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Abstract: Here the concept of heat transport mechanisms and stagnation point of the MHD 

Williamson nanofluid have been elaborated with Brownian motion and thermophoresis diffusion 

past a permeable stretching/shrinking cylinder. Both the conditions of velocity slip and heat 

source/sink effects are considered. The shooting algorithm with Runge-Kutta-Fehlberg method 

has been exploited for solutions of ODEs. The effect on drag coefficient, heat and mass transport 

rates as well as the dimensionless velocity, temperature and concentration fields of the physical 

boundaries objectives of the study are graphically delineated and thoroughly discussed. As 

nanoparticle concentration increases at the outer surface of the boundary layer, the rising patterns 

of Nusselt number as well as skin friction are observed. Dual solutions with the critical value of 

the mass transfer parameter ( )0 cs s   and the shrinking parameter ( )c   are obtained for 

different related parameters in some domains and shrinking parameter. Here the outcomes noted 

the average increase of skin friction with respect to    (curvature) factor to 24.8% with brilliant 

results compared with former prose. Additionally, 6.37% and 3.46% average increase of skin 

friction for first solution; however, for second solution 4.98% and 3.51% enhancement noted 

respectively, when    0  = = and 0.1 with respect to  . 
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1. Introduction 

The heat transport phenomenon is discussed excessively in terms of the seven slip parameter of 

Buongiorno’s model. The seven slip parameters involve inertial forces, Brownian diffusion, 

thermophoretic force, Magnus effect, fluid drainage and gravity. But in Buongiorno’s model only 

two of them are discussed, which are Brownian motion and thermophoresis diffusion. 

Thermophoresis is the averaged Brownian motion of particles in a fluid that is subjected to a 

constant temperature gradient. The stronger molecular impulses in the hotter fluid zone move 

particles towards the colder fluid region, where the molecular impulses are weaker, over lengthy 

periods of time [1]. Further, the term thermophoresis refers to the averaged mobility of the 

particles. The phenomena of thermophoresis were initially observed by Tyndall in a dust-filled 

room when he noticed that aerosol particles were pushed away from a heated surface, but it was 

not researched in depth until the twentieth century [2]. Tyndall made no connection between 

thermophoresis and particle molecular impulses. 

Electronic system cooling is a vital industrial need in today's fast-paced technological 

environment. The major restriction is the low thermal conductivity of widely used heat transport 

fluids; for instance oil, water and ethylene glycol. This necessitates the development of novel 

techniques capable of overcoming this constraint. Solid particles of nanoscale size (1-100 nm) 

have shown to be successful when suspended in conventional heat transfer fluids in the pursuit of 

the same task. The use of the particles has drawn great attention in the industrial application 

because of their miraculous property of changing the thermophysical properties of host fluid, 

thereby enhancing the heat transfer considerably. In 1995 at the Argonne National Laboratory, 

such colloidal suspension was given the name as ̀ nanofluid' by Choi [3]. The modern development 

regarding the heat transfer using nanofluids and their mathematical modeling [4] have contributed 

immensely to the output of various industries. These fluids find wide applications in, but not 

limited to, biomedicine, transportation (engine cooling/vehicle thermal management), nuclear 

systems cooling, manufacturing, heat exchanger, and cooling of electronics. The free convective 

nanofluid flow along a vertical sheet was discussed by Kuznetsov and Nield [5]. They disclose 



that the heat transfer rate is a diminishing function of parameters like buoyancy ratio, Brownian 

motion and thermophoresis parameter. Likewise, Khan and Pop [6] considered the model of 

Brownian diffusion and thermophoresis to investigate the boundary layer flow along a stretched 

surface which has constant surface temperature. They determined that the thermal transport rate is 

a decaying function of each dimensionless number. Ibrahim and Shanker [7] found the numerical 

solution and heat transport of nanofluids with convective conditions influenced by a vertical plate. 

Numerous studies on heat transport and nanofluid have been elaborated in Refs [8-16]. 

