
1 
 

A Combined Parameter and Function Estimation Approach for 

Prediction of Solidification/Melting Process in a Smelting Furnace    

Vahid Tahmasbi a, Seyed Mohammad Hossein Karimian b,*, Sahar Noori b 

a Aerospace Research Institute, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran  

b Department of Aerospace Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran 

Address correspondence to Seyed Mohammad Hossein Karimian, Department of Aerospace Engineering, Amirkabir University of 

Technology (Tehran Polytechnic), No. 350, Hafez Ave, Valiasr Square, Tehran, Iran 1591634311. E-mail: hkarim@aut.ac.ir 

Abstract  

In a high-temperature smelting furnace, the bank layer acts as a barrier to protect the brick 

wall against the highly corrosive liquid slag. The present contribution proposes an inverse heat 

conduction method as a simultaneous parameter and function estimation approach to precisely 

predict the time-varying bank thickness. The crucial parameters that affect the bank formation 

include the thermal conductivity of both slag and refractory brick wall, and the heat transfer 

coefficient between the external wall of the furnace and the surrounding environment. These 

parameters, as well as the time-varying heat load of the furnace, constitute the unknowns of the 

inverse solution. The enthalpy method is adopted to simulate the phase change process. The 

sensitivity and adjoint equations for a furnace with non-constant density Phase Change Material 

are derived for the first time in the present study. The verification of the proposed hybrid method 

has been performed via several simulated experiments. The results for the case with errorless 

measurement showed that the error of the solid front is within the range of approximately ±2%. 
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Introduction 

A smelting furnace is a device employed to melt materials, such as steel and copper, requiring 

high energy and temperature. The required energy to melt material is provided using high voltage 

electrodes embedded in these furnaces. The resulting electric power is converted into  thermal 

energy based on the Joule heating phenomenon and transferred through the slag/metal interface 

[1-3]. Due to the high latent heat of fusion of the slag substance, it is classified as solid-liquid 

Phase Change Material (PCM). The molten PCM is cooled upon contact with the brick wall, 

forming a solid layer called a “bank”. The bank protects the brick wall against the highly corrosive 

liquid slag. The components of a smelting furnace are depicted schematically in Fig. 1. 

The smelting furnace should be designed so that the thickness of the bank formed on the 

slag/brick interface does not decrease below a certain threshold. On the other hand, increasing the 

bank thickness reduces the amount of liquid slag required for the smelting process [1]. Preserving 

the bank thickness in the desired range is usually done by controlling the heat flux applied to the 

furnace [1].  

One way to determine the bank thickness is to measure it during the furnace operation. However, 

due to complex phenomena in the slag region, such as flow circulation, the measured thickness by 

submerged probes is usually not reliable [2]. Among the methods proposed for modeling the solid-

liquid phase change phenomenon, the so-called enthalpy method is prevalent due to its simplicity 

and high efficiency [3]. Accordingly, for non-eutectic alloys or impure materials, a mushy zone 

(i.e., mutual existence of solid and liquid phases) appears over an extended temperature range [4]. 

In contrast to the so-called adaptive methods [5], the single region formulation of the melting-
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solidification process in the enthalpy method removes the need to track the moving solid-liquid 

interface.  

In order to use the enthalpy method (or adaptive ones) for simulation of the solidification-

melting process in a furnace, the energy transferred from the electrodes to the slag bath must be 

known in advance. The heat transfer process from the arc to the slag region is carried out by various 

mechanisms, i.e., radiation, convection, condensation, and energy transported by electrons [6]. 

Therefore, many partial differential equations must be solved simultaneously to predict the 

transient behavior of the slag and, consequently, the bank formation inside the furnace. This 

process can be very complicated and time-consuming. This shortcoming can be resolved by 

inverse heat transfer techniques that have attracted much attention in the last decade [1-3, 7-19]. 

An inverse heat transfer problem is used to estimate the unknown causal parameter from the 

given temperatures recorded by the thermocouples embedded inside the medium [20, 21]. The 

inverse heat transfer methods have been successfully applied to predict the thermal properties and 

boundary conditions of PCMs [22-24]. A common strategy for predicting the bank thickness in a 

smelting furnace by an inverse method involves the following basic steps [17]:  

i) The sensor(s) are installed inside the refractory brick material to measure temperature. 

ii) The temperature measurements are used in an inverse process to estimate the heat flux 

applied to the slag region. 

iii) The estimated heat flux is used as the boundary condition of the direct model, and the 

bank thickness is predicted. 

Tadrari and Lacroix [1] employed Conjugate Gradient Method (CGM) with the adjoint problem 

to estimate the time-varying heat flux applied to the slag region. They showed that the proposed 
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method is stable and accurate enough, even in the case of noisy measurements. Marois et al. [9, 

25] addressed the bank formation in PCMs with large thermal inertia. The main problem 

encountered in their work was the significant time delay of the in-depth temperature response to 

the applied heat flux (or solidification front location). In another study [10], they proposed a two-

dimensional inverse heat transfer method for predicting the shape of the bank in a smelting furnace. 

Since the proposed minimization algorithm relied on the Levenberg Marquardt Method (LMM) 

[26] and finite difference approximation of the Jacobian matrix, the computations were not 

efficient in terms of time-consuming. To eliminate this drawback, LeBreux et al. [11-13] examined 

the capability of the Kalman filter method [8] in predicting bank thickness in metallurgical 

reactors.  

The abovementioned studies considered the time-varying lateral heat flux as the only unknown 

in their inverse solution. Therefore, any uncertainty in the thermal properties can become an 

important source of error in the estimated heat flux and, consequently, bank thickness. In order to 

attenuate the uncertainty error, simultaneous estimation of the heat flux and thermal properties has 

recently been the subject of a few investigations [15, 17-19]. In Hafid and Lacroix’s studies [15, 

17, 18], a one-dimensional inverse heat transfer method was utilized to simultaneously estimate 

the boundary heat flux and thermophysical properties of both molten material and refractory brick 

wall. The unknown thermophysical properties in their work included external heat transfer 

coefficient [17], the thermal conductivity of PCM and brick wall [15], and thermal contact 

resistance between the protective bank and inner lining of the refractory brick wall [18]. Later, in 

a more comprehensive study, Zhang et al. [19] proposed a two-dimensional transient inverse model 

to predict the bank shape varied temporally and spatially.  



