its parameters, emphasizing the 

importance of parameter tuning in meta-heuristic algorithms. The objective of parameter tuning is to identify the 

optimal values for each parameter, maximizing the efficiency and effectiveness of the algorithm. This method 

enables systematic experimentation and analysis to efficiently adjust the parameters and identify the most favorable 

values. By employing the Taguchi method, the algorithm can be fine-tuned to operate at its highest level of 

performance, mitigating the extensive experimentation typically required to find the optimal value for each 

parameter [37],[38]. 

In the present research, the proposed GA involved the tuning of eight parameters to enhance its performance. These 

parameters included the maximum iteration (Max-it), population size (𝑛𝑝𝑜𝑝), crossover rate (Pc), mutation rate (Pm), 

and the percentage of mutation bits (Mu). The tuning process aimed to identify the optimal values for these 

parameters, enabling the GA to operate with improved efficiency and effectiveness. By adjusting these parameters, 

the algorithm's behavior and convergence properties were fine-tuned, leading to enhanced exploration and 

exploitation capabilities within the search space. The selection of suitable parameter values was crucial to achieve 

the desired balance between exploration and exploitation and to optimize the GA's ability to converge towards high-

quality solutions (Table 4). 

Insert Table 4 here 

 

The objective function values were converted into non-scale data using the Relative Percentage Deviation (RPD). 

The RPD was computed as follows: 

𝑅𝑃𝐷 =
|𝐴𝑛𝑠𝑤ⅇ𝑟 𝐺𝐴 − 𝐵ⅇ𝑠𝑡 𝑎𝑛𝑠𝑤ⅇ𝑟 𝐺𝐴|

|𝐵ⅇ𝑠𝑡 𝑎𝑛𝑠𝑤ⅇ𝑟 𝐺𝐴|
× 100 

Initially, three levels were proposed for each parameter of the algorithm based on the structure of the Taguchi 

method. The adjustment of these parameters was performed using the L27 design. Each experiment was conducted 

10 times, and the average values obtained from these repetitions were recorded as the final results. The MINITAB 

21 software was utilized for this purpose, employing the three predefined levels in accordance with the standard 
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Taguchi table. The mean response graph and the Signal-to-Noise (SN) ratio graph, as presented in Figures 4 and 5, 

respectively, provide visual representations of the data. Table 6 illustrates the solution values (SN ratios) 

corresponding to different levels of each parameter, while the solution stability index indicates the extent of 

fluctuations observed in each parameter. Based on the SN ratio charts, the highest value in the SN ratios chart for 

each parameter is considered the optimal choice. Therefore, the predefined values listed in Table 5 are regarded as 

optimal in relation to the genetic algorithm. 

Insert Table 5 here 

 

Insert Figure 4 here 

 

Insert Figure 5 here 

 

4.3. Computational results and analysis  

Due to the MRFLP and the MFFLP being an NP-hard problem [7], [39] and the MFMRFLP is the combination of 

the MRFLP and MFLP, it has been proven that the proposed model is an NP-hard problem. Therefore, exact methods 

may not be efficient in large-scale problems. In this research, The exact method and GA were compared, and two 

problems solved with each technique. Exact techniques were originally developed to facilitate the resolution of the 

large, and complex non-linear models whereas it takes considerable time to solve models which are performed with 

related software. GA helps to find optimal or near-optimal solutions to a problem. Thus, an algorithm is developed 

based on GA to solve large-scale instances of the problem, which is performed better in comparison with exact 

methods. The results are shown in Tables 6 and 7, which are solved with 0% relative error by GA. As can be seen, 

by increasing the number of facilities, the running time of the exact method increases significantly. For example, in 

the first medium-scale problem with 6 facilities and 4 candidate places for the elevator, the running time will be 

approximately 7200 seconds. Moreover, in the first large-scale problem with 8 facilities, the running time will be 

more than 18000 seconds. Consequently, it appears it is more beneficial to use GA for instances with more than 6 

facilities because it has a good performance compared to the exact method. 

 

Insert Table 6 here 

 

Insert Table 7 here 
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          In this section, the determination of the number of variables and constraints is performed based on the 

proposed linear mathematical model. Clearly, the application of exact optimization methods to solve the proposed 

FLP on large-scale problems is infeasible. Therefore, the utilization of meta-heuristic optimization methods is 

strongly advised in such cases. Since the binary variables are the most troublesome in the model, some of them were 

considered as parameters in the original model in GAMS to facilitate the process. Obviously, more variables make 

the model more difficult and time-consuming to solve. Therefore, applying fewer variables makes it possible to 

solve the model on large-scale problems in GAMS. The algorithm’s parameters were set by the Taguchi method. 