The investigation of liquid stream and heat transfer over a stretching/shrinking cylinder have 

increased eminent enthusiasm among the different specialists because of the quickly developing 

applications in numerous modern and building processes. In 1975, the fluid flow due to the 

stretching cylinder was described by Crane [17] and for the very first time Wang [18] investigated 

the fluid flow over a hollow cylinder when the surrounding liquid is very still. Lok and Pop [19] 

talked about the highlights of heat transfer properties over a permeable shrinking cylinder and 

derived the triple solutions of the problem. Further, Mukhopadhyay [20] investigated the behavior 

of mixed convective flow past a stretching cylinder within the sight of porosity. The attributes of 

heat transport of transient flow of nanofluid towards a contracting cylinder is studied by Zaimi et 

al. [21]. Ishak and Nazar [22] noticed that the local similar solution can be achieved by the 

stretching cylinder linearly in the axial direction. Fang et al. [23] obtained the exact solutions of 

unsteady fluid flow due to the contraction and expansion of cylinder. The results of axi-symmetric 

flow over a shrinking cylinder with buoyancy assisting flow were also investigated by Lok et al. 

[24]. Again, Zaimi et al. [25] utilizing a shooting scheme to get the multiple solutions of time 

dependent viscous fluid along a shrinking cylinder. They found that the friction factor reduces with 

the increment of unsteadiness parameter. The features of heat transport with impacts of velocity 

slip on the unsteady flow have been investigated by Abbas et al. [26]. Dhani et al. [27] have 

investigated the dual solutions due to an inclined stretching/shrinking cylinder in the presence of 

nanoparticles. They introduced the mathematical investigation of blended convection stream and 

warmth move examination within the sight of joint impacts Brownian movement, thermophoresis, 

and Joule dissemination. They have seen that warmth move rate increments with pull boundary; 

however, shows an inverse example with warm slip boundary. The impacts of entropy 

improvement of a gooey liquid past a hyperbolic chamber are broken down by Majeed et al. [28]. 

As of late, the liquid stream and warmth move studies with numerous physical perspectives are 



proposed by [29,30].  

Furthermore, the attention of researchers and experts to study the arena of nanofluid is better than 

formerly caused by immense uses of nanofluid in the engineering, bio-sciences and modern 

technology. Here the study focused on impacts of magnetic field [31-38], stagnation flow and mass 

suction parameter for unsteady Williamson [39-41] nanofluid influenced by stretching/shrinking 

cylinder.  Here also pointed out the some novelty of the present research problem which have been 

reported as; utilization of MHD have mechanical and industrial usages, comprising inventors and 

electrical filters, reactor icy, hydro-magnetic antenna, magnetic pills targeting, control forces, and 

so on. The presence of nanofluid i.e., the recent progresses in industrial and scientific equipment 

have made several phenomena that were formerly doubtful feasible because of the growth of 

nanoparticles conceivable. Therefore, melting a solid metal element in thermal transmitting liquid 

can remarkably increase the heat conductivity of fluid. In the entire article the present theory 

provides several supports in the informatics arena of sciences, i.e., pharmacological science and 

machinery areas for instance interstellar equipment, atomic vessel chilling, heat and lightening 

procedure, and various others. The theory of heat sink/source has a key role in the omission of heat 

from the debris of atomic energy, shed discarded radioactive material, radiating diffusers, 

preservation of metal pieces, and rough grease recovery. Furthermore, the several unique/multiple 

solutions for dimensionless velocity/temperature/concentration profiles and skin friction 

coefficients/Nusselt number/Sherwood number using local-similarity transformation. The 

comparative analyses via tables are also presented. 

 

2. Modeling 

Here we considered two-dimensional, axisymmetric, unsteady, incompressible MHD flow of 

Williamson nanofluid via stretching cylinder. The properties of heat source/sink and slip condition 

on velocity are also investigated in this study. The flow is driven by a permeable infinite cylinder 

of radius R . The physical model that we have obtained is illustrated in Fig. 1. The cylinder is 

stretching with velocity  ( ),
1

w

ax
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−
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−
 the free stream velocity. A 

strength 0(0, ,0)B B=  non-uniform transverse magnetic field, where 0B  is the constant applied 

magnetic field. 



 

The mathematical form of Williamson model is expressed as  ( )
1
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Therefore, above assumptions and the standard estimates of boundary layer report the following 

equations [42-44]: 

2.1.Continuity:     
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2.2.Momentum equation: 
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2.3.Energy equation: 
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2.4.Concentration equation: 
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with the allied boundary conditions we have: 
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2.5.Similarity solution of unsteady flow 

To solve the governing equations  (2)-(6), the following dimensionless variables are introduced: 
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Eq.  (1)  is fulfilled automatically by using the Eq. (7) and Eqs. (2), (3) and (4) become: 
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and transformed boundary conditions are: 
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Here, the local Weissenberg number, the curvature parameter, the heat generation/absorption 

parameter, the velocity slip parameter, the magnetic parameter, the thermophoresis parameter,    the 

Brownian motion parameter, the Prandtl number, the Schmidt number, the unsteadiness parameter,   

the ratio of viscosities respectively are 
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and    0   for stretching cylinder and    0   for shrinking cylinder. 