5 
 

Inverse problems can conventionally be considered either as a parameter or as a function 

estimation approach [27-34]. Some works have solved the problem in the form of simultaneous 

parameter and function estimation [35]. The common point of all reviewed articles [15, 17-19] 

was that the inverse problem was solved as a parameter estimation approach. In fact, their inverse 

process required some prior information regarding the functional form of the heat flux. Although 

applying this assumption (parameterizing the heat flux function) makes it easier to solve the 

inverse problem, it does not necessarily correspond to the actual condition in the furnace. 

Overcoming this drawback is the main subject of the present contribution.  

The present study is devoted to developing a combined parameter and function estimation 

approach for accurately predicting the thickness of the bank formed on the inner lining of the 

refractory brick wall in a smelting furnace. The unknown function to be estimated is the time-

varying heat load of the furnace without any prior knowledge on its functional form. So, the 

unknown heat flux function is considered in an infinite-dimensional form [36-39], where the heat 

flux function is estimated at grid points of the time frame. The vector of unknown parameters 

contains are the thermal conductivity of the solid PCM (bank layer), the thermal conductivity of 

the refractory brick wall, and the heat transfer coefficient between the external wall of the furnace 

and surrounding environment. The phase change process during the slag solidification is modeled 

by the enthalpy method. Unlike the previous source-based models [18] that assumed a constant 

density for PCM, the current conservative formulation makes it possible to consider different 

density values for the liquid and solid states. With this assumption, direct, sensitivity, and adjoint 

equations are constructed. It is worth noting that the sensitivity and adjoint equations for a furnace 

with non-constant PCM density are derived for the first time in the present study.  
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Physical model and assumptions 

The physical problem consists of the slag bath and refractory brick wall of thicknesses dpcm and 

dbrick, respectively. The geometry of this problem is depicted in Fig. 2. The left surface of the PCM 

is exposed to a transient heat flux of q(t), and the ambient air with a temperature of 𝑇∞ cools the 

outer surface of the brick wall with a heat transfer coefficient of ℎ∞. The PCM in the slag bath is 

in the liquid, mushy and solid phases. The brick wall is protected against corrosion by the solid 

layer (bank) of thickness 𝛿(𝑡). The thermocouple(s) are placed inside the brick wall region at a 

depth of xm from the exposed surface of the slag.  

The following assumptions are considered to obtain a mathematical model. 

1. The thermophysical properties of the PCM, including density, thermal conductivity, and 

heat capacity, are assumed to be constant in solid and liquid states. The values of these 

properties in the mushy zone vary linearly between the values of the solid and liquid states. 

2. The thermophysical properties of bricks are assumed to be constant.  

3. Thermal contact resistance between the brick wall and the slag is neglected. 

4. The temperature gradient in the vertical direction is negligible compared to the lateral 

direction, so a one-dimensional mathematical model for heat transfer has been selected. 

5. The phase change from solid to liquid (and vice versa) is considered non-isothermal. 

6. The flow circulation in the slag bath is not modeled. Therefore, the heat transfer mechanism 

in the liquid slag is assumed to be conduction dominant [40]. The effect of flow circulation 

can be compensated by selecting an empirically thermal conductivity coefficient higher 

than the nominal value in the liquid phase [1].  
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Direct problem 

The well-posed direct problem is defined as determining the temperature distribution inside the 

PCM and the brick wall from the given time-varying heat flux and thermal properties of the 

furnace. According to the assumptions outlined in section 2, the mathematical formulation of the 

direct problem is given by: 

For the PCM (slag): 

( ) 1
1 1 1 1 1 0; 0 0pcm f

T
Cp T f L k x d and t t

t x x
 

   
+ − =     

   
 (1a) 

( )1
1 ; 0 0 f

T
k q t x and t t

x


= − =  


 (1b) 

( )1 01,0 ( ); 0 0pcmT x T x x d and t=   =  (1c) 

where 

( )

1

1
1 1

1

1;

;

0;

S

S
S L

L S

L

T T

T T
f T T T T

T T

T T

 


−
=  

−
 

 (1d) 

( )1 1L Sk fk f k= + −  (1e) 

( )1 1L Sf f  = + −  (1f) 

( )1 1 1L L S SCp f Cp f Cp  = + −  (1g) 

For the brick wall: 

2

2 2
2 2 2 2

0; 0pcm pcm brick f

T T
Cp k d x d d and t t

t x


 
− =   +  

 
 (2a) 
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( ) ( )2
2 2 ; 0pcm brick f

T
k h T T x d d and t t

x
 


= − = +  


 (2b) 

( )2 02,0 ( ); 0pcm pcm brickT x T x d x d d and t=   + =  (2c) 

At the brick-slag interface:  

1 2
1 2 ; 0pcm f

T T
k k x d and t t

x x

 
= =  

 
 (3a) 

where 

( ) ( )1 2, ,pcm pcmT d t T d t=  (3b) 

It should be noted that if the liquid and solid density of the PCM are considered to be the same 

( L S = ), Eq. (1a) is reduced to that presented by previous works [15, 16]. The finite volume 

fully implicit approach is used to discretize the direct equations. The resulting non-linear system 

of equations is solved by the Newton-Raphson method. 

Direct code verification 

The numerical and semianalytical results of Voller and Swaminathan [41] are used to verify 

the developed model. Voller and Swaminathan [41] studied the solidification of a binary Al-4.5% 

Cu alloy. The properties of the PCM material used by Voller and Swaminathan [41] are 

summarized in Table 1. The left boundary of their sample with a thickness of 0.5 m was kept at a 

constant temperature of 573 K, and the right boundary was adiabatic. The initial temperature of 

the sample was set to be 969 K. The time step of 2s and the grid size of 0.005 m are employed in 

the numerical simulation. Figure 3 compares the predicted location of the solidus and liquidus 

fronts by the present model versus those reported by Voller and Swaminathan [41]. According to 

this figure, the maximum discrepancy between the results appears at later times. Accordingly, the 
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maximum deviation of the present enthalpy method from the semi-analytical heat balance 

approach and the numerical source-based method of Voller and Swaminathan [41] is 7.9% and 

1.7% for the liquidus front, and 6.9% and 4.2% for the solidus front. The discrepancies between 

the present results and those obtained by Voller and Swaminathan can be attributed to the different 

methods used to model the heat of fusion.   

