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Abstract 

Pavement plays a crucial role in transportation because it is a permanent surface for 

use in road networks. The health of the pavement ensures the safety and convenience 

of drivers and passengers. In the past few decades, pavement management systems 

have encountered challenges which often have produced solutions with excessive 

demand for resources, but low-accuracy results. New approaches must be developed 

in order to quickly and economically identify pavement failure, especially cracks. 

This paper proposes a fast and accurate method for segmentation of all types of 

cracks in asphalt pavement images based on generative adversarial networks 

(GANs). The proposed model learns the mapping between two domains of pavement 

images and images of segmented cracks. This approach does not necessitate any 

preprocessing or post-processing tasks, and the model generates new images without 

the need to classify each pixel. It detects cracks with high accuracy using a 

conditional image-to-image translation. In this study, the model took an average of 

0.29 s to identify the cracks in each image. This outstanding crack identification had 

a precision of 85.76%, a recall of 89.81% and an F1-score of 87.72%. 
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1. Introduction 

Roads have a direct effect on mobility and communications and are continually 

used to meet the needs of the users [1]. Pavement conditions can affect travel 

safety, vehicle operating costs, travel time and greenhouse gas emissions [2]. In the 

past, pavements were repaired but not managed. However, technological advances 

have provided the necessary tools for managing and maintaining pavements. A 

pavement management system determines management and maintenance 

requirements by prioritizing and determining the optimal times for repair and by 

predicting future conditions [3].   

One of the most important aspects of pavement management systems is 

failure detection. As a lack of timely maintenance can incur costs to governments, 

the application of manual or automatic failure detection methods can help to 

reduce these costs. Manual methods are performed by trained experts who have the 

ability to assess the condition of a pavement [4]; however, manual evaluations can 

be time-consuming and dangerous. In addition, the manual method depends on the 

experience and knowledge of the surveyor and can produce different results based 

on the experiences of different experts. The advent of automatic methods of 

assessment have been introduced and welcomed [5,6]. 

Crack detection can be challenging in some cases because of difficulties 

such as shadows, changes in image contrast, oil stains and environmental 

conditions. Zou et al. [7] tried to address these challenges by developing a fully 

automatic method for crack detection. In their method, the shadows are removed 

prior to crack detection.  

The importance of crack detection in pavement management systems have 

led to the introduction of several methods. In general, automatic methods based on 

images can be divided into three categories. The first category includes 

thresholding, edge detection and region-growing methods. The second category 

includes machine learning methods that use algorithms such as support vector 

machines for crack detection. Other methods are based on deep learning and have 

made significant progress in relation to performance and accuracy [8]. Finally, the 

third category of methods uses 3D images to detect cracks. 

Many studies have been conducted in each of these categories. Oliveira and 

Correia [9] used dynamic thresholding followed by entropy calculation for crack 

detection. Zhao et al. [10] tried to improve flaws in the Canny algorithm for 
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detecting weak edges to identify cracks. Safaei et al. [11] introduced a tile-based 

image processing method, applying localized thresholding to detect cracked tiles 

by analyzing the spatial distribution of crack pixels. Subsequently, for longitudinal 

and transverse cracking, a curve is fitted to connect the cracked tiles. 

With advancements in machine learning algorithms, numerous research 

efforts have been undertaken to enhance crack detection and segmentation. Hoang 

et al. [12] used the artificial bee colony algorithm to optimize the support vector 

machine model for crack detection and classification. Sabouri and Mohammadi 

present a new method involving two distinct techniques. A supervised learning 

approach utilizing Local Binary Pattern (LBP) and Random Forest for crack 

detection from annotated images, and a density-based technique relying on 

thresholding and spatial-geometric properties for iterative crack object 

identification [13]. Another study used an artificial neural network to identify 

cracks in the images taken by a drone after thresholding and removing noise in the 

images [14]. Chen et al. [15] presented a crack detection model based on deep 

learning and used fully convolutional architecture based on SegNet to detect 

concrete pavement cracks, asphalt cracks and bridge deck cracks. 