3. Physical quantities 

The skin friction and thermo-solutal transport are depicted as: 
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where   rx , wq  and  mq   are written as: 
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Using  (7), (14) and (15) we get 
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where  Re /wxU =   display the local Reynolds number. 

4. Solution process 

Here Eqs.(8)-(10) along boundary conditions  (11 and 12) have been tackled numerically through 

shooting scheme with RK method. The final system is reduced ODEs, which is then converted 

into an initial value problem, as follows: 
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To solve the Eq. (18) as an initial value problem, we require seven initial conditions in which four 

initial conditions are known while the three initial conditions  3 5,X X   and  6X   i-e.,  ( )0 ,f   

( )0    and  ( )0  are unknown. Hence, it is important to select the proper value of these unknowns 

to such an extent that far field conditions with the reasonable area length  . The step size is set 

to 0.01h =  and the method is reiterated up until the acquired results converge to the preferred 

level of accurateness which is 
610−
. 

 

4.1. Code verification 

To show the precision and legitimacy of our mathematical methodology, we did an examination 

between the got outcomes and those distributed before by Mat et al. [45], Hashim and Khan [30] 



and Omar et al. [46]. In Table  𝟏 , the results for reduced skin friction  
1/2Re fC   are compared 

with those obtained by Mat et al. [45] and Hashim and Khan [30], who examined the slip-flow 

past a shrinking/stretching cylinder. In Table  𝟐,  the consequences of are approved against the 

distributed work [30] for varying   in some special cases of Newtonian flow. Henceforth, it tends 

to be cultivated that our computational code utilizing Runge-Kutta-Fehlberg strategy with shooting 

procedure envisions accurately the liquid stream. 

5. Analysis 

Here our main focus is to comprehend the physical critical of the numerical model by means of graphical 

structures. The influences of unsteadiness parameter A  magnetic parameter M local Weissenberg number 

We , curvature parameter  , heat generation/absorption parameter    velocity slip parameter   , viscosity 

ratio parameter  
* , shrinking parameter  , suction parameter s  have graphically scrutinized. We have 

fixed default values for controlling parameters as 

*2.0,  0.03, 0.2 0.1, Pr 1.0 and 1.3t bN NA M We Sc s   = − = = = = = = = = = = = =  all 

through the calculations, in any case referenced. Additionally, the current article report the ranges of 

physical parameters i.e., *0 0.05,   0.8 1.2,   0.1 0.5,   0.3 0.5,A We           

0.1 0.5,   0 0.2,   0 0.1M        for graphical pictures. Furthermore, the tabular 

comparison are made by the following ranges of parameters 0.1 0.2,   1.2 2,   −    

0 0.4   with outstanding outcomes. The variation of dimensionless skin friction  
1/2Re fC , 

local Nusselt number 
1/2Re Nu−

, local Sherwood number 
1/2Re Sh−

, velocity ( )f  , temperature  

( )     and nanoparticle concentration  ( )    are designed, where solid lines signify the upper 

branch (first) solution, whereas the lower branch (second) solution is spoken to by sketched lines. 

Furthermore, for the best and accurate results we varying the values for specific graph by fixed 

other parametric values fix because it’s will give better convergence. 

Fig.  2 𝑎𝑛𝑑 3  unveil the impact of unsteadiness parameter  A   on 
1

2Re fC  and 
1

2Re Nu
−

 against 

the shrinking parameter .   These plots range of existence of both solutions are  

( )2.1170, 2.0666, 2.0352 1.2c = − − −   −  when 0.0,0.03 and 0.05A = .  The critical values 

shows that the second solution shrinks for larger 𝐴 in existence domain. The both upper branch 



solutions of 
1

2Re fC  and 
1

2Re Nu
−

 depicts the decreasing performance for larger A   whereas, a 

opposite form is depicted for lower branch solution of 
1

2Re fC  and 
1

2Re Nu
−

. 