Inverse problem 

An inverse problem is characterized by estimating the unknown causes from the given 

effects. In the current inverse heat conduction problem, the unknowns are time-varying heat flux 

( )q t , the external heat transfer coefficient h , the thermal conductivity of the solid PCM Sk  and 

thermal conductivity of the brick wall 2k . The simultaneous estimation of heat flux function and 

thermophysical parameters improves the inverse method in terms of uniqueness of the solution. 

The simulated temperature measurements of sensors are obtained by the solution of the direct 

problem as outlined in section 3. If the temperature data acquired by the sensors can be 

approximated as a continuous function, the solution of the current inverse problem is achieved by 

minimizing the following objective function: 

  ( ) ( )2

1 0

, ;

ft
M

m m

m t

S Y t T x t
= =

= −   P P  (4) 

In this equation, ( )mY t and ( )2 , ;mT x t P  represent, respectively, the measured and 

simulated temperatures at the sensor location xm. The unknowns in the present inversion are 

assembled in a single vector P as follows: 

 2 0 1 2, , , , , ,...,T

S Nh k k q q q q=P  (5) 
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where ; 0,1,2,...,jq j N= are the components of the heat flux at a time ; 0,1,2,...,jt j N= . 

The total time of the problem is divided into N equal segments and qj are heat fluxes at boundary 

points of these time segments. Therefore, the function of heat flux q(t) in terms of its components 

qj can be expressed as follows: 

( ) ( )
1

N

j j

j

q t q B t
=

=  (6) 

where ( )jB t  are the known B-spline functions on time. If N equals the total time steps of the 

direct problem, then the heat flux function q(t) is estimated at each time step, and the B-Spline 

function is no longer required ( ) ; 0,1,2,...,j jq t q j N = =
 

. In the current estimation, the heat flux 

components are represented at grid points, typically called infinite-dimensional form [38]. 

Minimization procedure 

A well-known gradient-based algorithm for solving non-linear inverse problems, i.e., the 

Conjugate Gradient Method, is adopted in this study. The iterative procedure of CGM for 

minimization of the objective function  S P  (Eq. (4)) is given in the form: 

( ) ( ) ( )1i i i i

q qq t q t d t+ = −  (7a) 

2 2

1
1

2 2

S S

i
i i

h h

S S k k

k k

dh h

k k d

k k d







 

+
+

 
    
    

= −     
         

 (7b) 

where 𝑑𝑞
𝑖 (𝑡) is the directions of descent for the heat flux, hd


, 

Skd  and 
2kd are, respectively, 

the directions of descent for the external heat transfer coefficient, the thermal conductivity of the 

solid PCM and of the brick wall,   are the values of the search step size and the superscript i 
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represents the iteration number. In CGM, the direction of descent is obtained by conjugation of 

the gradient vector and the previous direction of descent as follows: 

( ) ( )1i i i i

q q qd S q t d t − =  +   (8a) 

( )

( )

( )
2 2 2

1

2

S S S

i ii

h h h

k S k k

k k k

d dS h

d S k d

S kd d







  

−


    
    

=  +    
        

 (8b) 

The conjugation coefficients 
i

q , 
i

h 
, 

Sk and 
2k are computed based on the Polak-Ribiere 

[38] expression as: 

( ) ( )  ( )

( ) 

1

0

2
1

0

f

f

t
i i i

i t
q t

i

t

S q t S q t S q t dt

S q t dt


−

=

−

=

      −      
=

   




 (9a) 

( ) ( ) ( )

( ) ( ) ( )

1

2 2 2
1 1 1

2

i i i

i

h
i i i

S

S h S h S h

S k S k S h




−

  

− − −



   −
 =

      +  + 
     

 (9b) 

( ) ( ) ( )

( ) ( ) ( )

1

2 2 2
1 1 1

2

S

i i i

S S Si

k
i i i

S

S k S k S k

S k S k S h


−

− − −



   −
 =

      +  + 
     

 (9c) 

( ) ( ) ( )

( ) ( ) ( )
2

1

2 2 2

2 2 2
1 1 1

2

i i i

i

k
i i i

S

S k S k S k

S k S k S h


−

− − −



   −
 =

      +  + 
     

 (9d) 

Sensitivity problem and search step size 

The sensitivity temperature functions ( )1 ,T x t and ( )2 ,T x t  are defined as the change in 

temperature due to perturbation of the unknown parameters or function. Directional perturbation 

of the heat flux components causes directional changes in sensors’ temperature, obtained by 
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solving the sensitivity problem. If the heat flux function q(t) is perturbed by an amount of ( )q t

, the temperature functions ( )1 ,T x t  and ( )2 ,T x t and liquid fraction f(T1) undergo the following 

variations: 

( ) ( ) ( )1 1 1, , ,T x t T x t T x t = +   (10a) 

( ) ( ) ( )2 2 2, , ,T x t T x t T x t = +   (10b) 

( ) ( ) ( )1 1 1

1

,
f

f T f T T x t
T

   


= + 


 (10c) 

where  

( )

1

1 1

1

1

1;

1
;

0;

S

S L

L S

L

T T

f
T T T T

T T T

T T



 


 
 =  
 −

 

 (10d) 

If D1(T1)=0 and D2(T2)=0 represent the direct equations for the slag and brick wall, respectively; 

the sensitivity problem is obtained by applying the following limiting processes: 

( ) ( )1 1 1 1

0
lim 0

D T D T 

 →

−
=  (11a) 

( ) ( )2 2 2 2

0
lim 0

D T D T 

 →

−
=  (11b) 

          Applying the above limiting processes to the direct equations and their initial and boundary 

conditions, and after some manipulations, the following sensitivity problems are obtained for the 

determination of the temperature sensitivity functions ( )1 ,T x t  and ( )2 ,T x t . 
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For the slag bath: 

( )2

1 11

2
0; 0 0pcm f

k TCT
x d and t t

t x

 
− =    

 
 (12a) 

( )
( )1 1

; 0 0 f

k T
q t x and t t

x

 
= − =  


 (12b) 