Another type of deep learning model is convolutional neural networks with 

U-Net architecture. This model has been used to detect cracks pixel-wise. Huyan et 

al. [16] used a U-shaped architecture called CrackU-Net to accurately detect crack 

pixels and achieved high accuracy. Another study used U-Net to detect cracks on 

images taken by drone at different heights from an airport runway after 

determining the optimal height [17]. Sabouri and Sepidbar employed the U-Net 

model to segment cracks, complementing their approach with morphological 

operations to refine the segmentation results [18]. Li et al. employed a combination 

of the U-Net model and the ResNet neural network as the fundamental 

classification network to identify distressed areas within the images [19]. 

In a different category of deep learning models, object detection algorithms 

have been employed in numerous studies focusing on pavement distress detection, 

particularly cracks. YOLO stands out as one of the most renowned object detection 

algorithms due to its high performance, utilized across various research endeavors 

[20,21]. Jiang et al. introduced a two-stage approach integrating pavement crack 

detection and segmentation. Initially, they employed an optimized YOLOv4 for 

crack detection. Subsequently, cracks identified in the first stage underwent 

segmentation using a novel deeplabv3+ method [22]. 
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Following the methods that were used for crack detection, the third category 

of methods was the use of 3D data [8]. Roberts et al. [23] used 3D models that they 

made using a drone and structure from motion technique to evaluate the condition 

of the pavement. Salameh et al. introduced a methodology employing high-

resolution 3D scanners to establish a ground reference for field pavement cracking 

distress [24]. However, certain research endeavors focus on evaluating pavement 

cracks using 2D images. Sabouri and Sepidbar gathered a dataset of pavement 

cracks using a camera positioned at a specified distance from the pavement [25]. 

This distance can subsequently be utilized in conjunction with the specifications of 

the camera to calculate the dimensions of the cracks [26]. 

In general, methods based on deep learning have gained more popularity because 

of their superior performance. One of the deep learning models is Generative 

Adversarial Network (GAN), which was presented in 2014 by Goodfellow et al. 

[27]. GAN is one of the most common generative models that have been very 

successful and have the ability to produce real high-resolution images.  

One of the applications of Generative Adversarial Network (GAN) is the 

translation of images from one style to another. Image segmentation and image 

painting are instances of image-to-image translation applications. Semantic 

segmentation requires a large number of labeled pixels for training and requires a 

lot of time to prepare the training data. Guo et al. [28] converted unreal images 

from video games into real images by using image-to-image translation and 

segmenting them. Another study used conditional GAN, called Pix2Pix, to map 

pixels to pixels and is useful for applications such as converting label images into 

real images in semantic segmentation, converting aerial images into maps and 

converting black and white images into color images [29]. 

This research, intended to use GAN and image-to-image translation to detect 

all types of asphalt pavement cracks across different conditions and shapes. By 

mapping pavement images to ground truth images, cracks were detected in the 

image-to-image translation. The image of the pavement surface, referred to as the 

"Input image," is transformed into an image depicting segmented pixels of cracks, 

known as the "Target image" or "Ground Truth image". This approach can perform 

well under different conditions and can identify and isolate cracks with high speed 

and accuracy.  

In contrast to prior research employing pixel-wise segmentation methods, 

this approach is not reliant on the precision of ground truth images. Furthermore, 
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this model does not necessitate any preprocessing or post-processing tasks, such as 

histogram equalization, feature extraction, morphological operations, and so forth. 

Here, the network learns to translate the input into the structure of the ground truth 

image. Furthermore, unlike other methods where networks predict the class of each 

pixel (crack or non-crack), this network generate a new image by incorporating the 

input image details and structure from the ground truth image. 

 

 

 

2. Methods 

 

The aim of this research was to develop a method for detecting all types of 

asphalt pavement cracks with high accuracy and speed using different 

photographic methods, environmental conditions, changes in brightness and image 

contrast. The proposed method does not require pre- or post-processing and can be 

widely used. This study aims to utilize a GAN for crack segmentation. GANs have 

been successful in different fields because they are based on game theory, while 

other generative models are based on optimization. In this framework, two models 

are taught simultaneously. The generative model represents the distribution of 

the data. The second model is a discriminator which estimates the probability 

that a sample of the data is from a training set or generated by . The training aim 

for the  model is to maximize the error probability of the . In the regard,  is the 

generating distribution of data ,  is the input noise variable and  is the 

mapping to the data space, where  is represented by a multi-layer perceptron with 

parameter . For the  model, the mapping is in the form of .  model is 

trained to maximize the probability of assigning the correct label to the samples 

coming from  and the training samples.  is simultaneously trained to the 

minimize . In other words,  and  play a minimax game with the 

value of the V function as expressed in Equation 1 [27]: 

