MAGNETORHEOLOGICAL FLUID: BASIC PRINCIPLE, APPLICATION, AND TRENDS

S.Vivekananda Sharma^{1*}, G.Hemalatha², Daniel C³

¹ Research Scholar, Division of Civil Engineering Karunya Institute of Technology and Sciences, India ²Former Professor, Division of Civil Engineering Karunya Institute of Technology and Sciences, India ³Assistant Professor, Department of Civil Engineering, Hindustan Institute of Technology and Science,

> India *Corresponding Author: bom03vivek@gmail.com.

1 Abstract

Magnetorheological fluids (MRF) are used in a wide range of controlled systems. MRFs have found 2 3 widespread commercial use, particularly in vibration control. MRF is a type of intelligent fluid found in oil carriers. A magnetic field raises a fluid's apparent viscosity until it becomes a viscoelastic solid. A 4 5 variable magnetic field intensity controls the fluid's yield stress when it is active. Control-based applications can be created by using an electromagnet to control the fluid's ability to transmit force. In 6 7 MRF, more nuanced ferrofluid particles are used. Brownian motion cannot suspend MR fluid particles 8 in the carrier fluid due to their thickness. Brownian motion suspends nano-sized ferrofluid iron particles, 9 which reduce sedimentation and increases the performance of the MRF. Dampers, brakes, bearings, pneumatic artificial muscles, optics finishing, fluid clutches, and aerospace all use magnetorheological 10 fluid technology. The characteristics, applications, modes, and models of magnetorheological fluids are 11 investigated in this paper. Understanding yielding, flow, and viscoelastic behavior in the presence of 12 shearing fluxes are critical. Various Applications of MRF in various domain of engineering is discussed 13 with valid examples. In a concise manner, the author discusses the utility of MRF fluid's for active and 14 semi-active vibration control systems. 15

Keywords: Magnetorheological fluid's Properties, operational modes, Bingham model, Bouc-wen
 model, application, vibration control

18 19

20

21

22

22

24

25

26 1. Introduction

In Magnetorheological fluid (MRF), the identical rheological particle properties of the particles in the carrier fluid are applied with a magnetic field to alter its properties. MR fluid is an innovative fluid in a carrier fluid, typically oil and water, where a magnetic field converts a liquid into a viscoelastic solid. The magnetic field intensity is significantly used to alter the fluid's yield stress when active. Its capacity to transmit force-controlled with an electromagnet opens up a wide range of control-based applications, and its strength can be effectively controlled during transmission force [1]. MR fluid, when an magnetic field is applied, we get the apparent viscosity, increasing right from liquid to solid.

This article discusses the basic principles of how the MR fluid works. The magnetic particles, 34 typically micrometres, nanometer scalesplurs, or ellipsoids suspended within the carrier oil, are 35 distributed randomly in suspension under normal conditions/circumstances [2]. Spheres of the size of 36 these nanoparticles are suspended within the carrier oil and distributed randomly in the viscous carrier 37 fluid. Furthermore, under normal circumstances, the random orientation of these magnetic particles is 38 pretty standard in any conducting and non-conducting oil [1-3]. Nevertheless, when the field is on 39 40 means, i.e., the magnetic field is being applied, this microscopic particle ranging from 0.1 to 1 micrometre gets aligned along the magnetic flux line. 41

Furthermore, a chain of particles restricts the fluid's movement when the fluid is between the two poles,
separated between 0.5-2nm. Moreover, they are aligned perpendicular to the direction of magnetic flux,
which is why there is an effective increase in the viscosity of the part [4].

Moreover, the states are anisotropic when the mechanical property of the fluid is in an active situation. Thus, in designing the MR device, it is crucial to ensure that these flux lines are there, and they must be perpendicular to the direction motion which is to be restricted. The applied magnetic flux should be perpendicular to that direction only.

49

Figure.1 shows the carrier oil and the magnetic iron particles that are randomly oriented, and need to be arranged on the column-wise side, not on the row side [1,2]. The particles forming the chains in the direction of flux lines are the direction of the magnetic flux perpendicular to these lines. Moreover, they are just forming the entire column-wise structure, so we can see when it is on from the liquid to the solid phase, then we have a streamlined structure. Furthermore, when it is not on, we have the randomly oriented fluidic particles, or even we can observe them in figure 1.

56 When no field is applied, the random orientation between the carrier fluid and the fluid particles is off 57 state [3]. When an electric field is applied, the orientation changes because we now want the resistance in this direction, the vertical column direction. As in figure 2, we can see what the pressure change is
when it is in these magnetic fields. We can also see MR fluid exhibiting a laminar flow pattern. We
can clearly observe that parabolic velocity profiles are there along with that when it is off figure 2(a),
but it is the magnetic field lines along with it when it is "on" figure 2(b).

62

The orientation along with these particles aligned with these parts, and we can say that we have the shearing layer in which the shear stress is more than the yield stress. We can also say that there is a plugin feature in this part where the shearing layer is just on the top and bottom. So, suppose we look at this with the perfect laminar feature. The shear stress dominates in the top and bottom region, i.e., we can classify it as shearing mode[4]. Even when we look at this part, we have the entire feature that the particles and carrier oils form in this shearing mode.

69

For clear visualization, we can take the milk (no magnetic field) as in figure 3, where all the particles are randomly oriented, and water is a carrier fluid. As in Figure 3, the entire milk converts into cheese when the magnetic field is applied. This is one way we can explain the liquid form of the fluidic nature in layman's terms. It is converted into a solid form because all the magnetic particles are aligned and just show the resistance in the direction where they are aligned [2,5]. When we want to see resistance in the column direction, we can put the column feature or the row feature when we want the resistance in the row direction.

In the case of magnetorheological fluid, a magnetic field generates the chain-like arrangement of the 77 suspended particles by simply inducing a magnetic field and exhibiting yield stress, which increases 78 with the applied field strength and can also characterize a pre-yield region. Moreover, the post-yield 79 region can be characterized by viscous properties [3]. In comparing the elastic and viscoelastic features, 80 81 the pre and post yield regions are an essential factor in studying their behavior. Due to their qualitatively similar behavior of ER fluid and MR fluid, both fluids are used in damper. A damper, which 82 uses MR fluid, is an advanced version of conventional dampers where the damping can be controlled 83 due to the controllable MR fluid governing the damper [4,5]. 84

85

This article discusses the principles of MR fluid, operating modes of MR damper, Models governing the working of MR fluid, and the application of MR fluid and MR damper in various engineering domains. This article's main objective is to present a clear and basic understanding of MR fluid and MR damper.

90 2. MR Damper Operating Modes

A MR fluid is used in one of the three modes of operation where we see the essential directional features [6]. The first mode is the flow/valve mode, and the second mode is the shear mode. The third mode is the squeeze flow mode, where the MR fluid operates.