( )1 ,0 0; 0 0pcmT x x d and t =   =  (12c) 

where 

( )  ( ) ( )1 1 1 1 1 1L L S S L SC Cp T T Cp Cp L T f       = + − + + −    (12d) 

For the brick wall: 

2

2 2
2 2 2 2

0; 0pcm pcm brick f

T T
Cp k d x d d and t t

t x


  
− =   +  

 
 (13a) 

( )2
2 2; 0pcm brick f

T
k h T x d d and t t

x



= −  = +  


 (13b) 

( )2 ,0 0; 0pcm pcm brickT x d x d d and t =   + =  (13c) 

At the brick-slag interface:  

( )1 1 2
2 ; 0pcm f

k T T
k x d and t t

x x

  
= =  

 
 (14a) 

where 

( ) ( )1 2, ,pcm pcmT d t T d t =   (14b) 

Calculation of the sensitivity function for the thermal conductivity and external heat 

transfer coefficient is performed using a Jacobian matrix defined by the first-order partial 

derivatives of the temperatures with respect to the unknown parameters, as follows: 
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21 21 21

2

22 22 22

2

2 2 2

2

S

S

I I I

S

T T T

h k k

T T T

h k k

T T T

h k k







   
   
 
   
   =
 
 
 
   
    

J  (15) 

           where I refer to the total number of measurements. Finite difference approximation is 

used for determining the components of Jacobian matrix, J, as follows: 

( ) ( )
( )2 2 2 22

1

, , , , , ,i S i Si
i

T h h k k T h k kT
J o h

h h






  



 

+ −
= = +


q q
 (16a) 

( ) ( )
( )2 2 2 22

2

, , , , , ,i S S i Si
i S

S S

T h k k k T h k kT
J o k

k k






 + −
= = +


q q
 (16b) 

( ) ( )
( )2 2 2 2 22

3 2

2 2

, , , , , ,i S i Si
i

T h k k k T h k kT
J o k

k k






 + −
= = +


q q
 (16c) 

where 
310 −=  is chosen in the current study. 

          The search step sizes 
i

q  and i

k  in Eqs. (7) are calculated by minimizing the objective 

function S[P] (see Eq. (4)) with respect to 
i

q  and i

k , that is: 

( ) ( )
2 2

2
1 1

2

1 0

min , min ,

f

i i i i S S
q k q k

t
M

i i i i i i i i i i i i

m m q q h h k k k k
and and

m t

S Y t T d d d dt
   

   
 

+ +

= =

   = − − − − −    q k q d k  (17) 

where ; 1,...,T

jq j N  = q ,  2, ,T

Sh k kk  and ; 1,...,T

q qjd j N  = d . The temperature 

T2m is approximated by the Taylor series expansion as follows: 
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( )

( )

2 2

2 2

2

2 2 2 2
2

2

,

,

S S

S S

i i i i i i i i i i

m q q h h k k k k

i i i i i i i i i im m m m
m q q h h k k k ki i i i

S

T d d d

T T T T
T d d d

h k k

   

   

 

 



− − − −

   
= − − − −

   

q d k

q k d
q

 (18) 

The term 2 im
qi

T


d

q
 in the above equation can be replaced by ( ), ;i

m mT x t i

q qd , which is obtained 

by setting 
i = i

q
q d  and then solving the sensitivity problem given by Eqs. (12-14) at the sensor 

location. Also the terms 2m

i

T

k
 is determined by the finite difference approximation given by Eqs. 

(16).  Calculating the direction of descent based on CGM (Eq. (8b)) requires determining the 

gradient directions for heat transfer coefficient and thermal conductivities. 

By substituting Eq. (18) into Eq. (17) and differentiating the resulting expression with respect 

to 
2

, , ,
S

i i i i

q h k k   


 
  , the following set of linear equations is obtained for the search step sizes. 

2

2

2

222 2 2 2 2

, , , ,

, , , ,

, , , ,

, , , ,

S

S

SSS S S S S

S

i
q q q h q k q k qq

i
hhh q h h h k h k

i
kkk q k h k k k k

i
kkk q k h k k k k

A A A A B

BA A A A

BA A A A

BA A A A











    





     
     
     

=     
     
        

 (19) 

where 

( )
2

,

1 0

, ;

ft
M

i i

p p pm m p

m t

A T y t dt
= =

 = 
   d  (20a) 

( ) ( ),

1 0

, ; , ;

ft
M

i i i i

p g pm m p gm m g

m t

A T y t T y t dt
= =

 =  
   d d  (20b) 
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( ) ( )2

1 0

, ;

ft
M

i i i i

p m m pm m p

m t

B T Y T y t dt
= =

 = − 
   d  (20c) 

In the above equation, p and g can be any of the unknown parameters. 

Adjoint problem 

           In the iterative procedure of CGM for heat flux estimation, the direction of descent is 

dependent on the gradient of the objective function ( ( )iS q t     in Eq. (8a)). The calculation of 

the gradient function is performed by solving the adjoint problem. Therefore, the adjoint problem 

must be derived.  In this regard, the direct problem equations (Eqs. (1a) and (2a)) are first 

multiplied by Lagrange multiplier functions ( )1 ,x t and ( )2 ,x t . Furthermore, the obtained 

equations are integrated over time and space domains of the problem. The resulting equations are 

added to the objective function given by Eq. (4) to obtain the following extended function: 

  ( ) ( )

( ) ( )

( )

2

2

1 0

1
1 1 1 1 1 1

0 0

2

2 2
2 2 2 2 20

, ;

,

,

f

f pcm

f pcm brick

pcm

t
M

m m

m t

t d

t x

t d d

t x d

S Y t T x t dt

T
x t Cp T f L k dxdt

t x x

T T
x t Cp k dxdt

t x

  

 

= =

= =

+

= =

= −  

     
+ + −   

    

  
+ − 

  

 

 

 

P P

 (21) 

The perturbed goal function ( )S q t    in the direction of the perturbed ( )q t  is achieved by 

replacing ( )1 ,T x t  by ( ) ( )1 1, ,T x t T x t+    , ( )2 ,T x t  by ( ) ( )2 2, ,T x t T x t+    , ( )1f T by  

( ) ( )1 1f T f T+    and ( )q t  by  ( ) ( )q t q t+    . Then the variation ( )S q t     can be derived by 

applying the following limiting process. 
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( )
( ) ( )

0
lim

S q t S q t
S q t

 

 →

−       =    (22) 

which yields  

( ) ( ) ( ) ( ) ( ) 

( )
( ) ( )

( )

2 2
0

1

2
1 1 1

1 20 0

2

2 2
2 2 2 2 20

2 , ; ,

,

,

f pcm brick

pcm

f pcm

f pcm brick

pcm

Mt d d

m m m
t x d

m

t d

t x

t d d

t x d

S q t T x t Y t T x t x x dxdt

C T k T
x t dxdt

t x

T T
x t Cp k dxdt

t x





 

+

= =
=

= =

+

= =

 = −  −      

    
+ − 

   

   
+ − 

  

 

 

 

P

 (23) 

Performing integration by parts and utilizing initial and boundary conditions of the sensitivity 

problem, the following equation is obtained. 