 

 

 

( ) ( )   ( )  ~ ~
log ( ) log(1 ( ( ))),

data z
G D x p x z p z

D zmin max V G x DD G+ −= E E                       (1) 
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GANs have been used in different fields in different ways. One application is for 

image-to-image translation, which has as its goal to convert the input image from 

the first domain to the target image in the second domain with the aim of 

preserving the intrinsic content. Image conversion from one mode to another has 

solved many image processing and computer vision problems. The training process 

is carried out with the aim of mapping from domain A to domain B and 

produce image  [30,31]. The image-to-image translation can be expressed as 

Equation 2: 

 

 ( ):AB AB A B Ax B x G x→ =                                                                                     (2) 

 

 

During the learning phase, this method acquires the capability to transform the 

input image into a representation resembling the ground truth image. So, there are 

no constraints on segmenting all types of cracks across diverse circumstances. 

Despite the presence of ground truth images with low accuracy, this method can 

still be trained and applied. 

In order to reduce computations and training time, prior to training, the sizes of the 

images have been reduced and the target images (i.e., ground truth) and the input 

images have been concatenated. Figure 1 shows an example of a concatenated 

image. 

 

Figure 2 shows the concept of a GAN, which was used as the main model. As 

shown, the generative network produces a random distribution. Real samples and 

samples generated by the generator (i.e., fake samples) enter the discriminator. If 

the discriminator recognizes a sample as fake, the generative network will be 

updated until it can generate a fake sample that can receive a “real” label from the 

discriminator. In other words, the goal of the generator is to produce a fake sample 

that can deceive the discriminator and receive a “real” label. The purpose of the 

discriminator is to distinguish fake samples from real ones. These two networks 

compete to reach an optimal solution.  

The pavement cracks were identified through the translation of the input image 

to the target image. Concatenated images consist of an input image combined with 

a target image and the network is trained using them. The aim of image-to-image 
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translation is to map between input and output images by transforming an image 

between one domain and another. In this method, the pavement image is mapped to 

the ground truth image according to its structure and content. After the network is 

trained, every image from the test set that enters the network will be mapped to the 

structure of ground truth images. In the image that is mapped to the ground truth 

image structure, the pixels associated with the crack are isolated. 

The network used was similar to UNIT, in the sense of an unsupervised image-

to-image translation. UNIT is a GAN network model which includes a generator and 

two discriminators [30]. However, in the current research, one generator and one 

discriminator have been used because the goal was one-way mapping. The generator 

model in this method consists of a network with U-Net architecture which has an 

encoder and decoder. The encoder (Conv Block) includes the convolution layer and 

normalization layers and Leaky ReLU, which is the activation function. As this 

function has a positive slope on the side of negative values, it prevents 

backpropagation operation errors to allow the networks to correctly update. Equation 

(3) shows the Leaky ReLU function [32] as: 

 

( )

( )

             0

0.01            0

f x x for x

f x x x

= 


= 
                             (3) 

 

Among the components of the decoder (Transposed Conv Block) are a transposed 

convolution layer, batch normalization, dropout and ReLU. The ReLU function is 

equal to . If , the output will be zero and, if , a line with a slope 

of one will be produced [33]. This activation function is computationally efficient 

and can quickly cause the network to converge using a linear equation.  

Seven encoders and six decoders form the generator. The discriminator consists of 

convolution, batch normalization, Zero Padding and leaky ReLU from the 

repeating layers. Figures 3 and 4 show the architecture of the generator and the 

discriminator, respectively. 

 

In this study, Tensorflow (version 2.9.2) was used and the model was trained 

and tested in Google Colaboratory. 
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2.1. Determination of parameters and optimization: 

The training parameters are initialized, then updated using the adaptive moment 

estimation (Adam) optimizer, which is first-order gradient-based optimization, and 

finally are replaced with their previous values [34]. The mini-batch size is a subset 

of the training data that are entered into the network for training in each epoch. The 

mini-batch size has been set as being equal to one because a large mini-batch size 

requires a large GPU array size. 