94

When we talk about the flow model shown in figure 4, in the valve mode, the MR fluid is made to flow between the static plate by a pressure drop. The magnetic field can control the flow resistance, generally running in the flow direction. Only it is effective, and we can get proper resistance. For example, the flow/valve mode can be observed in servo valve dampers, shock absorbers, and even actuators, as shown in figure 5.

100

In the shear mode, the MR fluid is located between surfaces moving(sliding/rotating) about each other,
with the magnetic field flowing perpendicularly to the direction of motion of the shear surface [6], as
shown in figure 6.

104

The characteristics of the shear stress vs. shear strain, we can also say shearing rate because when the shear stresses are present, the shear strain is always present, and the strength of this magnetic field can control it.

As for the last mode, i.e., the squeeze mode, as shown in figure 7.

109

The distance between the parallel pole plate changes. When the distance changes, they cause the squeeze action from the magnetic particle [6]. Moreover, in this mode, a relatively higher force can be achieved because of the squeeze action of magnetic particles, and the reaction features are highly reactive. This model is especially suited for damping vibration with low amplitudes and high dynamic forces. We can observe significant forces going up to a few millimeters of the amplitude, and this squeezed part can effectively absorb the energy against that. Because of its fundamental operational features, the squeeze mode has been used in some small-amplitude vibration dampers.

We can see that all three modes can be seen straightway above. When we have a flow/valve mode in figure 4, it depicts the flow direction and the magnetic field are applied generally to it to achieve the flow features. When we have the shear mode as in figure 6, they are parallel to the surface either in the rotational or any part with shear force. Furthermore, the displacement changes when we have the squeeze
mode as in figure 7. Due to this, squeezing features occur at the magnetic particles, resulting in a high
force with low amplitude application.

The application of these various modes is numerous. Flow mode can be used in dampers and shock absorbers by controlling the movement to force the fluid through channels across which a magnetic field is applied. This is a smooth point where we want to absorb or dampen the vibration, and this is one of the perfect parts to be applied here. Shear mode is mainly used in clutches and brakes where rotational motion must be controlled. It is a perfect shear motion because it ultimately puts the parallel forces in rotational or sliding actions.

On the other hand, the Squeeze flow mode is most suitable for controlling slight millimeter order 129 130 movement involving large excitation forces. This particular flow mode has a minor investigation because of the high excitation forces with low amplitude features. Overall, between these three modes of 131 132 operation, MR fluid can be applied to a wide range of applications according to the service condition and where we want to control the entire vibration or excitation features. So as far as the vibration control 133 problem is concerned, it can act as a Damper. So, MR damper has recently become an intensive study 134 area due to its physical features and potential applicability to control damping in the mechanical system. 135 When exposed to a magnetic field, MR fluid changes from a free-flowing linear viscous liquid to semi-136 solid in milliseconds, with variable yield strength. This feature allows simple, fast interactions between 137 138 electronic and mechanical systems. MR fluid dampers are novel semi-active devices that use MR fluids to deliver controlled damping forces. These devices avoid many costs and technological issues involved 139 with prior semi-active devices. The linear MR damper design is like an actuator that allows controlling 140 performance characteristics. The resistive force is related to the piston speed and the working gap 141 magnetic field. Large damping force and minimal power consumption characterize MR fluid dampers. 142 MR dampers are included in many vibration control systems. 143

144

Figure 8 represents all the essential components of a complete MR damper. This is the basic arrangement in which we have the piston part, how the piston movement is there and then according to the strength, the strength of the magnetic field for good damping feature. We use the various mathematical models for the damper part when talking about this principle.

149 **3. Mathematical Model**

150 Mathematical models represent the mathematical function whose coefficients can be determined using

the rheological part. The parametric value is adjusted until the quantitative results are not closely matched with the data. The dynamic response of MR fluid devices is reproduced in a semi-empirical relationship about the damping part. It uses Numerous parametric models to justify arranging mechanical elements such as spring and viscous dashpots together.

The first model coming under the MR damper is the Bingham model. As in the ER fluid, two features develop (a) Newtonian behavior when under shearing action (b) Non-Newtonian behaviour after the yield limit. There is a clear relationship between shear stress and shear strain rate. So, we have here an explicit Bingham nature itself. We have a similar relationship when applying the magnetic field to these polarized particles. So, the most common behavior of this MR fluid is described by the Bingham plastic model [7,8]

161 **3.1 Bingham Plastic Model**

An ideal Bingham body behaves as a solid until it reaches the minimum yield stress (τ_y) and when it exceeds itself, they exhibit the linear relation between the stress and the rate of formation of a shearing part. The equation involving the relation of shear stress which is being developed under the action of the magnetic field with the micro particles is given by (1)

$$\tau = \tau_y .Sgm(\gamma) + \eta \gamma \quad ; \quad \tau > \tau_y \tag{1}$$

167 Where,

- 168 $\tau = shear \, stress$;
- 169 $\tau_{y} = shear \, stress \, at \, yield \, point$;

170 $\gamma \cdot \gamma = shear \ strain \ rate;$

171 $\eta = plastic viscosity of fluid (newtonian viscosity)$

Equation (1) shows that even if we apply the load up to a specific limit before reaching the yield point, there is no change observed in the solid. However, after exceeding the yield point, it exhibits elastic behavior. $\tau_y .Sgm(\gamma)$ shows a linearity feature, and $\eta\gamma$ shows the shear strain rate, which is absorbed with the viscous plastic feature in the relationship equation given.

Since, it exhibits both viscous and elastic behavior from (1), we conclude by stating that the Bingham
model exhibits visco-elastic features of the material.

178 In the Bingham model, if we are going below the yield stresses, then indeed, the material behaves 179 viscoelasticity, where we can say that;

180		$ au \propto \gamma$	
181		$\tau = G\gamma ; \tau < \tau_y$	(2)
182	Where,		
183	au = shear stress ;		
184	τ_y = shear stress at yield point ;		
185	G = complex material modelus;		

186 $\gamma = shear \, strain \, rate;$

G is the complex material modulus and not the shear modulus. However, there is the shear mode. The shear strain rate within the MR fluid is clearly defined when the relationship of shear strain rate is below the yield stress, and the MR material usually operates within the post-yield continuously shear or the flow regime.

We need to check out the regime and the reason below the yield point or above yield point. If it is below the yield point, it is due to the linearity behavior shown in (2), and if it is below the yield point, it is due to (1).

194

Figure 9 represents the basic Bingham model, which is given in the paper by Spencer et.al [8] Whenever an exciting force F is applied, We have C₀ part, which is the minimum viscous part showing the plastic viscosity there itself, and afterward, a transparent portion of yield point showing the elastic feature in which we can say that τ_{y} .Sgm(γ) The yield and shear stress rates vary linearly [8].