( ) ( ) ( ) ( )  ( )

( )
( )

( )
( )

( )
( ) ( )

2

2 2
2 2 2 2 220

1

2

1 11
1 1 120 0 0

2

2 2 2
0

1

2 , ; ,

0,
, 0,

,
, ,

f

pcm

f pcm f

f

Mt D

m m m
t x d

m

t d t

t x t

t

t

S q t Cp k T x t Y t x x T x t dxdt
t x

t
C k T x t dxdt T t dt

t x x

D t
k h D t T D t dt

x

k

 
 

 




= =
=

= = =


=

  
 = + + − −          

  
+ +  +  

   

 
− +  

 


−

 

  



P

( ) ( )
( )

( ) ( ) ( ) ( )

( ) ( )
( )

( ) ( )

1 2

2 1
0

1 1 2 2 2 2
0

1 1

1 2
0

1
0

, ,
,

, , , ,

,
, ,

0,

f

pcm

pcm

f

f

t pcm pcm

pcm
t

d D

f f f f
x x d

t pcm

pcm pcm
t

t

t

d t d t
k T d t dt

x x

C x t T x t dx Cp x t T x t dx

k T d t
d t d t dt

x

t q t dt

 

  

 



=

= =

=

=

 
−  

   

−  − 

  
  + −

  

+ 



 





 
(24) 

           Where pcm brickD d d + . If the first eight integrals on the right-hand side of Eq. (24), 

including ( )1 ,T x t  and ( )2 ,T x t , are allowed to vanish, the following final value problem for 

the Lagrange multiplier functions ( )1 ,x t and ( )2 ,x t  is derived. 
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For the slag bath: 

2

1 1
1 2

0; 0 0pcm fC k x d and t t
t x

  
− =    

 
 (25a) 

1 0; 0 0 fx and t t
x


= =  


 (25b) 

( )1 , 0; 0f pcm fx t x d and t t =   =  (25c) 

 

For the brick wall: 

( ) ( ) ( ) 
2

2 2
2 2 2 22

1

2 , ; 0;

0

M

m m m

m

pcm pcm brick f

Cp k T x t Y t x x
t x

d x d d and t t

 
 

=

 
+ + − − =   

  +  

 P
 (26a) 

( )2
2 2; 0pcm brick fk h x d d and t t

x





= − = +  


 (26b) 

( )2 , 0;f pcm pcm brick fx t d x d d and t t =   + =  (26c) 

At the brick-slag interface: 

1 2
1 2 ; 0pcm fk k x d and t t

x x

  
= =  

 
 (27a) 

 where 

( ) ( )1 2, , ;pcm pcmd t d t =  (27b) 

In the process of obtaining the above adjoint problem, the extended function given by Eq. (24) 

is reduced to the following equation. 
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( ) ( ) ( )1

0

0,

ft

t

S q t t q t dt
=

 =      (28) 

By perturbing the heat flux function (given by Eq. (6)) and substituting the resulting functional 

in Eq. (28), the directional derivative of ( )S q t    can be rewritten as: 

( ) ( ) ( )1

1 0

0,

ft
M

j j

j t

S q t t B t dt q
= =

  
 =     

  
   (29) 

By definition, the directional increment of the function ( )S q t    can be expressed in the 

following general form: 

( ) ( ) 
1

N

j
j

j

S q t S q t q
=

 =          (30) 

A comparison of Eqs. (29) and (30) results in the following relation for the jth component of the 

gradient vector ( )S q t    : 

( )  ( ) ( )1

0

0,

ft

j
j

t

S q t t B t dt
=

 =     (31) 

The gradient of objective function used in Eq. (8b) is computed by taking the derivative of Eq. 

(4) with respect to the unknown heat transfer and thermal conductivity coefficients, which yields: 

( )

( )

( )

( ) ( )

( ) ( )

( ) ( )

2

1 0

2

1 0

2

2

1 20

2 , ;

2 , ;

2 , ;

f

f

f

t
M

m m

m t

t
M

S m m

m St

t
M

m m

m t

T
Y t T x t dt

h
S h

T
S k Y t T x t dt

k
S k

T
Y t T x t dt

k

= =



= =

= =

 
− −     

   
    = − −     

    
 
− −      

 

 

 

P

P

P

 (32) 
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Stopping criterion 

During the iterative minimization of the objective function given by Eq. (4), large 

oscillations in the estimated parameters occur when the estimated temperatures approach the noisy 

measurements. So, the iterative process is stopped when the following discrepancy principle [18] 

is satisfied: 

1iS +   P  (33) 

For noise-free measurements, a minimal value is selected for 𝜀. For the noisy measurements, 

the amount of tolerance,  , is selected in such a way that the residuals between measured and 

estimated temperatures are of the same order of magnitude as the standard deviation of 

measurement errors, that is, 

2

fM t =  (34) 

          where M and   represent the number of sensors and standard deviation of the measurement 

errors, respectively.  

Computational procedure 

The step-by-step iterative procedure of the conjugate gradient method for solving the current 

non-linear inverse problem can be summarized as: 

Step 1: Provide the vector of temperature measurements Y, initiate the vector of unknowns  

  2 0 1 2, , , , , ,...,T

S Nh k k q q q q=P , set i=1 and go to the next step. 

Step 2: Knowing 
i

P , Solve the direct problem given by Eqs. (1-3) and compute ( )1 ,T x t  and 

( )2 ,T x t , then compute the objective function iS   P  from Eq. (4). 