The proposed GA was performed with MATLAB on a computer with a 2.40 GHz processor and 8G RAM. To solve 

the proposed model, two software tools, MATLAB2016a and GAMS24.1.3, were employed. The nonlinear BARON 

software solver in GAMS24.1.3 was utilized for solving the model. 

 

4.4. Sensitivity Analysis 

    In this section, we conduct a comprehensive analysis of the sensitivity of the objective function to changes in the 

main parameters. The key parameters under investigation include the cost per unit of vertical material flow between 

floors, the cost per unit of horizontal material flow on each floor, the material flow rate, and the minimum distance 

between facilities. By carefully examining the impacts of varying these parameters, we aim to gain insights into 

their influence on the overall performance of the system. 

 

4.4.1 Sensitivity analysis of the vertical cost  

    First, the sensitivity of the objective function to the vertical cost is analyzed. When the horizontal cost is 

considered fixed at 40 and the vertical cost increases from 5 to 20, the facilities are located on different floors. As a 

result, the value of the objective function reaches its maximum at 384000. However, with an increase in the vertical 

cost of more than 30, the value of the objective function remained the same, due to the fact that the vertical cost 

between floors is higher than the horizontal cost. Therefore, all facilities repeatedly are set on one floor in the optimal 

solution. The results are shown in Figure 6. The sensitivity analysis of the objective function to changes in the 

vertical cost reveals important insights into the impact of vertical material flow expenses on facility layout 

optimization. The results indicate that as the vertical cost increases, there is a corresponding shift in the optimal 

layout configuration, with facilities being strategically positioned across different floors to minimize total material 

flow costs. However, beyond a certain threshold, further increases in vertical cost do not significantly affect the 

objective function, suggesting that other factors may become dominant in determining the optimal layout. 

 

Insert Figure 6 here 
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4.4.2 Sensitivity analysis of the horizontal cost  

In the second sensitivity analysis, the effect of the horizontal cost on the value of the objective function is examined. 

The behavior of the objective function toward the increase in the horizontal cost and considering the fixed vertical 

cost is nonlinear. Furthermore, as this cost increases, the value of the objective function increases with a non-uniform 

slope. Figure 7 demonstrates the results of the sensitivity analysis. The varying slope of the objective function in 

response to changes in horizontal cost highlights the need for careful consideration of both horizontal and vertical 

material flow costs when designing efficient facility layouts. 

Insert Figure 7 here 

 

4.4.3 Sensitivity analysis of the material flow 

In this analysis, the impact of the material flow on the objective function was investigated. As shown in Figure 8, 

increasing the material flow would cause the objective function value to increase with a constant slope. The constant 

slope observed in the objective function demonstrates that increasing material flow rates leads to proportional 

increases in total material flow costs. This finding underscores the importance of accurately estimating material flow 

requirements and optimizing layout configurations to minimize material handling expenses. 

Insert Figure 8 here 

 

4.4.4 Sensitivity analysis of the minimum distance between facilities 

In this analysis, the effect of the minimum distance between facilities on the objective function was examined. With 

the increase in the minimum distance between facilities, the value of the objective function increased with a non-

uniform slope. Afterward, it significantly dropped from 1267200 to zero, while the minimum distance rose from 5 

to 6. As the minimum distance increased more, due to the lack of space to locate the facilities, the value of the 

objective function was stable at zero repeatedly (Figure 9). Analyzing the sensitivity of the objective function to 

changes in the minimum distance between facilities highlights the impact of spatial constraints on layout 

optimization. The non-uniform slope observed in the objective function reflects the varying degrees of sensitivity to 

changes in minimum distance, with layout configurations becoming increasingly constrained as minimum distance 

requirements are tightened. The abrupt drop in the objective function value at certain thresholds indicates critical 

points where layout feasibility is compromised due to space limitations. 

 

Insert Figure 9 here 
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5. Conclusion and Future Research 

In this paper, a novel multi-floor multi-row facility layout model aimed at minimizing material flow costs through 

optimized facility layout and elevator placement is developed. The proposed model seeks to minimize material flow 

costs by finding the optimal layout of facilities and the related elevator for flowing among floors. To the best of our 

knowledge, this is the first modeling for the MFMRFLP in the literature. Since the problem is NP-hard, exact 

methods are applicable to small-size problems. Here, a GA approach is proposed to solve large-scale instances. 