We can also put the mechanical analog of such behavior with Columb friction parallel to the viscous dashpot. So, in this model, while just talking about the columb friction features in that, the force Fgenerated by the MR damper is given by (3)

$$F = f_c .sgm(x^{\cdot}) + C_0(x^{\cdot})$$
(3)

203 Where,

- 204 x' = velocity attributed to the excitation
- 205 $C_0 = damping \ coefficient$
- 206 $f_c = frictional force related to the fluid's viscosity and field dependent yield stress$

We have here two things together, i.e., the damping, which is absolutely the function of the fluid viscosity, and the frictional forces, which depend on the yield stress along with this f_c which is the frictional force varying with the sinusoidal features $\sin \omega$ or $\sin x$.

When we want to represent the fundamental characteristic of these MR fluids, the Bingham model, which is very close to that is accounted for its electro or magnetorheological fluid behavior beyond the yield point, which means when fully developed fluid flow is there, or the shear stresses there are sufficiently high then only we can just go for the actual fluid behavior assuming that the fluid remains rigid in the pre yield region.

Figure 10 represents the visco-plastic model of MR fluid. As we can see from the figure 10, it is clearly shown right from "0" up to " τ_c ". The vicious part is dominating and not exhibiting any flow. The energy being there is either dissipated or absorbed at this point. Beyond yield, the linear region or the elastic feature starts exhibiting. So, the viscoelastic model of the MR fluid clearly shows that if we have the Bingham models, it is mandatory to show this part first and go straight till linear propagation is observed. Moreover, if we use the Newtonian fluid model, which starts right from "0" and propagates linearly, showing a solution between shear stress and shear strain part.

222

The experimental feature with flow and velocity shows how the damping is featured in figure 10. The green line clearly shows the variation in force concerning velocity.

225

For MR fluid, there is various property documented by Carlson and jolly in 2000 [7] as presented in 226 table 1. We have the typical MR fluid where minimum yield strength up to 100kPa and maximum 227 magnetic field up to 250kA-m are observed. The plastic viscosity, the fundamental property before the 228 vield limit, is 0.121Pa.s. It can be operated from temperature- 40° C to 150°C. The response time is always 229 less than milliseconds. This is the main characteristic of the MR fluid system and can immediately 230 respond when excitation force is activated. The density is 3-4g/cm³, and the relation between plastic 231 viscosity and our yield limit is 10⁻¹⁰ to 10⁻¹¹ s/Pa. Other properties include the power supply of 50W, 232 which results in maximum energy density. Bingham model is the first model which can clearly show the 233 234 fundamental characteristic of Magnetorheological fluid, which can be used in Magnetorheological Fluid Damper for vibration control. 235

236 **3.2 Bouc-wen Model**

A model with a more defined part is the Bouc-wen model presented by Spencer et.al [8], shown in

figure 11. In this model, we can say only the characterized behavior of this MR fluid damper. So, again we need to produce the hysteresis system's response to the random excitation. So, we can get straight away, which we can see that the force generated by the device can be represented as shown in the figure11.

242

Here, we have the same as the Bingham model, the spring feature, and the damper feature. However, here we are saying that the displacement is "y" and the entire total damper movement is "x." when the external force is being applied, there are three primary devices that are being acted together according to the Bouc-wen model, i.e., C, K and this device which is all acting together. So, we are just trying to consider these three features or putting the response from the hysteresis system from the random excitations.

Equations describing the Bouc-wen algorithm for the MR damper behavior can be written as,

250
$$f = C_1 \dot{y} + k_1 (x_d - x_o)$$
 (4)

251
$$\dot{z} = \gamma \left| \dot{x}_d - \dot{y} \right| z \left| z \right|^{n-1} - \beta x \left(\dot{x}_d - \dot{y} \right) \right| z \left|^n \pm A \left(\dot{x}_d - \dot{y} \right)$$
(5)

252
$$\dot{y} = \frac{1}{C_o + C_1} \left\{ \propto z + C_o x_d + K_o (x_d - y) \right\}$$
 (6)

253 Where, the primary displacement variables describe f, x_d and y along with an evolutionary 254 variable z that considers the history dependency. Viscous damping parameters C_o and C_1 as well as the 255 parameter \propto depending on the field variable(voltage/ampere). Parameter β and x_o are constants.

 $C_1 \dot{y}$ means the real characters of the damper at that time, which is related to all the damping parameters. So, C_o is the first damping and C_1 is the damping occurring outside related to displacement y.

We have the damping force from C_1 as well as $C_1 \dot{y}$ plus the restoring force, which is due to the relation with x_d .i.e, whatever the variable feature are there in the displacement part and x_o which is the initial part. So, the difference between the damping and the initial part is just giving into K_1 Moreover, the stiffness feature there gives the restoring force.

For the evolutionary variable, we account for whatever the previous dependency feature are there i.e 264 \dot{z} as given in (5). When we are just trying to compute these coefficients β and x_o We are applying here, which is the constraint part, and we are trying to put the boundary conditions.

So, from $\beta x \left(x_d - y \right) |z|^n$ we can straightaway get these two coefficients according to what the 266 application means, what the boundary conditions are there and what we see the operating features are 267 there all together along with \dot{y} which is there initially as given in (6) 268 Referring to (6) \dot{y} is known as the velocity components where, 269 C_o and C_1 = viscous damping parameters 270 271 ∞z : 272 ∞ = field variable depending on the applied voltage into z And z is the evolutionary variable depending on how the dependency features are there in the previous 273 part of $C_o x_d$ because C_o is just moving along with x_d . So, we have the viscous force with that, plus 274 $K_o(x_d - y)$ since the displacement considered is y. So, the Eq(4),(5)&(6), which are based on the 275 Bouc-wen, simply shows the relation of all these parameters when the entire fluid damper model is 276 behaving under the excitation force "f" and when we are trying to make the predicted part between 277 experimental and theoretical part in Bingham model. 278

279

When the whole feature is present, the hysteresis loop is represented by the figure 12 in a way that is easy to understand. When the green part of the experimental component is present, as shown in the image, the nonlinearity may be seen very clearly [8].

The original Constitutive Models of MR fluid, proposed by Bingham and Bouc Wen, have been modified and are presented in a tabular format for better interpretation in Table 2.

285 **4. Application**

Semi-active vibration control devices are MR dampers, and it has numerous applications in the automotive, defense, and medical fields. On the other hand, the MR damper system's uses are limited to shock absorbers in autos. They are being utilized in military research in defense, medical applications such as prosthetic limbs, and enormous constructions that can be thoroughly safeguarded from catastrophic events like earthquakes.

291 **4.1 MR Fluid in Defence**

The activity of all weapon parts and mounting during launch is covered by gun mechanical systems. Gun mechanics examines dynamic behaviour, system stress, and component stress [11]. Researchers are now conducting studies on incorporating MR damper in construction of a run recoil system couple with adaptive H-SAFC algorithm. The evaluation, depicted in figure 13 is carried out using simulation and experimentation, as well as time-domain analysis of performance metrics such as acceleration, forces and jerking of the gun recoil system [12].

