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Abstract 

Non-Newtonian fluids play a crucial role in a wide range of applications involving the exchange 

of heat and mass. Nanoparticles are one of the key strategies for improving the performance of 

non-Newtonian fluids in terms of heat and mass transport. Nanoparticles, such as aluminum oxide 

and titanium dioxide, have exceptional thermal properties due to their high thermal conductivity. 

To thoroughly understand and optimize the behavior of non-Newtonian nanofluids over a cone 

surface, we employ numerical solution techniques. In the fluid flow, we also investigate the 

impacts of magnetohydrodynamics (MHD), thermal radiation ( 0.5 1.5dR  ), and dual diffusion 

( 0.4 0.8 and 0.3 0.7b tN N    ). In addition, we examine the impact of a fluid containing 

microorganisms on mass transmission and heat transfer. In order to convert the interconnected 

non-linear governing partial differential equations into non-linear ordinary differential equations, 

we utilize a similarity transformation. Then transform the non-linear ordinary differential equation 

(ODE) into a set of first-order ODEs. Subsequently, we utilize the Keller Box finite difference 

approach to obtain a solution for the non-linear ODE. The results of our study indicate that 

incorporating thermal radiation and MHD (magnetohydrodynamics) leads to increased rates of 

heat and mass transfer by enhancing the diffusion of microorganisms. We validate the reliability 

of our observations by comparing them to prior research.  

Keywords:  Bio-convection, Brownian motion, Eyring-Powell nanofluid, Thermal Radiation, 

Thermophoresis. 

 

1. Introduction 

There are many different sectors that make use of vertical cone-shaped equipment. Some 

of these industries include chemical extraction, food processing, brewing, beverage 

manufacturing, the metalworking industry for casting facilities, polymers, and textiles, among 

mailto:sampathp@srmist.edu.in
mailto:fp9469@srmist.edu.in
mailto:achamkha@yahoo.com


others. These instruments frequently need to be cooled down quickly in order to enable repeated 

usage, which is an essential need for maintaining industrial operations. The production of high-

quality, risk-free goods for people all over the world, including as food, medications, home 

cleaners, and personal hygiene products, is crucially dependent on vertical cone mixers, for 

instance. Through the design process, each type of vertical cone mixer is developed with certain 

industrial objectives in mind as it is being created. There is a perceptible improvement in grinding 

efficiency that occurs as a result of the utilisation of vertical cone mixers, which in turn causes the 

surface of the mixer to warm up on the cone. This heating takes place as a result of the rapid and 

thorough mixing of the mixture, which causes heat to be carried along the surface of the cone. This 

is the reason of the heating described above. Non-Newtonian fluids have been proven to perform 

better than conventional fluids when it comes to the pursuit of efficient cooling for these cones 

through our observations. In addition, we noticed that the use of nanofluids 

2 2 3 2 2)( / and /H O Al O H O TiO  results in an increase in the effectiveness of heat transfer. We are 

going to concentrate on a particular kind of non-Newtonian fluid that is referred to as the Eyring-

Powell fluid in this particular case. The purpose of this study is to evaluate the impact that 

microorganisms have on the processes of heat and mass movement. Subsequently, 

recommendations are made concerning the ways in which these effects can be minimised through 

the utilisation of magnetohydrodynamics (MHD) and thermal radiation. 

Various researchers have examined the heat transfer of fluid flow with different geometrical 

characteristics, and the similarity approach [1,2] and finite difference method [3-5] have been used 

to solve the problem. Furthermore, several researchers have examined non-Newtonian fluid flow 

with various geometric designs [6-9]. In addition, investigators discovered that the MHD effects 

in fluid flow models amplify the heat [10-12]. Researchers Hayat et al. [13], Saleem et al. [14], 

and Khan et al. [15] looked into the mass and heat transfer of cone and plate surfaces under 

conditions of heat flow. Several researchers [16-19] have looked into the MHD mixed convection 

and natural convection of fluid flow problems with heat and mass flux conditions. The heat and 

mass transfer fluid flow problems with various boundary conditions and effects were quantitatively 

explored by Khan et al. [20-23]. Additionally, studies using nanoparticles have been conducted 

because it has been shown in a number of studies [24-27] that the inclusion of nanoparticles in a 

fluid improves mass transfer and heat transfer when compared to standard fluid flow models. Non-