Since the computation times with the exact method are so much larger than with the GA, and GA provides optimal 

or near-optimal solutions, the GA shows its superiority in terms of efficiency. 

In terms of contributions, this study offers a valuable methodological approach to addressing the MFMRFLP, filling 

a significant gap in the literature. The application of GA is promising for efficiently tackling large-scale instances 

of the problem, showcasing its superiority over exact methods in terms of computational efficiency. 

While the proposed approach has shown efficiency in solving large-scale instances of the problem, it is crucial to 

acknowledge the limitations inherent in this study. Real-world scenarios may involve additional constraints and 

uncertainties not fully captured in the proposed model. Additionally, while the GA offers computational efficiency, 

it may not always guarantee the absolute optimal solution due to the complexity of the problem. 

Looking ahead, future research should aim to address these limitations and further enhance the applicability of our 

findings. Firstly, exploring alternative metaheuristic algorithms could provide additional insights into solving the 

MFMRFLP efficiently while considering different constraints and objectives. Additionally, incorporating more 

realistic assumptions and objective functions, such as minimizing hazardous material handling or optimizing facility 

accessibility, would contribute to the practical relevance of our research. 
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Table 1 

Research Solution Method  Formulation     layout 

  
 Method  

or model  

Objective  

function(s) 
  

Multi  

row 

Multi  

floor 

[9] 

[10] 

 

[11] 

fireworks algorithm 

 

Dantzig-Wolfe decomposition 

algorithm 

 

a hybrid evolutionary algorithm  

 

SRLP 

 

MFLP 

 
RFLP  

Min 

  

Min 

 

Min  

  

 

 

 

 

 

*  

 

  

*  

[12] Global optimization 
 

MRFLP Min   *  

[13] 
non-dominated sorting  

genetic algorithm 

 
MRLP Min   *  

 

[7] 
genetic algorithm 

 
MRFLP Min   *  

[14] TOPAZ 

 Campus 

Building  

Arrangement 

Min   *  

[40] 
Variable Neighborhood 

Search (VNS) algorithm 

 
SF-MRFLP Min   *  

 

[15] 
GRASP 

 
MREFLP Min   *  

[16] 
 

GA, tabu search[4] 

 
MRFLP Min   *  

 

[17] 
mGRASP 

 
MRLP-EC Min , Max  *  

[19]  Spacecraft  MFLP Min    * 

[20] Alternative approaches  MFLP Min    * 

 [24] 

 

efficient genetic  

algorithm   

 

CMSs Min    * 

[3] robust approach  MFDLP Min    * 

[26] 

 

Robust discrete  

Optimization  

 

MFLP Min    * 

 

[18] 

 

genetic algorithm 

 
MFLP Min    * 

[28] memetic algorithm (MA)  MFLP Min , Max   * 

[27] memetic algorithm  MFLP Min , Max   * 

[22] MINLP  MFPLP Min    * 

[23] TNT equivalency  MFPLP Min    * 

 

[21] 
Exact 

 
MILP Min     * 

*Notes: SF—Space Free, MREFLP— Multiple Row Equal FLP, GRASP — Greedy Randomized Adaptive Search Procedure, MRLP-EC — 

Multi-Row Facility Layout Problem with Extra Clearances, mGRASP — multi-objective greedy randomized adaptive search procedure, 

MFLP*— Multi-Floor layout planning, CMSs — Cellular Manufacturing Systems, MFDFLP — Multi-Floor Discrete FLP, MILP — Mixed 

Integer Linear Programming, MINLP__ Mixed Integer Non-Linear Programming, MFPLP__ Multi-floor Plant Layout Problem, GA__ genetic 

algorithm, MRFLP__ multi-row facility layout problem, SRLP__Single Row Layout Problem. 
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Table 2 

Test problem 

number 

size Number of 

departments 

Number of 

candidates for 

elevator 

Number of 

possible floors 

1 Small 4 4 3 

2 Small 4 4 3 

3 Medium 6 4 3 

4 Medium 6 4 3 

5 Large 6 4 3 

6 Large 6 4 3 

 

 

 

Table 3 

Coordinates for 

elevator set 

     

  

 
    

 

 
      

 

 

 

 

(𝑎1 × 𝑏1) (𝑎2 × 𝑏2) (𝑎3 × 𝑏3) (𝑎4 × 𝑏4) 

(1 × 1) (5 × 5) (1 × 5) (5 × 1) 
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Facility Sequence 