The variation of ( ) ( ) ( )( )
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



 and ( )0−   with mass transfer parameter  

s  for representative values of We   are delineated in Fig. 4 and 5. These plots deliver that the dual 

solutions 
1

2Re fC  and 
1

2Re Nu
−

 are influenced by s  keeping other parameters fixed. These figures 

reports that the dual nature of the solutions happens for the specific value of local Weissenberg 

number   0.8,1  .0 and 1.2.We =  The critical value of suction parameter  

( )1.2227,1.1781,1.0119cs =  as  We  changes from 0.8 to 1.2  We perceive that the first solution of 

both 
1

2Re fC  and 
1

2Re Nu
−

 at the surface increase by higher values of Weissenberg number. While, 

( ) ( ) ( )( )
1* *0 1 1 0f Wef 
− + − − 





 and  ( )0−   shows a declining design with higher   We   at 

the boundary for second solution. 

Figs. 6, 7 and 8 show the effect of viscosity ratio parameter *  on 
1

2Re fC , 
1

2Re Nu
−

 and 
1

2Re Sh
−

 

at the surface of the cylinder, respectively. The critical value of shrinking parameter  c  is noted 

for each estimation of viscosity ratio parameter, which reduces from  2.0666 to 2.1598− −  as     

increases from 2.5 to 1.2− − . It is also found that first solution is consistently greater than second 

solution. The first solution of 
1

2Re fC , 
1

2Re Nu
−

 and 
1

2Re Sh
−

 increase for growing  * .  While if 

there should arise an occurrence of lower solution (second solution), the  

( ) ( ) ( )( )
1* *0 1 1 0f Wef 
− + − − 





 diminishes and invert pattern is found for ( )0−  and  

( )0 .−   

The trajectories of skin friction 
1

2Re fC , local Nusselt number ( )0−    and local Sherwood 

number  ( )0−   for varying curvature parameter   are depicted in Figs. 9, 10 and 11 against mass 

transfer parameter  s .  The dual behavior of the 
1

2Re fC , 
1

2Re Nu
−

 and 
1

2Re Sh
−

 has been 



accounted for  0.3,0.4,0.5. =   The critical values of mass transfer parameter  ( )  cs   changes from  

0.1273 to 0.6526− , as s  changes from  0.8 to 0.8− . As per these figures, we see that  cs   

increments as     improved, consequently rising the curvature parameter     augment the range 

of  s   for which a dual solution exists. The outcomes appeared in these plots show that as     

increases the first solution of ( ) ( ) ( )( )
1* *0 1 1 0 ,f Wef 
− + − −

 
  ( )0−  and  ( )0−   also 

increases. In case of second solution, skin friction coefficient 
1

2Re fC  and rate of heat transfer 

( )0−   delineates a diminishing conduct while an expanding pattern is seen for rate of mass 

transfer ( )0−  . 

Fig. 12 disclose the effects of slip parameter on local Nusselt number ( )0−  . The critical values 

of 
cs  corresponding to different slip parameter are listed in this plot. The existence range of dual 

solution is  ( )0.4125,0.1537,1.1781 2.0cs s= −     when  0.1,0.3 and 0.5 = .  The higher values 

of   the second solution diminishes. Furthermore, the solution of upper branch the 
1

2Re Nu
−

 

depicts the increasing drift while the lower one shows the decreasing pattern. 

Fig. 13 is portrayed for the dual velocity profile ( )f   for some specific value of the ( )2.0 = −   

with unsteadiness parameter A . The dual nature of solution for velocity profile illustrates that for 

growing values of A  have reverse drift for both solutions. It is said that physically the first solution 

is stable and feasible; however, the other solution is unstable. 

Currently, we will consider how the attractive parameter M  affects ( )f   and  ( ).  The effect 

of M  on ( )f   and ( )   is demonstrated in Figs. 14 and 15. The Fig. 14 shows that in shrinking 

cylinder situation, the point velocity enriches the first solution with an increase of M  and the 

second solution with a decrease. Physically, this is the product of the decelerating effect on the 

flow of the drag force resulting from the applied magnetic field for a nanofluid. Fig.  15 indicates 

that the fluid temperature at the point decreased with increasing in M , except for the small section 

near the upper solution surface and causes changes in the magnetic parameter M  for the lower 

solution. From a physical perspective, with an increase in M , the range of opposite cellular flow 

above the cylinder surface decreases, and ( ).   is therefore influenced by the advection of the 



liquid velocity exceeding the cylinder. Further, noted that thermal thickness is greater in the 

situation of the upper solution as compared to the lower solution. 