Newtonian fluid models have been added to the nanofluids, which are once again developed [28, 

29]. Non-Newtonian fluid flow over various geometrical problems is studied by Waqas et al. [30], 

Balazadeh et al. [31], Layek et al. [32], and Oke [33], who solve the governing equations both 

analytically and numerically. Furthermore, Khan et al. [33-36] looked at the specific non-

Newtonian-fluid (Eyring-Powell) flow problems with various geometries, in which there were 

additionally several enhanced impacts from mass transfer and heat. The cattaneo-Christov heat 

flux models for non-Newtonian nanofluid flow problems are studied and computationally 

addressed by Reddy et al. [37], Nazeer et al. [38], and Irfan et al. [39]. Simulation studies of the 

Powell-Eyring nanofluid and hybrid nanofluid fluid flow problems with the effects of MHD and 

heat radiation are conducted by Ibrahim [40], Oke [41], Patil et al. [42], and Hussain [43]. 

Numerous researchers looked at the various non-Newtonian nanofluids, including ferromagnetic 

powell-eyring fluid [44, 45], sutterby nanofluid [46, 47], and Williamson nanofluid [48-51]. This 



study looked at the effects of non-Newtonian fluids on mass and heat transfer at various stress 

tensor levels. In several engineering applications, ferromagnetic polymer nanofluid flow has been 

studied by Tabrez et al. [52], Hussain et al. [53], and Khan et al. [54]. Numerous researchers have 

examined bio-convective non-Newtonian nanofluid flow problems in recent years, focusing on 

various geometries such as stretching surfaces [55-57], Riga surfaces [58], and channels [59] with 

different effects. 

There is no research done that looks at how heat and mass transfer can be affected by the 

bio-convection flow of a Powel-Eyring nano fluid on vertical cone surface. As a result of this, we 

are going to look into the natural bio-convective flow of fluid that occurs over a cone in the vertical 

direction. In addition, we took into account the impacts of MHD, thermal radiation, Brownian 

motion, and the thermophoresis effect. At the moment, we are employing multiple nanoparticles 

2 2 3 2 2)( / and /H O Al O H O TiO in order to gain a more in-depth comprehension of heat and mass 

transfer. 

The remainder of the paper is organized as follows: Section 2 contains the mathematical 

and physical models, as well as the governing equation and boundary conditions for the problem. 

Section 3 describes how to solve the governing equation using boundary conditions. Section 4 

provides a summary and graphic explanation of the findings. In the subsequent Section 5, we 

provided some closing observations regarding the subject of the study. Finally the section 6 is the 

future direction and limitation of this study. 

 

2. Mathematical representation of the model 

 

Consider an incompressible, two-dimensional, and stable fluid that travels over a vertical cone. 

This fluid is subject to the effects of MHD, heat radiation and Thermophoresis and Brownian 

motion. The cone has a half-angle, shown by the symbol  , and a radius, shown by the letter r . 

The y-axis is oriented perpendicular to the cone/plate surface, whereas the x-axis follows and 

deviates from the surface as it covers the component. The notations u  and v  are employed to 

denote the velocity components that are parallel to the x- and y-axes, respectively. The 

framework's mathematical structure is shown in Figure 1, which includes equations for 

concentration, momentum, energy, continuity, and micro-organisms density.  The Powell-Eyring 

fluid's additional stress tensor can be expressed mathematically as [25,55] 
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The variable   will be used to represent the dynamic viscosity, whereas   and d  will be the 

characteristics associated with the Eyring–Powell fluid. Assuming, 
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These equations were obtained through the application of the Boussinesq approximation. 



( ) ( )
0

ru rv

x y

 
+ =

 
                                                                                                                       (1) 

( )

( ) ( ) ( ) ( )( ) ( ) ( )( )

2 2
2

1 03 2

1

1 1
( )

2

nf

nf nf

T C Nnf nf nf

u u u u
u v B u u

x y d d y y k

T T C C gcos N N gcos


  

 

        

        
 + = + − − −              

+ − + − +  −

                   (2) 

( ) ( )

2 2

2

1T r
B nf

p pnf nf

D qT T T C T T
u v D

x y y y T y y yc c




 

         
+ − + = −    

           

                           (3) 