21 
 

Step 3: If the convergence criterion given by Eq. (33) is satisfied, stop the iterations. Otherwise, 

go to step 4 

Step 4: Compute the Jacobian matrix J whose elements are presented in Eq. (16) for the perturbed 

unknown parameters. 

Step 5: Knowing ( )1 , ; iT x t P , ( )2 , ; iT x t P  and ( ),mY x t , solve the adjoint problem given by Eqs. 

(25-27) and compute ( )1 0, t .  

Step 6: Knowing ( )1 0, t  and the Jacobian matrix J, compute ( )iS q t    and 

( )

( )

( )2

i

S

S h

S k

S k

 
 
 
  

from Eq. 

(31) and Eq.(32), respectively.  

Step 7: Compute The conjugation coefficients 
i

q , 
i

h 
, 

Sk and 
2k  from Eq. (9). 

Step 8: Compute both the vector of the descent direction ( )i

qd t  and 

2

S

i

h

k

k

d

d

d



 
 
 
 
 

 from Eq. (8). 

Step 9: Set ( ) ( )i i

qq t d t =  and solve the sensitivity problem given by Eqs. (12-14) to obtain 

( ), , ;i i

m m qT x t q d .    

Step 10: Compute the search step sizes 
2

, , ,
S

i i i i

q h k k   


 
   from Eqs. (19) and (20). 
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Step 11: Knowing the search step sizes 
2

, , ,
S

i i i i

q h k k   


 
   and directions of descent ( )i

qd t  and 

2

S

i

h

k

k

d

d

d



 
 
 
 
 

, compute the new estimate of heat flux ( )1iq t+
 and thermal parameters 

1

2

i

S

h

k

k

+

 
 
 
  

 from Eq. 

(7). Replace i by i+1 and return to step 2.    

Once the heat flux ( )q t  and the thermal parameters 

2

S

h

k

k

 
 
 
  

 are estimated, the direct problem 

given by Eqs. (1-3) is solved to determine the time-varying bank thickness ( )t .         

Inverse code verification and error analysis 

The capability of the proposed inverse method in terms of stability and accuracy is evaluated in 

the current section. The performed verification and error analysis consist of four parts. In the first 

part, the performance of the proposed inverse method is evaluated for the noise-free inputs to 

assess the bias of the proposed estimator. Second, the effect of initial guesses considered for the 

unknowns on the convergence behavior of the proposed inverse method is evaluated. The two most 

important sources of error are the noisy measurements and misplacement of the sensors, which are 

discussed next. To evaluate the deviation of the estimated heat flux from its exact profile, the 

normalized Root-Mean-Square (RMS) error is defined as: 

( ) ( )

( )

2

0

2

0

f

f

t
est ex

RMS t
ex

q t q t dt
e

q t dt

 − 
=

  




 (35) 

 

 



23 
 

Case study  

In the current case, the width of both PCM and brick walls is considered to be 0.5 m. The 

thermophysical properties of the brick wall and the slag are given in Table 2. It is considered that 

the right boundary condition is exposed to ambient temperature, 𝑇∞, of 300 K and a convective 

heat transfer coefficient, ℎ∞, of 15 W/(m2.K). The left boundary is exposed to the time-varying 

heat flux 𝑞(𝑡). In the current study, two different functions for 𝑞(𝑡), involving a sinusoidal 

variation and a double-step function, are considered as follows:     

( ) ( )4 3 31.2 10 9 10 sin 2 / tq t t t=  +   (36a) 

 

( )

4

4

0; 0 25000

2.4 10 ; 25000 75000

0; 75000 125000

2.4 10 ; 125000 175000

0; 175000 200000

t

t

q t t

t

t

  


  


=  


  
  

 
(36b) 

where the total simulation time is 
52 10 ( )ft s=  .  

The initial temperature of the furnace varies linearly between Tb and 300 K, which correspond 

to the left boundary of the slag and external surface of the brick wall, respectively. The left 

boundary temperature for the case involving sinusoidal heat flux is Tb=1450 K, and for the other 

case is Tb=1200 K. It is considered that the temperature measurements are taken by two sensors 

embedded inside the brick wall, i.e., x1=0.5 m and x2=0.9 m. Both sensors record data at the same 

frequency of 1 Hz, which corresponds to the grid points of the time-domain in the direct solution. 

The direct problem, as defined in section 3, is solved using the specified heat flux 𝑞(𝑡) to determine 
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the temperature field ( )1 ,T x t  and ( )2 ,T x t  inside the slag and the brick wall. The direct problem 

was solved by the finite volume method with a uniform grid of 4000 cells and a time step interval 

of 1s. The grid convergence study for all cases in the current paper showed that the results were 

not appreciably affected by further refining the grid or reducing the time step size. The calculations 

were done by a desktop with an Intel CoreTM i7-3632 processor and 8 GB RAM. On average, each 

iteration of the inverse solution, which includes direct, sensitivity and adjoint problems, takes 9 

seconds. 

Noise-free measurements 

The time-varying heat flux in this test case has sinusoidal variation, as presented in Eq. (36a). The 

estimated heat flux and thermal parameters in the case of noise-free measurements are illustrated 

in Fig. 4 and Table 3. As illustrated in Fig. 4, there are some deviations between the estimated and 

exact profiles, especially in the initial and final times neighborhood. The gradient of the objective 

function is null at the final time of the simulation. Therefore, the initial guess used for the heat flux 

at final time is not altered during the iterative procedure of the conjugate gradient method. As seen 

in Fig. 4, the last 5 hours of estimation is affected by the null condition. In fact, for a simulated 

experiment with a duration of 55.5 hours, the estimated values in the final 5 hours are not reliable. 

This type of error can be removed by using either additional measurements or a shorter total time 

of interest.  

The estimation error in the initial times is caused by the low thermal conductivity of the 

solid-phase PCM (kS=4W/(m.K)), which is much lower than the thermal conductivity of liquid-

phase PCM (kL=20W/(m.K)). The solid thickness at initial time is 30cm, which is 60% of the total 

PCM material in the furnace. In fact, a significant volume of the furnace is occupied by the 
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insulating solid-phase PCM in the initial times. Therefore, the temperature sensitivity of the 

thermocouple to the heat flux has its lowest value in this time period.  As time progresses, the 

melting process causes the volume of the solid-phase to decrease and replace it with a liquid-phase 

that has a higher thermal conductivity.  