Sol A:   

𝒙𝟏𝑨 𝒚𝟏𝑨 𝒛𝟏𝑨 𝒙𝟐𝑨 𝒚𝟐𝑨 𝒛𝟐𝑨 𝒙𝟑𝑨 𝒚𝟑𝑨 𝒛𝟑𝑨 
 

Sol B: 

𝒙𝟏𝑩 𝒚𝟏𝑩 𝒛𝟏𝑩 𝒙𝟐𝑩 𝒚𝟐𝑩 𝒛𝟐𝑩 𝒙𝟑𝑩 𝒚𝟑𝑩 𝒛𝟑𝑩 

 

New Sol  1:  

𝒙𝟏𝑨 𝒚𝟏𝑨 𝒛𝟏𝑨 𝒙𝟐𝑨 𝒚𝟐𝑨 𝒛𝟐𝑨 𝒙𝟑𝑩 𝒚𝟑𝑩 𝒛𝟑𝑩 
 

New Sol 2:  

𝒙𝟏𝑩 𝒚𝟏𝑩 𝒛𝟏𝑩 𝒙𝟐𝑩 𝒚𝟐𝑩 𝒛𝟐𝑩 𝒙𝟑𝑨 𝒚𝟑𝑨 𝒛𝟑𝑨 
 

Figure 3 

 

 

 

Table 4 

 

 

 

 

 

 

 

Table 5 

Parameters   optimal level 
     

 Max-It     50 

 𝑛𝑝𝑜𝑝  
 35 

 𝑃𝑐  
 0.9 

 𝑃𝑚  
 0.3 

 𝑀𝑢     0.02 

    

Parameter Levels 

L1 L2 L3 

Max-It   40 50 70 

𝑛𝑝𝑜𝑝  25 30 35 

𝑃𝑐  0.6 0.8 0.9 

𝑃𝑚  0.1 0.2 0.3 

𝑀𝑢   0.02 0.05 0.1 
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Figure 4 

 

Figure 5 
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Table 6 

   
        Exact Method 

 
       GA 

 

 

 Size n OFV     Time     
𝑥𝑒     𝑦𝑒 
 

OFV Time 
𝑥𝑒     𝑦𝑒 

Gap 

1 small 4 384000.000 5639.59  1         1 384000 1130 1        1 0 

2 small 4 384000.000 5639.59  1         1 384000 1130 1        1 0 

3 medium 6 672000.000 6652.4  1         1 672000.000 1740 1        1 0 

4 medium 6 3787194.000 7258.000  1         5 3787194.000 1780 1        5 0 

5 large 8 - - -    - 4100005.000 2532 5        5 0 

6 large 8 - - -    - 5760000.000 2655 5        5 0 

*Notes: OFV— Objective Function Value, GA—Genetic Algorithm 
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Table 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Coordinates of facility i   

 

Facility 

Large size  Average size  Small size 

 𝑥𝑖 𝑦𝑖 𝑧𝑖 
 𝑥𝑖 𝑦𝑖 𝑧𝑖 

 𝑥𝑖 𝑦𝑖 𝑧𝑖 

Exact  

Method 

1  It    1 5 1  3 1 1 

2 did not  5 3 1  5 5 1 

3 work out  3 3 1  7 3 1 

4 In a   3 1 1  1 7 1 

5 reasonable  1 3 1     

6  time   7 5 1     

7            

8            

1  It    1 3 1  3 1 1 

2  did not   4.5 4.5 2  5 5 1 

3  work out   2.5 1 1  7 3 1 

4  In a    4.5 4.5 1  1 7 1 

5  reasonable   4.5 2.5 2     

6  time   2.5 2.5 2     

7            

8            

GA 

1 1 2 1  1 5 1  3 1 1 

2 3 2 1  5 3 1  5 5 1 

3 1 4 1  3 3 1  7 3 1 

4 7 4 1  3 1 1  1 7 1 

5 11 11 1  1 3 1     

6 3 5 1  7 5 1     

7 9 9 1         

8 3 7 1         

1 1 2 1  1 3 1  3 1 1 

2 3 2 1  4.5 4.5 2  5 5 1 

3 1 4 1  2.5 1 1  7 3 1 

4 3 6 2  4.5 4.5 1  1 7 1 

5 7 7 2  4.5 2.5 2     

6 3 2 2  2.5 2.5 2     

7 2 6 1      

8 6 1 1         
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Figure 6 

 

Figure 7  
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Figure 8  

 

 

Figure 9 
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