2 2

2 2

T
B

DC C C T
u v D

x y y T y

   
+ − =

   
                                                                                               (4) 

2

2
0

( )

c
n

w

bWN N N C
u v D N

x y y C C y y

     
+ − + = 

   −   
                                                                 (5) 

Conditions of the boundary are 
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The provided information includes expressions for the density  , thermal expansion coefficient 

 , heat capacityCp  and thermal conductivity k  of nanofluids [Table 1]. 
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Through the utilization of the corresponding similarity transformations, the non-linear PDE that is 

regulating (1-6) can be transformed into a collection of non-linear ODEs. ( )
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In the following, non-dimensional forms of momentum, temperature, concentration, and density 

of microorganisms are demonstrated through the utilization of similarity transformation. 
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The boundary conditions that correspond to them are 
0 : 0, 0, 1, 1, 1;
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As illustrated below, the non-dimensional representations of the local skin friction coefficient fC  

(Friction between the cone and non-Newtonian fluid), the local Nusselt factor uN  (Heat transfer 

rate), the local Sherwood factor hS  (Mass transfer rate), and the local microbial density value nN  

(Micro-organisms diffusion rate) are presented. 
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3. Computational Technique 

In the realm of adaptable finite difference approaches for parabolic problems, the Keller-

box technique is among the most notable instances. It is suitable for a system of non-linear coupled 

ODE. Before solving the equations (7-11), convert the non-linear coupled ODE system into the 

first order of coupled ODE. After that, apply the finite difference scheme appropriately. For 

linearization, apply Newton’s method in the discretization equation. Finally, using the block 

elimination method to solve the linear equation system. 

First, convert the equation (7-11) in first-order system of ODE by assuming 
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The corresponding boundary conditions are 
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Now introduced the following expression to linearized the non-linear system of equation (22-31) 

by applying newton's method. 
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superscript k  is dropped.  
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The boundary conditions are 

0 0 0 0 00, 0, 0, 0, 0, 0, 0, 0, 0J J J Jf l l        = = = = = = = = =                      (41) 

Now we solve the system of linear equations (32-41) by block elimination method. A better 

convergence and a lower error rate are achieved by the issue as a result of the choice of initial 

guesses. The following are some of the preliminary assumptions that are made here.  



0 0 0 0( ) , ( ) 1 , ( ) , ( ) .e f e e e         − − − −

= = − = =  

It would appear that the step size 0.006jh =  is an adequate convergence point for the technique 

that is currently being utilized. In addition, we insisted on adhering to the 
610−
 error tolerance in 

each and every instance in order to arrive at a solution that exceeded expectations. It would appear 

that the values in Table 2 for each parameter change are in perfect agreement with one another, 

which is a strong indication that the validation of the approach is successful. These findings 

provide evidence that the Keller box method with finite differences is appropriate for our usage. 

In addition, we included the flowchart [Figure 2] for the Keller box approach in order to facilitate 

and enhance comprehension. Utilizing an AMD Ryzen 7 5800H system, we simulated the above 

model in MATLAB R2021a and presented it here. 

 

4. Findings and Analysis 

The heat and mass transfer that occurs during the flow of a bio-convective fluid is visually 

represented by this model. The parameter values of the model were established according to the 

description provided below. 0.3bR = , 0.4K = , 1 2N = , 1= , 1M = , 6.2rP = , 0.5bN = ,

0.4tN = , 0.6dR = , 1cS = , 0.3 = , 0.5rN = , 0.3eP = , 0.7bL = . Unless explicitly stated 

otherwise, all values are constant. The lines in Figure (3-23) that share the same color and pattern 

represent Aluminum and Titanium, respectively. 

 

4.1 Velocity Profile 

Figure 3 demonstrates that an augmentation in the Powell-Eyring fluid component ( K ) leads to a 

decrease in the velocity distribution. Figure 4 shows that arise in the MHD factor ( M ) results in 

a drop in the profile of velocity. This is due to the perpendicular Lorentz force exerted on the fluid 

flow. The force mentioned leads to a boost in the amount of thickness of the boundary layer of 

momentum for the cone. Figures 5 and 6 demonstrate that an elevation in the buoyancy ratio factor 