Next, our goal is to represent the multiple highlights for the velocity ( )f   and temperature 

profiles ( )   for estimations of viscosity ratio parameter  *  through Figs. 16 and 17. From these 

figures, it is revealed that both solutions for velocity field increases by rising of *  whereas an 

opposite behavior is exhibited for ( )  . We further observed that the boundary thickness of the 

first solution is slenderer as compared to second solution. 

Figs. 18 and 19 show the effect of heat generation parameter ( )0   and velocity slip parameter  

  on temperature distribution ( )  .  It is seen from the Fig. 18 both first and second solutions 

for temperature profile amplify with the expansion in heat generation parameter .   Furthermore, 

as can be seen, the temperature profile rises as the heat generation parameter rises. This is due to 

the fact that heat generation behaves as a heat sink, increasing the dimensionless temperature 

directly. Furthermore, we can detect from heat generation parameter mathematical expression that 

in case of heat generation heat is delivered to the fluid because of which temperature field of 

Williamson fluid growths. Fig. 19 displays that for a shrinking cylinder, the temperature at a point 

has reverse performance as   enlarges for both solutions except in a small portion close to the 

cylinder. Because velocity slip parameter primarily slows the fluid motion, it effectively confirms 

a decrease in the net flow of fluid molecules. As a result, temperature profile is reduced due to less 

molecule mobility. However, for first solution of  ( )   has lesser magnitude in assessment with 

lowered one. 

 

6. Conclusions 

The current research focused on the dual solutions on MHD magnetite Williamson nanofluid 

caused by a permeable stretching/shrinking cylinder. The stagnation flow and slip boundary 

condition at the surface with mass transfer parameter is numerically computed. The shooting 

process has been exploited for solutions. For this model, the dual nature of solutions has been 

identified under the influence of some specific physical parameters. The following conclusions are 

drawn: 

 



• Some critical range of  
c   and  

cs   are found for the existence of both solutions first and 

second one. 

• The rate of heat transfer decreases as velocity slip parameter increases. 

• The rate of mass transfer at the surface increases with higher curvature parameter .  

• The temperature of the nanofluid increases with increasing values of heat 

generation/absorption parameter. 

• The average intensification of skin friction with respect to curvature factor was noted to be 

24.8% with comparison of former work. 

• The first and second solutions average enhancement for skin friction for shrinking parameter 

was examined to be 6.37% and 4.98% respectively, when velocity slip and curvature factors 

are absence. 

• For comparative results the minimum value of 0.1,  1.2 and  0  = = − = , while maximum 

values of 0.2,  2 and  0.4  = = = explored remarkable results for skin friction coefficient for 

both solutions. 

• Physically, first solution is efficient and stable compared with second solution. 
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Nomenclature 

,u v  Velocity components  ,x r  Cartesian coordinates 

  Relaxation time ,  ,f    Fluid concentration  

  Fluid density  
wC  Surface volume fraction  

T  Fluid temperature  C
 Ambient nanoparticle volume fraction  

wT  Surface temperature 
wU  Stretching velocity  

T
 Ambient temperature 

0 , 
 (Zero, infinite) shear viscosities  

  Generalized Newtonian 

viscosity  

U
 Free stream velocity  

pc  Specific heat .

  
Magnitude of deformation rate 

k  Thermal conductivity    Free stream velocity  

0B  Magnetic factor    Free stream velocity  

  
w  Free stream velocity  

m  Free stream velocity  ( )
p

c  Effective heat capacity of a nanoparticle 

wv  Mass flux velocity  ( )
f

c  Heat capacity of the base fluid 

, ,a b   Constants   
Parameter defined by the ratio 

( )

( )
p

f

c

c




 

 



Nomenclature 

We  Local Weissenberg number   Dimensionless similarity 

variable 

  Velocity slip parameter A  Unsteadiness parameter 
  Curvature factor Pr  Prandtl number 

Ec  Eckert number Nb  Brownian motion 

Nt  Thermophoresis diffusion *  Ratio of viscosities 

s  Mass flux parameter   Heat sink/source factor 

Re  Local Reynolds number 
fC  Skin friction coefficient 

Nu  Local Nusselt number Sh  Local Sherwood number 

Sc  Schmidth number ,  ,f    Dimensionless, velocity, 

temperature and concentration 
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1/2Re fC   for distinct curvature parameter     with * 0We M s = = = = =  

and 0.5 = . 

 

 

  Omer et al. [46] Hashim and Khan 

[30] 

Present study 

0.0 0.7133 0.713283 0.713295 

0.2 0.7629 0.762891 0.762907 



0.4 0.8101 0.810063 0.810058 
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