298

Researchers are now conducting studies on the material to construct a smart bulletproof vest 299 300 comprising layers of MR fluid. This vest alters its mechanical properties when passing it through a 301 magnetic field in the blink of an eye. The vest is light and flexible when there is no magnetic field, but it may be stiffened by just flipping a switch. Defense research agencies are developing armor suits made 302 of MR fluids to withstand the impact of explosives by preventing shrapnel from breaching the armor's 303 304 surface. California United States Army is experimenting with magnetic resonance dampers in heavy vehicles like the HMMWV Hummer. It will still take more research and development in this arena to 305 306 ensure that MR fluid vests stop bullets in the conflict soon [13].

307 **4.2 MR Dampers in Mechanical Engineering**

Magnetorheological (MR) fluid dampers are becoming more and more popular in semi-active vehicle 308 309 suspension applications due to their mechanical elegance, significant dynamic range, power efficiency, 310 tremendous force capacity, and reliability. By tweaking the magnetic field strength on an MR damper, a multi-DOF vehicle system's MR damper can provide both driving experience and cruising stability.MR 311 dampers are simple, reliable, durable, and lack moving parts. MR dampers reduce vertical and steering 312 movement [14]. For 2-DOF car seat suspension presented in figure 14, an innovative adaptable fuzzy 313 control unit connected with the H-infinity approach was developed by Phu et al. [15]. When compared 314 to the performance of a fuzzy controller, the vibration control performance achieved by employing an 315 adaptive controller was shown to be much superior. The dynamic performance of a three-wheeled 316 vehicle with a (MR) damper has been evaluated and presented. Successfully investigated parameters of 317 MR fluids are used to quantify the dynamic force of the MR damper using a quasi flow-mode in the MR 318 damper model. Three-wheeler ride comfort and stability have been studied utilising an MR damper 319 model with PID control by Tharehalli Mata et al. [16]. 320

321

Apart from application in automobiles, MR Damper is also being used in stabilizing the aircraft. J.-Y. Yoon [17] developed a new control logic for landing gear systems that uses magnetorheological (MR) dampers and focuses on the absorption of variable mechanical energy by the landing gear depending on landing conditions to reduce impact load by controlling the MR effect until the landing gear's initialcompression stroke.

327

SchAircraft landing gears as depicted in figure 15, serves to limit the amount of force imparted to the 328 329 airplane body during landing. Because of their excellent landing efficiency per unit weight, landing gears oriented towards passive oleo-pneumatic are commonly utilized [18]. However, under all design 330 331 parameters, this sort of passive landing gear cannot achieve ideal performance. To overcome the limitations of passive landing gears, MR dampers with two compartments have been proposed for use 332 in aviation landing gear systems. A normal skyhook controller is used for controlling the MR landing-333 gear systems. Although the landing efficiency of a skyhook controller is superior to that of a 334 conventional landing gear system, the improved skyhook controller limits the performance of the 335 aircraft's velocity. To overcome this limitation as depicted in figure 16, a hybrid control system 336 comprised of a force control and a skyhook control system has been proposed and implemented in MR 337 338 landing-gear systems [19].

Recently, magnetorheological brakes have been employed in haptic devices for passive force/torque feedback due to their safety and low power consumption. A study by Chen et al. [20] combined the benefits of linear and rotary MR brakes to create a new rotary MR brake. The brake converts shaft rotation into piston reciprocation, enhancing torque-to-volume ratio (TVR) in the MR brake. Additionally, psychophysical investigations assessed the subjective perception of output torque from the two actuators. Research indicates that increasing torque feedback accuracy enhances haptic interactions and transparency.

MR fluids take a new approach to polishing and surface finishing. These unique fluids may change from 346 liquid to semi-solid under a magnetic field, allowing precise polishing control. Magnetorheological 347 Finishing (MRF) hardens MR fluid around a polishing tool to form a moldable abrasive head. This 348 approach controls material removal to produce high-quality surface finishes on metals, glass, and 349 350 delicate optics. Magnetorheological Jet Finishing (MRJF) uses an abrasive MR fluid jet [21]. A magnetic field controls the jet's direction and shape, enabling accurate material removal for shaping and polishing 351 complicated geometries. MRJF is versatile in surface finishing applications, especially in hard-to-reach 352 locations or sensitive components. A great surface finish with minimum subsurface damage is possible 353 with MR fluids in polishing. The magnetic field may be tailored to polish complicated items with 354 different surface characteristics, making it applicable across sectors [22]. Reusable MR fluids reduce 355 waste and environmental effect compared to typical polishing methods. MR technology is potential for 356

surface finishing, especially for high-precision applications and delicate components [21,23].

358 4.3 MR Dampers in Railways

359

Looking upon the various forces acting on a railway boogie, It is possible to construct a shockwave 360 profile by utilising an MR damper as shown in figure 17. Impact tests need to be carried out in order to 361 evaluate shock survival based on shock loading [24]. This is necessary because shockwaves that are 362 generated by noncontact explosions are known to cause damage to the electric gadgets found in 363 submarines. Oh et al. [25] developed a device for performing impact tests, as well as a field-dependent 364 365 dual shockwave profile that was later successfully analyzed. The effectiveness of the control was 366 evaluated in the field by Kim et al. [26]. Another form of control approach for the MR dampers used in railway systems was created by a research team. These other control methods include predictive model 367 control and disturbance rejection control [27]. It was determined, on the basis of the control results, that 368 369 the proposed semi-active suspension solutions had the potential to significantly reduce the vertical vibrations that railway vehicles experience. Jin et al. [28] have just recently developed a novel semi-370 371 active suspension that consists of an MR damper in addition to an elastomer for application in railways as depicted in figure 18. 372

373

4.4 MR Damper in Biomedical

375 Many research have used MR dampers in prosthetic knees because MR fluid can adjust stiffness and376 damping.

377

Park et al. [29] developed prosthetic leg for above-knee region as shown in figure 19, that included 378 an MR damper with flat motor. The suggested device consists of a MR damper, flat motor, planetary 379 gear, wearable connector, encoder, gyro sensor, and a hinge. MR dampers develops a resistive force, 380 while the flat motors control knee joint angle during gait. At modest walking speeds, the knee angle 381 matches the ideal angle. At high walking speeds, MR dampers and imprecise knee angle prediction 382 algorithms limit the tracking performance. Pandit et al. [30] designed a prosthetic leg that included a 383 hinged knee joint, an MR damper, and braces to support the limb assembly system. A single-MR-384 damper-based knee joint mechanism was presented to reduce the cost of the prosthetic limb. It can 385 provide typical gait kinematics for the same price as passive prostheses. 386

387

Wang et al. [31] recently devised an active-passive robotic finger for rehabilitation as shown in figure 20. Passive training was done with an antagonistic pair of pneumatic muscle, while active training was done with an MR damper. The MR damper's current was calibrated to give multiple damping forces tosatisfy finger muscle intensity during recovery.