( rN ) and biological convection Rayleigh value ( bR ) results in an augmentation of the velocity 

distribution for cone shapes and this parameter leads to a higher level of momentum exchange 

within the fluid. Table 3 explains that the skin friction value increases when both the buoyancy 

ratio factor ( rN ) and biological convection Rayleigh value ( bR ) grow. On the other hand, when 

the Electromagnetic variable ( M ), fraction of volume ( ), and Powell-Eyring fluid variable ( K

) rises, the skin friction amount ( fC ) falls. This decrease in fC  leads to a faster fluid flow across 

the cone. When the Electromagnetic variable ( M ) and porosity variable ( ) are raised, titanium 

nanofluid shows the lowest skin friction value compared to other nanofluids such as 2 3Al O  and 

2TiO . 

 

4.2 Thermal Profile  

As seen in Figure 7, an increase in the volume percentage ( ) leads to a greater temperature 

profile, demonstrating an improved heat exchange efficiency. The Powell-Eyring fluid variable (

K ) plays a crucial function and holds great importance, as seen in Figure 8. The figure 

demonstrates that greater quantities of K  result in an enhanced thermal transfer efficiency. Figure 

9 demonstrates that the heat transfer rate is enhanced by a boost in the MHD variable ( M ), as the 



Lorentz force influences both the velocity and direction of the fluid. As shown in Figure 10, the 

most significant impact that porosity ( ) has on heat transmission is the increased surface area 

that is available for heat exchange. Because of the permeable material's compact structure, it 

provides a large surface area for the fluid to interact with, which in turn makes it possible for the 

fluid to transfer heat at a faster rate. The impact of thermal radiation on the temperature profile is 

demonstrated in Figure 11, where an escalation in the thermal radiation parameter ( dR ) leads to a 

heightened heat transfer rate. This phenomenon occurs as a result of fluids emitting heat radiation 

when their temperature exceeds that of their surroundings. This radiation consists of 

electromagnetic waves, which contribute to the rise in internal energy and heat. Figure 12 

illustrates that an augmentation in the Brownian motion parameter ( bN ) leads to a minimize in the 

thickness of the boundary layer of thermal energy. In small-scale systems, the random movement 

of particles caused by Brownian motion leads to an increase in their collision rate. This, in turn, 

enhances the efficiency of heat transmission between the particles and the surrounding fluid. 

Therefore, Brownian motion plays a vital role in improving heat transfer at the micro- and 

nanoscales. Figure 13 provides a clear illustration of the rise in the thermophoresis parameter ( tN

) and presents the measurement of the thin thermal boundary layer thickness. The text provides a 

clear explanation for the observed increase in the rate of heat transmission. The thermophoresis 

parameter controls the movement of particles, resulting in an enhanced heat transmission. Figure 

14 reveals the temperature profile of different Prandtl numbers ( rP ), which are significant in the 

fields of fluid mechanics and heat transfer since they represent the relative rates of momentum and 

thermal diffusion. According to Table 4, increasing the volume percentage ( ), thermal radiation 

( dR ), Brownian motion ( bN ), and Thermophoresis ( tN ) factors leads to higher heat transfer rates 

for aluminum compared to titanium. In general, these figures provide significant information on 

how to maximize the efficiency of heat transfer in different situations. 

 

4.3 Profile of Concentration 

Figure 15 illustrates that a boost in the percentage of volume ( ) results in an elevated 

concentration and rate of diffusion. This is attributed to the existence of nanoparticles, which 

impede molecular mobility and influence transport parameters. An illustration of the influence of 

magnetohydrodynamics (MHD) and an increase in the MHD factor ( M ) on the quantity of 

thickness of the concentration boundary layer and the efficient rate of mass movement is presented 

in Figure 16. The MHD has the capability to increase fluid contact, which contributes to an 

improvement in the manner in which mass is transmitted. Figures 17 and 18 illustrate the impact 

of Brownian motion as well as thermophoresis on the concentration distribution. As stated in the 

temperature profile for these two phenomena, they are causing an increase in thermal transfer rates. 