The errors associated with the estimation of thermal parameters, as given in Table 3, do 

not exceed 1.7%, which is quite reasonable. The predicted bank thickness is compared with the 

exact one in Fig. 5. Accordingly, the error of estimated bank thickness is within approximately 

±2%, providing cogent evidence that the gradient functions are well determined in the inverse 

algorithm.  

Effect of initial guess  

The inverse problem is solved for three sets of the initial values given in Table 4. The 

convergence history diagrams for the unknown thermal parameters are illustrated in Fig. 6. The 

results reveal that the current iterative method provides reasonable convergence behavior for all 

parameters with different initial guesses. In case #3, the sensitivity of the temperatures to the 

unknown parameters and function in the neighborhood of the initial guesses was minimal. This ill-

condition behavior of the problem caused large oscillations at the beginning of the iterations, 

resulting in instability of the estimation. In order to damp oscillations, the conventional iterative 

procedure of the CGM was equipped with an under-relaxation scheme. For this reason, the iterative 

process of case #3 converges more slowly than the other two cases, as can be seen in Fig. 6. The 

reduction of objective function versus iteration number for three cases is illustrated in Fig. 7.  

Noisy measurements 
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One inevitable source of error concerns the presence of noise in temperature measurements 

of sensors. The noisy temperature measurements ( )noisyY t  were obtained by perturbing the exact 

temperature values ( )exactY t  by random errors having normal probability distribution with zero 

mean and standard deviation of  , as follows: 

( ) ( )noisy exactY t Y t = +  (37) 

where parameter   is a random variable that can take a value between -2.576 and 2.576 for the 

99% confidence level. The standard deviation of error for the thermocouples that are usually used 

is in the range of [0.01Tmax - 0.05Tmax]. Accordingly, the standard deviation of max0.03T =  which 

is equal to 35K =  according to the temperature of the thermocouples, has been selected.    

Two test cases involving sinusoidal and double-step variations for the heat load were selected 

to investigate the effect of random errors on the estimation results. The initial values for the double-

step and sinusoidal heat flux were, respectively, set to 0 and 10,000 W/m2. The rest of the 

parameters were initialized to the values of case #2 in section 5.3. Figures 8 and 9 illustrate the 

best-estimated heat flux in the presence of noise in measurements. It can be seen that the estimated 

heat flux with double-step variation is more affected by random errors than the sinusoidal one.  

As another part of the results, the estimated thermal parameters are listed in Table 5. As 

expected, the error of parameters in the case with double-step heat flux is greater than the other 

one. Also, the errors associated with the external heat transfer coefficient are greater than those of 

the two parameters. The predicted bank thickness is compared with the exact profile for two test 

cases in Figs. 10 and 11. As shown, in most of the furnace operating time, the errors remain at the 

interval of ±5% for the problem with sinusoidal heat flux and ±10% for the other case. In the case 

of sinusoidal heat flux, the estimated bank thickness in the neighborhood of the final time is more 



27 
 

erroneous than that of other times. While in the latter case, the most discrepancies occur at the 

beginning and middle times. Figures 9 and 11 reveal that at pulse times of the heat flux (i.e., times 

when the heat flux suddenly rises or falls), the error of predicted bank thickness increases abruptly. 

Therefore, discontinuity in heat flux can be remarked as an important source of error. The 

reduction of objective function versus iteration number is illustrated in Fig. 12. The iterative 

procedure of CGM converges slower for the case involving double-step heat flux than for the 

sinusoidal one.   

Misplacement of sensor 

Another source of error in the estimation results is associated with the sensor 

misplacement. So, a 5 cm deviation was assumed from the exact position of the sensors (i.e., 

x1=0.55m and x2=0.85m). In this test case, the inverse problem was solved with noise-free 

measurements. The estimated heat flux for misplacement of TC1 and TC2 was compared with the 

original profile in Fig. 13. As can be seen, the installation error of the sensor located at the brick-

slag interface (TC1) has a larger impact on the estimated heat flux. The evaluation of estimated 

thermal parameters given in Table 6 demonstrates that the estimation error caused by shifting TC1 

is larger than TC2. Also, the thermal conductivity of solid PCM is less sensitive to such an error 

in sensor location than the other two parameters. The ratio of bank thickness error to the sensor 

misplacement error is illustrated in Fig. 14. It is found that the predicted bank thickness at early 

times of simulation is more sensitive to such an error in sensor junction, especially for the sensor 

embedded at the brick-slag interface.      

Conclusion 
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A hybrid inverse method was developed to simultaneously estimate thermophysical 

parameters and boundary heat load in a smelting furnace. One of the advantages of the present 

method is low computational cost due to the use of adjoint method for gradient calculation. The 

validity of the proposed inverse formulation was done in two ways. First, the results obtained for 

the simulated errorless measurements were compared with exact profiles. Accordingly, the error 

of estimated bank thickness is approximately ±2%, providing convincing evidence that the 

gradient functions are well determined in the inverse algorithm. Second, it was shown that the 

iterative process could converge to the exact solution while starting from different initial guesses 

selected for the unknowns. Moreover, the effects of noisy measurements on the estimated bank 

front are evaluated. As reported in the result section, in most of the furnace operating time, the 

error of estimated bank remains at the interval of ±5% for the problem with sinusoidal heat flux 

and ±10% for the double step one. The results showed that if the installation location of TC1 has 

an error of 5cm, the estimated bank at early times can have an error of up to 3.3cm. While the bank 

error caused by the misplacement of TC1 reached a maximum of 1.7cm. 