As a result of defining loss functions, adversarial learning can effectively take 

place. The generator and the discriminator are updated using the loss functions and 

then compete in a minimax game which will result in production of high-precision 

images. The loss in this research is calculated through the functions for  and . For 

the  model, a loss is a binary cross-entropy loss of the generated images and an 

array of ones. A second loss function is also available for the generator (Equation 

4), which is the mean absolute error between the generated image and the ground 

truth image. In order to determine the loss function for the generator, these two 

functions are summed. 

 

( )
1

1
   

n

i

MAE abs Ground truth Generated image
n =

= −                                                              (4) 

 

The first part of the discriminator loss includes binary cross-entropy of the real 

images and an array of ones, as these are the real images. The second part is for 

generated images which is a binary cross-entropy loss of the generated images and 

an array of zeros. The discriminator loss function was obtained by summing these 

two parts [29,31]. 
 

2.2. Datasets: 

Two common datasets were used for training and testing: Crack500 and CFD. 

Crack500 contains 500 images with a resolution of 25601440 [35] and CFD 

includes 118 images with a resolution of 480320 [36]. After providing the 

concatenated images, the images were shuffled and each dataset was randomly split 
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into training data (60%), validation data (10%) and test data (30%). Balancing 

training data for effective learning because of crack complexity, the number of 

images of the dataset, and assessing model performance on unseen test data were 

key considerations for dataset division. The test set for CFD comprises 35 images, 

and for Crack500, it consists of 150 images. The evaluation of this model's 

performance relied on the test images.  

 

3. Results and Discussion 

After preparing the network and dataset, the training data images were entered into 

the generator and the discriminator in pairs to train the style. The generator and the 

discriminator competed with each other to produce the desired result. The average 

training time required for the network for the Crack500 and CFD datasets was about 

one hour. GPU was utilized for training and the average test duration for each image 

was 0.29 s.  

To evaluate the performance of the developed model, the generated images 

were compared with the ground truth images after forming a confusion matrix. 

This is a 22 matrix that considers the classes of pavement “cracks” and “non-

cracks”. Table 1 shows the confusion matrix and the definition of its arrays. The 

confusion matrices for each dataset are shown in Tables 2 and 3, respectively.  

 

The evaluation of the model in this research was pixel-wise. In most 

previous studies, each image was divided into a certain number of tiles and each 

tile was evaluated separately. This method can result in higher accuracy, but pixel-

wise evaluation is a much more reliable method. The evaluation criteria are defined 

in Equations 5-8 as follows: 

 

TP
Precision

TP FP
=

+
                                                                                                   (5) 

 

 

TP TN
Accuracy

TP TN FP FN

+
=

+ + +
                                                                                   (6) 
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TP
Recall

TP FN
=

+
                                                                                                       (7) 

 

 

2* *
1

Precision Recall
F score

Precision Recall
− =

+
                                                                                 (8) 

 

 

Most of the pixels in pavement images relate to the pavement, and cracks 

account for a very small share of pixels. Due to the fact that the number of TN 

pixels is much greater than the number of pixels in the other parts, the accuracy is 

very close to 100 and is considered optimistic while the other three criteria are 

more reliable. Table 4 summarizes the evaluation results of the model for each 

dataset. CFD dataset scored higher on all criteria than Crack500 dataset, which can 

be explained by the complexity of images in Crack500 dataset. Considering the 

performance evaluation and the time spent during testing, this method can be 

considered fast and accurate for crack detection of asphalt pavements. Also, 

considering that the preparation of the dataset does not require special 

preprocessing and the image does not require post-processing after the test, it can 

be considered a relatively simple method. The duration of training depends directly 

on the hardware used in the training process. Table 5 presents a comparison of the 

results from this study with various pixel-wise segmentation methods that used 

CFD and Crack500 datasets in their research. Among the results, this research 

demonstrates the highest recall and F1-Score performance for CFD, with precision 

ranking second. Regarding the Crack500 dataset, recall performance is ranked first, 

while precision and F1-score rank second. The lower precision stems from 

misclassifying pavement pixels as crack pixels, often influenced by the presence of 

oil stains and shadows. Conversely, higher recall signifies a low false negative 

(FN) value, indicating minimal instances where crack pixels are incorrectly labeled 

as pavement pixels. Overall, this method proves to be reliable and accurate. By 

leveraging more powerful hardware and employing deeper networks for the 

generator, further enhancements in performance can be achieved. 