Similarly, when the Brownian motion ( bN ) and thermophoresis ( tN ) parameters are increased, 

the resulting narrow concentration boundary layer becomes thicker. The text provides a detailed 

explanation of how Brownian motion and thermophoresis processes contribute to the enhancement 

of mass exchange rates. Figure 19 exhibits concentration profiles of different Schmidt values, 

which quantify the relative rates of both momentum and mass transfer in a fluid. The Sherwood 

value indicates the effectiveness of the transfer of mass.  The data presented in Table 5 

demonstrates that an increase in the Brownian motion factor ( bN ) and Schmidt values ( cS ) leads 



to an increase in the local Sherwood number (- (0) ). On the other hand, when the volume fraction 

( ), Powell-Eyring fluid variable ( K ), and thermophoresis factor ( tN ) increase, the Sherwood 

value ( (0)− ) decreases. 

4.4 Density of Micro-organisms Profile 

Figure 20 shows that when magnetohydrodynamics ( M ) is applied to a fluid containing 

microorganisms, the thickness of the diffusion boundary layer surrounding the microorganisms 

decreases and their diffusion rate increases. Microorganisms are made easier to mix and disperse 

when a magnetic field and a flowing fluid contact, producing electric currents that cause MHD. It 

is depicted in Figure 21 that the influence of heat radiation ( dR ) on the outside temperature and 

density of a liquid that contains microbes is shown. The temperature-induced densities transition 

causes warmer, thinner fluid to rise and denser, more relaxed fluid to sink. These fluxes influence 

the dispersion of chemicals in the vicinity of microorganisms. Figure 22 illustrates that an increase 

in the biological convection Peclet value ( eP ) leads to an improvement in mixing of liquids because 

microorganisms are able to move around the medium. Figure 23 demonstrates the influence of an 

elevated Lewis number ( bL ) on the stability of biological convection and the formation of patterns. 

When there is a rise in the Lewis factor ( bL ), thermal propagation takes precedence over mass 

transmission. This change in the equilibrium of the biological processes that are responsible for 

diffusion has an effect on the buoyant forces that are responsible for driving biological convection, 

which ultimately results in a fall in the reliability of the distribution patterns. The data presented 

in Table 6 reveals that the average number of local microorganisms ( (0)− ) decreases as the 

Eyring-Powell fluid factor ( K ) and the volume percentage for the cone-shaped areas increase. On 

the other hand, an increase in the number of the local microbial densities ( (0)− ) is a consequence 

of a greater amount of the heat radiation factor ( dR ), the biological convection Lewis value ( bL ), 

and the biological convection Peclet variable ( eP ). 

 

5. Conclusion 

            The primary objective of this research was to investigate the flow properties of a bio-

convective nanofluid that exhibited non-Newtonian behavioural patterns. Particularly, the Eyring-

Powell fluid framework was utilised for this investigation. An investigation into the flow was 

carried out in respect to an upright cone. Additionally, the effects of thermal radiation, 

magnetohydrodynamics (MHD), thermophoresis, and Brownian motion were taken into 

consideration in this inquiry. The goal of the present study was to acquire a more thorough 

understanding of the mechanisms that are connected with heat and mass transmission. To gain a 

thorough understanding of the model, we looked at a variety of physical aspects of application data 

analysis. When we compared the results to those of earlier studies, there was noticeable agreement. 

The study’s observations led to the following important conclusions:   

❖ When increasing the Magnetohydrodynamic (MHD) parameter   

• The heat and mass transfer rate increased.  

• The micro-organisms diffusion rate increased.  



• The flow velocity decreased.  

❖ When increasing Porosity ( ) and thermal radiation ( dR ) parameter   

• The heat transfer rate increased.  

❖ When increasing Eyring-Powell fluid ( K ) parameter   

• The flow velocity decreased.  

• The heat transfer rate increased.  

❖ When increasing volume fraction ( ) of nanoparticle, thermophoresis ( tN ), and 

Brownian motion ( bN )   

• The heat and mass transfer rate increased.  