392 Magnetorheological (MR) fluids are currently in trend for its application in haptic devices. The unique property makes them exceptionally well-suited for utilization in haptic master systems, which 393 are devices designed to provide users with a realistic sense of touch within virtual environments [32]. In 394 these systems, MR fluids can create various haptic effects such as force feedback, texture simulation, 395 and friction control. With advantages including fast response times, high force output, and low power 396 consumption, MR fluids stand out from traditional haptic technologies [33]. The applications of MR 397 fluids in haptic master systems span diverse fields, including surgical simulation for training surgeons, 398 assisting in robot-assisted surgeries for enhanced precision, and improving virtual reality experiences 399 through haptic gloves for users to touch and interact with virtual objects, collectively presenting a 400 401 promising future for revolutionizing human-computer interactions and immersive experiences [34].

402

403 **4.5 MR Damper in Civil Engineering**

Seismic activity damaged RCC structures. Beam-roof-tile and beam-column connections were most
 damaged. Redesigning the structural system and adding shear walls, classic or dispersion rocking walls,
 steel or aluminum exoskeletons, and low impact interventions can improve seismic behaviour.

407

408 Passive (viscoelastic) and active (MR) dampers, frictional dampers, adjustable tuned mass dampers, tuned liquid dampers, and base isolation dampers improves structure damping. Recent study shows that 409 Magnetorheological (MR) dampers are best for structural dampening and need less power (allowing 410 operation under battery power). It offers controlled damping force and high force capacity. It's 411 temperature-resistant. Durability and demand make it popular in this field. MR dampers offer non-linear 412 characteristics, strong hysteretic dissipation capacity, and robust performance [35-39]. Chaudhuri et.al 413 [33] performed an investigation as depicted in figure 21, on frame structure where the structure was 414 fitted with MR damper diagonally and subjected to cyclic load for studying the vibration reduction of 415 the structure. 416

Zubair Rashid et.al[36] investigated a five-story steel frame as in figure 22, using shake table incorporated with a template matching algorithm for DIC streaming. The MR dampers (ON state and OFF state) change the structural response and evaluate the DIC technique's accuracy and adaptability. Displacement, Velocity, acceleration, column base strains and inter-story drift of the floors and were measured and compared with standard transducer data. Rebecchi et.al [37] evaluated the efficiency and stability of a new servo-hydraulic Active Mass Damper (AMD) which can improve seismic performance of a building at various seismic intensities. When subjected to significant ground shaking, the two casestudy buildings were supposed to exhibit a soft story mechanism at the first floor, while one was outfitted with the proposed damper. Following that, the two specimens were subjected to the exact loading experiment, which comprised of a highly variable earthquake motion. AMD increases building seismic performance, according to experimental investigations. AMD absorbed 60% of the input energy and reduced peak displacement by 70%.

429

Caterino et.al [38] investigated an innovative method as depicted in figure 23, for reducing seismic 430 impacts on pre - cast reinforced concrete structures that uses MR damper as a semi-active control 431 system, with the objective of lowering base bending moment without significantly increasing top 432 433 displacement response. Using non-linear time history assessments versus natural earthquakes, the usefulness of the suggested technique to reduce seismic vulnerability of existing or new precast 434 435 structures is emphasized. Waghmare et.al [39] investigated the appication of semi-active MR dampers as depicted in figure 24, to reduce the structural behaviour of elevated liquid storage tanks made of 436 reinforced concrete. The SSC algorithm was proposed in the study as an effective method of controlling 437 the reaction of an RC raised tank by utilising the damper's force-capacity ratio. Control plans and the 438 positioning of the dampers in the staging are used to evaluate the performance of the MR dampers. Both 439 open and closed loop control system are taken into consideration. The suggested simple semi-active 440 441 control algorithm is a reliable method for RC elevated liquid storage tanks using SAMRD to reduce seismic response. 442

443 **5.** Conclusion

444 Many researchers are already employing smart fluids in commercial applications. In the future, this trend 445 will be driven by equipment manufacturers who want to increase the value of their products by 446 incorporating smart fluids. Significant changes in automotive, civil, and aerospace engineering are 447 expected in the coming years.

According to the preceding section, smart fluids improve the performance of the devices. Smart fluid dampers can be used in civil engineering to reduce vibrations in buildings. It could be beneficial to use smart fluids in automobiles and aircraft. Many aerospace applications are now receiving special attention as a result of MR fluids. They do not require the high voltages that ER fluids do, so they can be used in different ways. Smart fluids are also widely used in aircraft landing gear. MR fluid-based landing gear is also being researched. Aerospace vehicles can easily use a wire-steering system similar to that of a
forklift truck. People driving cars with wire-operated brakes, throttles, and shifters could use MR fluids
to maintain tactile feedback. This would be beneficial for two reasons: safety and operator acceptance.

Recent research indicates that significant progress has been made in developing MR materials capable of delivering adequate force and a long stroke. This material must be thoroughly examined by researchers. There is a lot of potential for this breakthrough material to open up many new areas of use in the future, which is very intriguing, but several issues still need to be addressed and investigated. In the formulation of MR fluids, it is critical to achieve the best possible balance of attributes for specific applications or classes of applications.

Although MR fluids have a wide range of applications due to their unique ability to change viscosity, itis difficult to transfer this technology from the lab to the real world.

464 Cost and Scalability: The presence of rare earth elements in magnetic particles increases the cost of
465 producing MR fluids. For widespread use, cost-effective and scalable production methods are required.
466 Rheological Control: In some applications, the magnetic field response of MR fluids must be fine467 tuned. Advanced engineering and characterization are required.

468 Long-Term Stability: Extreme temperatures and harsh environments can degrade MR fluids.
469 Maintaining stability and performance over a product's lifetime is difficult.

470 System integration: Magnets, sensors, and controls help MR fluids function. Integrating them 471 seamlessly into existing systems requires extensive design and engineering. The lack of standardized 472 testing procedures and performance criteria for MR fluids makes it difficult to compare products from 473 various manufacturers.

MR fluids possess remarkable potential across various industries. Overcoming the challenges of cost,
scalability, and integration which is crucial for their successful commercialization. As these hurdles are
addressed, we can expect to see MR fluids in more enhanced fields like vibration control, haptics,
prosthetics, and industrial automation.

6. Reference

[1] Sidpara, A., & Jain, V. K. . Rheological Properties and Their Correlation with Surface Finish Quality in MR Fluid-Based Finishing Process. *Machining Science and Technology*, *18*(3), pp 367–385.