Nomenclature  

A1 , A2  Coefficients defined by Eq. (20) 

B11 , B22  , B12  Coefficients defined by Eq. (20) 

C  A coefficient defined by Eq. (12d) 

CGM Conjugate Gradient Method  

Cp  Heat capacity [J/kg K] 

d Direction of descent [Eq. (7)] 

dbrick Brick thickness [m] 
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dpcm PCM thickness [m] 

f Liquid fraction  

h  Heat transfer coefficient [W/(m2.K)] 

J Jacobian matrix [Eq.(15)] 

k Thermal conductivity [W/(m.K)] 

L Latent heat [J/kg] 

LMM Levenberg Marquardt Method 

M Number of sensors 

N Number of total time steps 

P Vector of unknowns [Eq. (5)] 

PCM Phase Change Material 

q(t) Heat flux [W/m2] 

S Objective function [Eq. (4)] 

t Time [s] 

tf Final time [s] 

T Temperature [K] 

T  Ambient temperature [K] 

x Cartesian coordinate [m] 

xm Sensor location [m] 

Y  Sensor temperature [K] 

Greek symbols  

  Step size [Eq. (7)] 

  Conjugation coefficient [Eq. (9)] 
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( )t  Bank thickness [m] 

( )x  Dirac delta function 

  Small value 

( ),x t  Lagrange multiplier [Eq. (17)] 

  Density [kg/m3] 

  Standard deviation [K] 

( ),T x t  Sensitivity function 

 S P  Gradient direction [defined by Eqs. (12-14) ] 

Subscripts  

0 Initial condition 

1 Slag region 

2 Brick region  

L Liquid phase 

S Solid phase  

superscript  

T Transpose of a matrix 

i Iteration index  
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Table 1 properties of the binary Al-4.5% Cu alloy 

Parameter Value Unit 

CpS 900 [J/kg K] 

kS 200 [W/(m.K)] 

( )S L =  2800 [Kg/m3] 

CpL 1100 [J/kg K] 

KL 90 [W/(m.K)] 

L 3.9×105 [J/kg] 

TS 821 [K] 

TL 919 [K] 
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Table 2 Thermophysical properties of the phase change material and brick. 

parameter Value Unit 

PCM   

CpS= CpL 1800 [J/kg K] 

kS 4 [W/(m.K)] 

S  2100 [Kg/m3] 

L  2000 [Kg/m3] 

kL 20 [W/(m.K)] 

L 5.1×105 [J/kg] 

TS 1213 [K] 

TL 1233 [K] 

Brick    

Cp 875 [J/kg K] 

k 16.8 [W/(m.K)] 

  2600 [Kg/m3] 
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Table 3 Estimated thermal parameters for the case with sinusoidal heat flux and noise-free 

measurements. 

  

Exact value 

 Free noise measurements 

Parameter   Estimated  Error (%) 

( )2 / .k W m k     16.8  16.64  0.9 

( )/ .Sk W m k     4.0  3.93  1.7 

( )2/ .h W m k
 
 

  15.0  14.83  1.1 
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Table 4 Different initial values used for the validation of the inverse problem.   

    Initial guess  

Unknown  Exact values  Case #1  Case #2  Case #3 

Brick conductivity, ( )2 / .k W m k     16.8  5.0  5.0  30.0 

Bank conductivity, ( )/ .Sk W m k     4.0  15.0  1.0  20.0 

Heat transfer coef., ( )2/ .h W m k
 
 

  
15.0  30.0  40.0  5.0 

Heat flux, ( ) 2/q t kW m     Eq. (31a)  5000.0  10000.0  10000.0 
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Table 5 Estimated thermal parameters from noisy measurements with 35K = .   

  

Exact value 

 Noisy measurements 

Parameter   Estimated  Error (%) 

Sinusoidal  heat flux case 

( )2 / .k W m k     16.8  16.04  4.5 

( )/ .Sk W m k     4.0  3.81  4.7 

( )2/ .h W m k
 
 

  15.0  14.18  5.4 

Step heat flux case 

( )2 / .k W m k     16.8  18.36  9.2 

( )/ .Sk W m k     4.0  4.30  7.5 

( )2/ .h W m k
 
 

  15.0  16.88  12.5 
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Table 6 Effect of sensor misplacement on the estimated thermal parameters for noise-free 

measurements. 

  

Exact value 

 TC1  TC2 

Parameter   Estimated  Error (%)  Estimated  Error (%) 

( )2 / .k W m k     16.8  14.72  12.3  15.0  10.7 

( )/ .Sk W m k     4.0  4.98  24.5  3.67  8.2 

( )2/ .h W m k
 
 

  15.0  15.43  2.8  16.35  9.0 
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List of Figure Captions   

Figure 1 Schematic view of a smelting furnace. 

Figure 2 One dimensional model of the melting furnace with slag bath and brick wall. 

Figure 3 solidus and liquidus fronts for solidification of a binary Al-4.5% Cu alloy. 

Figure 4 Inverse solution with sinusoidal variation for the heat flux and noise-free measurements. 

Figure 5 Predicted bank thickness for the sinusoidal heat flux and noise-free measurements. 
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Figure 1 Schematic view of a smelting furnace. 

 

 

 

 

 

 

 

 

 



48 
 

 

 

 

 

 

 

 

Figure 2 One dimensional model of the melting furnace with slag bath and brick wall. 
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Figure 3 solidus and liquidus fronts for solidification of a binary Al-4.5% Cu alloy. 
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Figure 4 Inverse solution with sinusoidal variation for the heat flux and noise-free 

measurements. 
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Figure 5 Predicted bank thickness for the sinusoidal heat flux and noise-free measurements.  
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(b)  

Figure 6 (continued) 

 

(c)  

Figure 6 Convergence history of thermal parameters for different initial guesses and noise-free 

measurements for (a) brick wall conductivity, (b) solid PCM conductivity, and (c) external 

heat transfer coefficients. 
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Figure 7 The value of objective function versus iteration number for the problems with 

different initial guesses. 
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Figure 8 Estimated sinusoidal heat flux compared with exact profile for noisy measurements 

with 35K = .  
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Figure 9 Estimated step heat flux compared with exact profile for noisy measurements with

35K = .  
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Figure 10 Comparison of estimated bank thickness with the exact profile for sinusoidal 

boundary heat flux and noisy measurements with 35K = .  
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Figure 11 Comparison of estimated bank thickness with the exact profile for step boundary 

heat flux and noisy measurements with 35K = .  
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Figure 12 The objective function value versus iteration number for noisy measurements with 

35K = . 
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Figure 13 Effect of sensor misplacement on the estimated heat flux for noise-free 

measurements. 
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Figure 14 Effect of sensor misplacement on the predicted bank thickness for noise-free 

measurements.  
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