6. The future path 

            Future studies on the fluctuations of heat and mass transfer in non-Newtonian fluids with 

microorganisms under unstable conditions might be carried out in greater detail. One of the 

limitations of the current model is that it is unable to account for combined convection in an 

environment that is characterized by fluid flow. 
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Terminology  

u , v  Velocity component 2( )ms−  

x , y  Coordinate  ( )m  

g  Acceleration due to gravity 

r  Radius of the cone 

d  Physical Eyring-Powell fluid parameter 

T  Temperature  ( )K  

C  Concentration  3( . )mol m  

N  Density of micro-organisms 

nfCp , fCp  Specific heat 1 1( )Jkg K− −  

bN  Brownian motion parameter 

BD  Mass diffusivity 2 1( )m s−  
2

0B   Magnetic parameter 

tN  Thermophoresis parameter 

b  Chemotaxis constant 



cW  The maximum cell swimming speed  2 1( )m s−  

nD  Diffusivity of micro-organisms 1( )ms−  

K  Dimensionless Eyring-Powell parameter 

1N  Non-Newtonian fluid parameter 

rN  Buoyancy ratio parameter 

bR  Bio-convection Rayleigh number 

M  Dimensionless magnetic parameter 

1k  Porosity parameter 

f  Dimensionless velocity function 

cS  Schmidt number 

rP  Prandtl number 

bL  Bio-convection Lewis number 

eP  Bio-convection Peclet number 

Greek symbols  
  Half angle of vertical cone 

nf , f , s  Density   3( )kgm−  

  Characteristics parameter of the Eyring-Powell fluid 

nf , f , s  Dynamic viscosity 1 1( )kgm s− −  

T , C , N  Volumetric expansion 
  The mean quantity of microbes 

nf  Thermal diffusivity of nanofluid  2( )m s  

  Volume fraction of nanofluid 
  Stream function 

1  Electrical conductivity  1( )sm−  

  Dimensionless porosity constant 
  Dimensionless boundary layer coordinate 

nf , f  Kinematic viscosity  2 1( )m s−  

  Temperature function(non-dimensional) 
  Concentration function(non-dimensional) 
  Micro-organisms density function(non-dimensional) 
  Bio-convection constant 

Subscripts  
f  Condition of base fluid 

nf  Condition of nanofluid 

s  Condition of nanoparticle 
w  Condition of wall 

  Condition of ambient 
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Table  1. Water and nanoparticle thermo-physical characteristics 

Fluid   Cp  k  510 −  

2H O  997.1 4179 0.613 21 

2 3Al O  3970 765 40 0.85 

2TiO  4250 686.2 8.9538 0.9 

 
Table  2. Comparison between the findings of previous research and the results obtained in the 

current study. Maintaining the values in the manner 0 = , 1rN = , 0bR = , 0dR = , 0bL = , 

0eP = , 1cS = , 1 2N = . 

 Macharla Jayachandra Babu et al. [16] present 

M     K  fC  ( 0)[ / ]d d   =−  ( 0)[ / ]d d   =−  fC  ( 0)[ / ]d d   =−  ( 0)[ / ]d d   =−  

0.8 1 0.2 1.152229 0.468076 0.313377 1.1522301 0.4680765 0.3133778 

1.2 1 0.2 1.095732 0.45870 0.304023 1.0957330 0.4587002 0.3040231 

1.6 1 0.2 1.046513 0.450237 0.295629 1.0465135 0.4502373 0.2956291 

0.6 1 0.2 1.183798 0.473153 0.318462 1.1837981 0.4731528 0.3184632 

0.6 2 0.2 1.026461 0.446405 0.291817 1.0264612 0.4464051 0.2918169 

0.6 3 0.2 0.916951 0.426244 0.272151 0.9169511 0.4262443 0.2721505 



0.6 1 0 1.181208 0.471739 0.315835 1.1812087 0.4717391 0.3158354 

0.6 1 0.2 1.183798 0.473153 0.318462 1.1837979 0.4731534 0.3184607 

0.6 1 0.4 1.178133 0.474832 0.320356 1.1781333 0.4748321 0.3203559 

 
Table  3. Friction between cone and fluid (local skin friction ( fC )) 

  K  
1N  M    

rN  bR  2 3Al O  2TiO  

0.1 0.4 2 1 1 0.7 0.5  1.154429 1.153637 

0.2        1.110168 1.108599 

0.3        1.051933 1.049746 

0.1 0.2 2 1 1 0.7 0.5  1.127593 1.126763 

 0.4       1.154429 1.153637 

 0.6       1.180415 1.179651 

0.1 0.4 1 1 1 0.7 0.5  1.164001 1.163187 

  2      1.154429 1.153637 

  3      1.143167 1.142403 

0.1 0.4 2 1 1 0.7 0.5  1.154429 1.153637 

   1.5     1.101276 1.100679 

   2     1.054712 1.054251 

0.1 0.4 2 1 1 0.7 0.5  1.154429 1.153637 

    2    0.999335 0.999015 

    3    0.892880 0.892747 

0.1 0.4 2 1 1 0.5 0.5  1.063940 1.063086 

     0.7   1.154429 1.153637 

     0.9   1.242752 1.242020 

0.1 0.4 2 1 1 0.7 0.3  1.071047 1.070253 

      0.5  1.154429 1.153637 

      0.7  1.235708 1.234916 



Table  4. Heat transfer rate (local Nusselt number ( (0) − )) 