(2014) https://doi.org/10.1080/10910344.2014.925372

- [2] Kamble, Vikram.G, Shreedhar Kolekar. Analysis of rheological properties of MR fluid based on variation in concentration of iron particles. American Journal of Nanotechnology, 5(2), pp 12–16 (2014). https://doi.org/10.3844/ajntsp.2014.12.16
- [3] Roupec, J., Mazůrek, I., Strecker, Z., et.al., The behavior of the MR fluid during durability test. Journal of Physics. Conference Series, 412, 012024 (2013). https://doi.org/10.1088/1742-6596/412/1/012024
- [4] Nagdeve, L., Sidpara, A., Jain, V. K. et.al. On the effect of relative size of magnetic particles and abrasive particles in MR fluid-based finishing process. *Machining Science and Technology*, 22(3), pp 493–506 (2017). https://doi.org/10.1080/10910344.2017.1365899
- [5] Sidpara, A., Das, M., & Jain, V. K. Rheological characterization of magnetorheological finishing fluid. *Materials and Manufacturing Processes*, 24(12), pp 1467–1478 (2009). https://doi.org/10.1080/10426910903367410
- [6] Yazid, I. I. M., Mazlan, S. A., Kikuchi, T., et.al., Design of magnetorheological damper with a combination of shear and squeeze modes. Materials in Engineering, 54, pp 87–95 (2014). https://doi.org/10.1016/j.matdes.2013.07.090
- J.D.Carlson, D.M.Catanzarite, K.A.St. Clair, Lord Corporation, 5th Int. Conf. on Electro-Rheological, Magneto-Rheological Suspensions and Associated Technology Sheffield, 10-14 July (1995)
- [8] B. F. Spencer Jr., S. J. Dyke, M. K. Sain, et.al, Phenomenological Model For Magnetorheological Dampers. ASCE Journal of Engineering Mechanics, (1997) https://doi.org/10.1061/(ASCE)0733-9399(1997)123:3(230)
- Khajehsaeid, H., Akbari, E., & Jabbari, M. Magnetorheological Fluids. Applied Complex Flow: Applications of Complex Flows and CFD, pp 125-147. (2023) https://doi.org/10.1007/978-981-19-7746-6_6
- Bai, X., Zhang, X., Choi, Y., et.al. Adaptive magnetorheological fluid energy absorption systems: A review. Smart Materials and Structures (2024). https://doi.org/10.1088/1361-665x/ad278b
- [11] Bin Hussain. Characterisation of a gun recoil resistance model for use in internal ballistic modelling, Master of engineering THESIS, North-West University (2021)

- [12] Rahmat, M. S., Hudha, K., Kadir, Z. A., et.al. Vibration control of gun recoil system with magnetorheological damper associated with adaptive hybrid skyhook active force control. *Journal of the Brazilian Society of Mechanical Sciences and Engineering*, 43(5) (2021). https://doi.org/10.1007/s40430-021-03001-9
- [13] Bajaj, H. M., Birdi, G. S., & Ugale, B. A. Application of Magneto Rheological (MR) Fluid. Int. J. Mech. Prod. Eng, 2, pp 83-87 (2014).
- [14] Dutta, S., & Choi, S. . Control of a shimmy vibration in vehicle steering system using a magnetorheological damper. *Journal of Vibration and Control*, 24(4), pp 797–807 (2016). https://doi.org/10.1177/1077546316652786
- [15] Phu, D. X., Hung, N. Q., & Choi, S. A novel adaptive controller featuring inversely fuzzified values with application to vibration control of magneto-rheological seat suspension system. *Journal of Vibration and Control*, 107754631774047 (2017). https://doi.org/10.1177/1077546317740479
- [16] TharehalliMata, G., Krishna, H., & Keshav, M. Characterization of magneto-rheological fluid having elongated ferrous particles and its implementation in MR damper for three-wheeler passenger vehicle. *Proceedings of the Institution of Mechanical Engineers. Part D*, *Journal of Automobile Engineering*, 237(2–3), pp 426–439 (2022). https://doi.org/10.1177/09544070221078451
- [17] Yoon, J., Kang, B., Kim, J., et.al. New control logic based on mechanical energy conservation for aircraft landing gear system with magnetorheological dampers. *Smart Materials and Structures*, 29(8), 084003 (2020). https://doi.org/10.1088/1361-665x/ab9e11
- [18] Han, C., Kang, B., Choi, S., et.al. Control of landing efficiency of an aircraft landing gear system with magnetorheological dampers. *Journal of Aircraft*, 56(5), pp 1980–1986 (2019). https://doi.org/10.2514/1.c035298
- [19] Kang, B., Yoon, J., Kim, G., et.al. Landing efficiency control of a six degrees of freedom aircraft model with magneto-rheological dampers: Part 2—control simulation. *Journal of Intelligent Material Systems and Structures*, 32(12), pp 1303–1315 (2020). https://doi.org/10.1177/1045389x20942593
- [20] Chen, D., Fang, Y., Ni, H., et.al. Development of a small rotary MR brake working in mixed mode for haptic applications. *IEEE Transactions on Instrumentation and Measurement*, 1.(2024). https://doi.org/10.1109/tim.2024.3372228

- [21] Wang, W., Ji, S., & Zhao, J. Review of magnetorheological finishing on components with complex surfaces. The International Journal of Advanced Manufacturing Technology/International Journal, Advanced Manufacturing Technology, 131(5–6), pp 3165–3191 (2023). https://doi.org/10.1007/s00170-023-11611-x
- [22] Ghosh, G., Sidpara, A., & Bandyopadhyay, P. Performance improvement of magnetorheological finishing using chemical etchant and diamond-graphene based magnetic abrasives. *Precision Engineering*, 79, pp 221–235 (2023). https://doi.org/10.1016/j.precisioneng.2022.10.008
- [23] Xu, J., Li, J., Nie, M., & Liu, Y. Material removal mechanism in magnetorheological foam plane finishing. *Journal of Manufacturing Processes*, 87, pp 168–182 (2023). https://doi.org/10.1016/j.jmapro.2023.01.043
- [24] Oh, J., Lee, T., & Choi, S. Design and analysis of a new magnetorheological damper for generation of tunable Shock-Wave profiles. *Shock and Vibration*, 2018, pp 1–11 (2018). https://doi.org/10.1155/2018/8963491
- [25] Oh, J., Shul, C. W., Kim, T. H., et.al. Dynamic analysis of Sphere-Like iron particles based magnetorheological damper for Waveform-Generating Test System. *International Journal of Molecular Sciences*, 21(3), 1149 (2020). https://doi.org/10.3390/ijms21031149
- [26] Kim, H., Shin, Y., You, W., et.al. A ride quality evaluation of a semi-active railway vehicle suspension system with MR damper: Railway field tests. *Proceedings of the Institution of Mechanical Engineers. Part F, Journal of Rail and Rapid Transit, 231*(3), pp 306–316 (2016).. https://doi.org/10.1177/0954409716629706
- [27] Sharma, S. K., & Lee, J. Design and development of smart semi active suspension for nonlinear rail vehicle vibration reduction. *International Journal of Structural Stability and Dynamics/International Journal of Structural Stability and Dynamics.*, 20(11), 2050120 (2020). https://doi.org/10.1142/s0219455420501205
- [28] Jin, T., Liu, Z., Sun, S., et.al. Development and evaluation of a versatile semi-active suspension system for high-speed railway vehicles. *Mechanical Systems and Signal Processing*, 135, 106338 (2020b). https://doi.org/10.1016/j.ymssp.2019.106338
- [29] Park, J., Yoon, G., Kang, J., et.al. Design and control of a prosthetic leg for above-knee amputees operated in semi-active and active modes. *Smart Materials and Structures*, 25(8), 085009 (2016). https://doi.org/10.1088/0964-1726/25/8/085009