Figure 5 and Figure 6 show examples of an input image, the generated result 

and the ground truth image from the Crack500 and CFD datasets, respectively. 

 

4. Conclusion 
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In this study, generative adversarial networks (GANs) and image-to-image 

translation were used to detect and separate asphalt pavement crack images. In this 

approach, during the training phase, the model acquires the ability to convert the 

input image (depicting pavements with cracks) into instructions for generating the 

target image (ground truth image). Through this transformation, the model detects 

and segments the pixels corresponding to cracks. The original images and the ground 

truth of the training data were simultaneously entered into the generator in order to 

train the model, and based on the target structure, were used to detect cracks in other 

images. The images produced in the generator were fed into the discriminator to be 

evaluated. The generator and the discriminator then competed to produce the best 

result. The built model did not require time for labeling and dataset preparation. The 

performance of this model was evaluated using two datasets including CFD and 

Crack500 and it was found that it performed well, with an average precision of 

85.76%, recall of 89.81% and F1-score of 87.72%. 

Because of its high accuracy and speed, the proposed model can be implemented 

on different datasets. The method was found to be a reliable method for crack 

detection of asphalt pavements and could be useful for pavement management 

systems. 

There exists a trade-off between the number of network layers and the time 

required for running and testing. Deeper networks can enhance model performance 

but also extend the duration of training and testing. This study aimed to devise a 

swift and precise method for crack detection. By leveraging robust hardware, 

improved and expedited performance can be attained. 

It is important to note that this model was specifically trained and developed for 

crack detection and segmentation. With an extensive dataset containing ground 

truth data encompassing various types of pavement distress, this model is trainable. 

Our objective is to pursue this avenue for future research. 
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Figure 1. An example of concatenated Images 

 

 
Figure 2. Concept of GAN 
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Figure 3. Architecture of generator 
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Figure 4. Architecture of discriminator 
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Figure 5. Examples of an input image, the generated result and the ground truth image from the Crack500 dataset 
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Figure 6. Examples of an input image, the generated result and the ground truth image from the CFD dataset 
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Table 1. Confusion matrix 

 Crack Non-Crack 

Crack TP FN 

Non-Crack FP TN 

TP: The sample is a member of the crack category and is recognized as a member of the 

same class (True Positive). 
FN: The sample is a member of the crack class and is recognized as a member of the non-

crack class (False Negative). 

TN: The sample is a member of the non-crack class and is recognized as a member of the 

same class (True Negative). 

FP: The sample is a member of the non-crack class and is recognized as a member of the 

crack class (False Positive). 

 

 
Table 2. Confusion matrix of test set of CFD 

 Crack Non-Crack 

Crack 107880 16203 

Non-Crack 7346 5244571 

 

 

 
Table 3. Confusion matrix of test set of Crack500 

 Crack Non-Crack 

Crack 11549092 2107483 

Non-Crack 1881560 422221865 

 
 

 
Table 4. Evaluation results of model for each dataset 

 Precision (%) Accuracy (%) Recall (%) F1-score (%) 

CFD 86.94 99.56 93.62 90.16 

Crack500 84.57 99.09 85.99 85.27 
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Table 5. Performance of different models 

Dataset Method Precision Recall F1-

Score 

 

 

 

CFD 

CrackIT 67.23 76.69 71.64 

Crack 

Forest-

KNN 

80.77 78.15 79.44 

Crack 

Forest-

SVM 

82.28 89.44 85.71 

Hybrid 

Method 

88.30 83.66 85.92 

Our 

Method 

86.94 93.62 90.16 

 

 

Crack500 

SVM 81.12 67.34 73.59 

Boosting 73.60 75.87 74.72 

Hybrid 

Method 

95.03 78.64 86.06 

Our 

Method 

84.57 85.99 85.27 

                              Reference: [13,37] 

 

 
 