  K  
1N  dR  bN  tN  2 3Al O  2TiO  

0.1 0.4 2 0.5 0.6 0.5 0.526801 0.511669 

0.2      0.571109 0.534307 

0.3      0.639877 0.564096 

0.1 0.2 2 0.5 0.6 0.5 0.541704 0.526116 

 0.4     0.526801 0.511669 

 0.6     0.512903 0.498194 

0.1 0.4 1 0.5 0.6 0.5 0.525401 0.510298 

  2    0.526801 0.511669 

  3    0.528436 0.513271 

0.1 0.4 2 0.5 0.6 0.5 0.526801 0.511669 

   0.7   0.571032 0.556652 

   1   0.632651 0.619161 

0.1 0.4 2 0.5 0.4 0.5 0.565652 0.550418 

    0.6  0.526801 0.511669 

    0.8  0.494021 0.478951 

0.1 0.4 2 0.5 0.6 0.3 0.537124 0.522214 

     0.5 0.526801 0.511669 

     0.7 0.516002 0.500665 

 
Table  5. Mass transfer rate (local sherwood number ( (0)− )) 

  K  
1N  cS  bN  tN  dR  2 3Al O  2TiO  

0.1 0.4 2 0.8 0.6 0.5 0.5  0.352367 0.350603 

0.2        0.330864 0.326975 

0.3        0.307079 0.300666 

0.1 0.2 2 0.8 0.6 0.5 0.5  0.362266 0.360401 



 0.4       0.352367 0.350603 

 0.6       0.343125 0.341448 

0.1 0.4 1 0.8 0.6 0.5 0.5  0.351438 0.349690 

  2      0.352367 0.350603 

  3      0.353454 0.351670 

0.1 0.4 2 0.4 0.6 0.5 0.5  0.199311 0.196820 

   0.8     0.352367 0.350603 

   1.2     0.452915 0.451576 

0.1 0.4 2 0.8 0.4 0.5 0.5  0.304858 0.302090 

    0.6    0.352367 0.350603 

    0.8    0.376244 0.374976 

0.1 0.4 2 0.8 0.6 0.3 0.5  0.374930 0.373310 

     0.5   0.352367 0.350603 

     0.7   0.333399 0.331661 

0.1 0.4 2 0.8 0.3 0.5 0.5  0.352367 0.350603 

      0.7  0.357956 0.356342 

      1  0.365432 0.364023 

 
Table  6. local micro-organisms density number ( (0)− ) 

  K  
1N  bL  eP    

bR  2 3Al O  2TiO  

0.1 0.4 2 0.7 0.5 0.4 0.5  0.473103 0.472378 

0.2        0.428844 0.427338 

0.3        0.381928 0.379607 

0.1 0.2 2 0.7 0.5 0.4 0.5  0.487127 0.486335 

 0.4       0.473103 0.472378 

 0.6       0.460080 0.459413 

0.1 0.4 1 0.7 0.5 0.4 0.5  0.471527 0.470816 



  2      0.473103 0.472378 

  3      0.474954 0.474213 

0.1 0.4 2 0.5 0.5 0.4 0.5  0.421873 0.421058 

   0.7     0.473103 0.472378 

   1     0.536449 0.535826 

0.1 0.4 2 0.7 0.3 0.4 0.5  0.446455 0.445704 

    0.5    0.473103 0.472378 

    0.7    0.498625 0.497939 

0.1 0.4 2 0.7 0.5 0.3 0.5  0.465017 0.464300 

     0.4   0.473103 0.472378 

     0.5   0.481177 0.480443 

0.1 0.4 2 0.7 0.5 0.4 0.3  0.460514 0.459789 

      0.5  0.473103 0.472378 

      0.7  0.485108 0.484382 

 