- [30] Pandit, S., Godiyal, A.K., Vimal, et.al. An affordable Insole-Sensor-Based Trans-Femoral prosthesis for normal Gait. *Sensors*, 18(3), 706 (2018).. https://doi.org/10.3390/s18030706
- [31] Wang, D., Wang, Y., Zi, B., Cao, Z., et.al. Development of an active and passive finger rehabilitation robot using pneumatic muscle and magnetorheological damper. *Mechanism and Machine Theory*, 147, 103762 (2020). https://doi.org/10.1016/j.mechmachtheory.2019.103762
- [32] Liu, G., Gao, F., Wang, D., et.al. Medical applications of magnetorheological fluid: a systematic review. *Smart Materials and Structures*, 31(4), 043002 (2022). https://doi.org/10.1088/1361-665x/ac54e7
- [33] Ramasamy, P., Calderon-Sastre, E., Renganathan, G. et al. Soft actuators-based skill training wearables: a review on the interaction modes, feedback types, VR scenarios, sensors utilization and applications. *Robomech J* 10, 1 (2023). https://doi.org/10.1186/s40648-023-00239-x
- [34] Chen, D., Fang, Y., Ni, H., et.al. Development of a small rotary MR brake working in mixed mode for haptic applications. *IEEE Transactions on Instrumentation and Measurement*, 1 (2024) . https://doi.org/10.1109/tim.2024.3372228
- [35] Chaudhuri, P., Maity, D., & Maiti, D. K. Investigation of a diagonal magnetorheological damper for vibration reduction. *Journal of Vibration Engineering & Technologies*, *10*(4), pp 1451–1471 (2022). https://doi.org/10.1007/s42417-022-00458-3
- [36] Wani, Z. R., Tantray, M., & Farsangi, E. N. In-Plane measurements using a novel streamed digital image correlation for shake table test of steel structures controlled with MR dampers. *Engineering Structures/Engineering Structures* (Online), 256, 113998 (2022). https://doi.org/10.1016/j.engstruct.2022.113998
- [37] Rebecchi, G., Calvi, P. M., Bussini, A., et.al. Full-Scale Shake Table Tests of a Reinforced Concrete Building Equipped with a Novel Servo-Hydraulic Active Mass Damper. *Journal of Earthquake Engineering*, 27(10), pp 2702–2725 (2022). https://doi.org/10.1080/13632469.2022.2121338
- [38] Caterino, N., Spizzuoco, M., Piccolo, V., et.al. A Semi-Active Control Technique through MR Fluid Dampers for Seismic Protection of Single-Story RC Precast Buildings. *Materials*, 15(3), 759 (2022). https://doi.org/10.3390/ma15030759
- [39] Waghmare, M. V., Madhekar, S. N., & Matsagar, V. A. Performance of RC elevated liquid storage tanks installed with semi-active pseudo-negative stiffness dampers. *Structural Control & Health Monitoring/Structural Control and Health Monitoring*, 29(4) (2022).

NOMENCLA	TURE
----------	------

NOMENCLATURE						
τ	shear stress	Кра	Kilo-Pascal			
τ_y	shear stress at yield point	kA/m	Kilo Amp per meter			
γ.	shear	f	Viscous force			
η	plastic viscosityof fluid	X	Total damper movement			
$\tau_y.Sgm(\gamma)$	Linearity Feature	C_1	damping occurring outside related to displacement			
$\frac{\tau_y}{G}$	shear stress at yield point	ż	evolutionary variable			
Ġ	complex material modulus	x	field variable depending on the applied voltage into z			
γ	shear strain rate	K_1	Stiffness			
F	Force generated by the damper	β	Constant Parameter			
<i>x</i> [.]	velocity attributed to the excitation	<i>x</i> _{<i>d</i>}	Displacement parameter			
C ₀	damping co-efficient	y	Fixed Displacement			
$\sin \omega / \sin x$	sinusoidal features	x _o	Constant parameter			
μ	viscosity of the MR fluid.	а	shape parameter			
μο	viscosity at zero shear rate, representing the fluid's viscosity at rest	n	flow behavior index			
К	consistency index	τ_∞	asymptotic shear stress			

LIST OF TABLES

Table 1. Typical MR Fluid Properties [7]

Table 2. Constitutive Models of MR Fluids [9,10]

Properties	Typical Value
Maximum yield strength	50-100 Kpa
$ au_{y}$	
Maximum magnetic field	250kA/m
η	

Table 1. Typical MR Fluid Properties	[7]	
rable 1. Typical with Third Troperties	L′]	

Plastic viscosity (pa-s)	0.1-1
Operating Temperature	-40 °C - 150 °C
Density(g/cm ³)	3-4
Contaminants	Unaffected by moist
	impurities
Response time	<milliseconds< td=""></milliseconds<>
η / $ au_{y}$	10 ⁻¹⁰ - 10 ⁻¹ s/pa
Maximum energy	0.1 J/cm ³
dissipation	
Power Supply	2-2.5V @ 1-2A

Constitutiv e Model	Description	Equation	Applicabilit y	Limitations
Bingham Plastic Model	Describes MR fluids as having a yield stress below which they do not flow and exhibit linear behavior.	$ au_{y} = .Sgm(\gamma) + \eta\gamma$	Suitable for MR fluids with distinct yield behavior.	Does not capture shear- thinning or shear- thickening behavior.
Bouc-Wen Model	Employs a nonlinear differential equation to describe hysteresis behavior in MR fluids, capturing rate-	Differential equation incorporating nonlinear stiffness and damping terms.	Suitable for modeling hysteresis and rate- dependent behavior in MR fluids.	Requires knowledge of system- specific

	dependent and			
	asymmetric			
	responses.			
	Extends the			
	Bingham		Applicable	
** 1 1	model to		to MR fluids	May require
Herschel-	include shear-		exhibiting	empirical
Bulkley	thinning or	$\tau = \tau_y + K\gamma^n$	non-	fitting
Model	shear-		Newtonian	parameters.
	thickening		behavior.	
	behavior.			
	Generalized			May raquira
	rheological			May require
	model for	$\mu = \mu_0 + (\mu - \mu_0) (1 + (\lambda \gamma)^a)^{((n-1))a}$	Suitable for	fitting
Carreau-	viscoelastic		MR fluids	parameters and may not
Yasuda	fluids,		with shear-	accurately
Model	transitioning		thinning	capture
	to Newtonian		behavior.	transient
	behavior at			behavior.
	high rates.			oonuvior.
	Extends			
	Bingham		Suitable for	
Modified	model with a	$\tau = \tau_y + (\tau_{\infty} - \tau_0) * tanh(\gamma / \gamma c)$	MR fluids	May require
Bingham	smooth		with gradual	empirical
Model	transition		yield stress	fitting
Model	between solid-		behavior.	parameters.
	like and fluid-		oonavior.	
	like behavior.			
Fractional Order Model	Describes MR	Fractional derivative of stress with	Suitable for	May be
	fluids using	respect to strain, where the order of the derivative is a non-integer value.	capturing	computational
	fractional		complex	ly intensive
	calculus,		viscoelastic	and require

 allowing	behavior in	specialized
characterizati	MR fluids.	numerical
on of non-		techniques.
integer order		
dynamics.		

LIST OF FIGURES

- Figure 1. Magneto-rheological Fluid
- Figure 2. Laminar flow pattern with a pressure change in MR fluid
- Figure 3. Chain formation in the presence of a magnetic field.
- Figure 4. Valve mode
- Figure 5. Applications based on valve mode operation. (valve, clutches & shock absorber)
- Figure 6. Shear mode
- Figure 7. Squeezer mode
- Figure 8. Components of MR damper
- Figure 9. Bingham Model [8]
- Figure 10. Comparison of force-velocity characteristics for the Bingham model, predicted and experimental model [8]
- Figure 11. Bouc-Wen Model [8]
- Figure12. Comparison of force-velocity characteristics for the Bingham model, predicted and experimental model [8]
- Figure 13. MR damper for reducing gun recoil [12]
- Figure 14. Seat system with MR damper [15]
- Figure 15. MR damper in Landing gear [16]
- Figure 16. (a)Aircraft with MR damper (b) Landing simulation of aircraft with skyhook system [19]
- Figure 17. Mechanical model for shock-wave profile test [24]

Figure 18. Test setup for MR damper with elastomer in railways [28]

- Figure 19. Prosthetic leg with MR damper [29]
- Figure 20. Active-Passive Robotic finger with MR damper [31]
- Figure 21. Diagonal bracing of structure with MR damper [35]
- Figure 22. (a) XY elevation (b) XZ elevation (c) plan [36]
- Figure 23.MR damper with precast base [38]

Figure 24.MR damper fitted to elevated water tank [39]

Figure 1. Magneto-rheological Fluid

Figure 2. Laminar flow pattern with a pressure change in MR fluid

Figure 3. Chain formation in the presence of a magnetic field.

Figure 5. Applications based on valve mode operation. (valve, clutches & shock absorber)

Figure 6. Shear mode

Figure 7. Squeezer mode

Figure 8. Components of MR damper

Figure 9. Bingham Model [8]

Figure 10. Comparison of force-velocity characteristics for the Bingham model, predicted and experimental model [8]

Figure 11. Bouc-Wen Model [8]

Figure12. Comparison of force-velocity characteristics for the Bingham model, predicted and experimental model [8]

Figure13. MR damper for reducing gun recoil [12]

Figure 14. Seat system with MR damper [15]

Figure15. Dynamic model of MR damper in Landing gear (vertical only) [16]

Figure 16. (a)Aircraft with MR damper (b) Landing simulation of aircraft with skyhook system [19]

Figure 17. Mechanical model for shock-wave profile test [24]

Figure 18. Test setup for MR damper with elastomer in railways [28]

Figure 19. Prosthetic leg with MR damper [29]

Figure 20. Active-Passive Robotic finger with MR damper [31]

Figure 21. Diagonal bracing of structure with MR damper [35]

Figure 22. (a) XY elevation (b) XZ elevation (c) plan [36]

Figure 23. MR damper with precast base [38]

Figure 24. MR damper fitted to elevated water tank [39]

Brief biographies of all authors

Dr. S. Vivekananda Sharma is a keen Civil and Structural Engineering scholar and researcher. He graduated from KLE Dr. M.S. Sheshgiri College of Engineering & Technology in Belgaum with a bachelor's degree in civil engineering. For his master's degree in structural engineering at Karunya Institute of Technology and Sciences, he researched how to improve the ductility of RC beam-column joints under cyclic load. His Doctor of Philosophy in Civil Engineering from KITS, Coimbatore, India, concentrated on RCC frame seismic resilience via small-scale magnetorheological (MR) dampers. Dr. Sharma gained valuable experience as a Research Scholar and Teaching Research Associate at the Karunya Institute of Technology and Sciences, working on structural dynamics and vibrations, earthquake-resistant design, and concrete member testing under static and cyclic loads. He has also worked on projects involving residential, commercial, and industrial building design, analysis, and seismic behaviour. In addition, Dr. Sharma was a Site Engineer at SPML Infra Limited and a Structural Design Engineer at Samarth Comprehensive Civil Consultancy Pvt. Ltd. Dr. Sharma's numerous publications in reputable journals and active participation in academic conferences and symposiums demonstrate his enthusiasm for research. He is a member of the American Society of Civil Engineers (ASCE) and the Structural Engineering Institute (SEI-ASCE) and has reviewed articles for prestigious journals. Dr. Sharma has attended numerous workshops and training programmes to learn about structural and geotechnical engineering advancements. Dr. S. Vivekananda Sharma is a proactive academic who advances civil and structural engineering knowledge while also improving the resilience and safety of built environments.

Dr. Hemalatha G received his B. E, M. E degree from Thiagarajar College of Engineering, Ph. D program from Anna University, Chennai. She served at Karunya Institute of Technology as Head of the Department, of Civil Engineering, from 2012 to 2023. Currently, She is a structural consultant, handling various projects in and around Coimbatore. She is a recipient of two research grants from DST-SERB India. Her research interests include infill masonry, steel composites, structural optimization, and structural vibration control. During her tenure of 11 years in KITS,she has completed the supervision of 8 PhD scholars as of 2024. Dr. Hemalatha G has published more than 76 indexed research publications in reputed international journals and conferences along with 3 granted patents. She is a member of various Indian and international bodies. She is a reviewer of 6 indexed journals.

Dr. Daniel C received his B. Tech, M. Tech, and Ph. D program from Karunya Institute of Technology and Sciences, Coimbatore, India. He served at Karunya Institute of Technology as a Junior and Senior research fellow for a DST project outlay of 2.57 Crores from 2016 to 2019. He worked as a Senior Project Scientist in Meta Lab as a post-doctoral researcher at IIT Delhi. He is a Summer Faculty Research Fellow of IIT Delhi for the following years 2022 & 2023. Currently, he is

working as an Assistant Professor, at the Department of Civil Engineering, Hindustan Institute of Technology and Science, Chennai. His teaching and research interests include Smart Materials, Supplemental Damping Devices, Energy Harvesting Devices, Vibration Control Techniques and Hybrid Simulations. Dr. Daniel C has published more than 32 indexed research publications in reputed International Journals and Conferences. He is the Research trainer for Manuscriptpedia, Kanyakumari and MSME Research training programs. He is a member of the American Society of Civil Engineers, the American Society for Testing and Materials, the Institution of Structural Engineers, and the International Associations of Engineers. He is the editor of two indexed journals and a reviewer of eight indexed journals.