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A Systematic Review on Medical Image Segmentation Using Deep 

Learning 

 Abstract: 

Medical image segmentation is an essential step in various diagnostic and treatment 

procedures. This study aimed to conduct a systematic review of state-of-the-art 

segmentation methods based on the target. The target complexity is a considerable 

challenge in medical image segmentation and the first issue that experts confront in 

diagnosing or treating patients. Additionally, each group of targets has similar 

characteristics, motivating to provide a target-based review to compare the deep-

learning (DL)-based studies. This is the first time that a target-based review of 

medical image segmentation has provided a focus on recent DL developments. This 

study categorized publications into three targets: tumors, vessels, and pathological. 

Using a PRISMA strategy while considering the inclusion and exclusion criteria, 118 

articles were identified on Google Scholar and PubMed from 2015 to 2023 in the 

fields of brain, liver, and lung tumors, blood vessels, and pathology image 

segmentation. This review could assist researchers in selecting the proper network 

and being aware of possible challenges. We also concluded that medical image 

segmentation using DL as a cross-disciplinary field is involved with both complex 

medical data and technical issues. Consequently, new interpretable approaches may 

be able to bridge the gap between medical specialists and artificial intelligence 

researchers. 

Keywords: Medical image segmentation, deep learning, tumor segmentation, vessel 

segmentation, pathological image segmentation, target-based review. 

 

1. Introduction 

Over the last decade, medical image segmentation has been extensively investigated and has 

played a crucial role in computer-aided diagnostic systems. It is considered an essential step in 

medical image analysis in order to assist the clinician in conducting an accurate diagnosis and 

treatment. Image segmentation is the process of dividing an image into several disjointed areas 

based on features such as grayscale, spatial texture, and geometric shapes, along with a specific 

description [1]. The most popular medical image segmentation studies involve segmenting various 

elements, such as cells, tumors within different tissues (such as the cardiac, brain, liver, and lungs), 

the optic disc, pulmonary nodules, blood vessels, etc. [2]. 

Image segmentation methods could be classified into three categories in proportion to the degree 

of human interaction, including manual, semi-automatic, and automatic segmentation. Manual 

segmentation is done by an expert, a specialist radiologist, or a clinician. Therefore, it would serve 

as the ground truth to evaluate any segmentation method. On the other hand, manual segmentation 
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is prone to a great deal of variation, which may give rise to expert conflicts and is a time-consuming 

and laborious process. 

Semi-automatic segmentation tries to address some problems associated with manual 

segmentation using algorithms such as growing segmentation in one re or expanding segmentation 

to other sections to eliminate the need for slice-by-slice segmentation, which could reduce the user 

effort and time required [3]. User interaction may include a rough selection of the initial ROI, 

which is subsequently utilized to segment the entire image. This type of segmentation may include 

manual interaction for correcting region boundaries to reduce segmentation errors [4].  

Automatic algorithms would be able to produce reliable and repeatable segmentation results 

without the need for any user interaction. Over time, various automated conventional image 

segmentation algorithms have been developed, including thresholding as an intensity-based 

technique, edge-based [5] and region-based [2] methods, deformable models such as level set and 

active contour [6], clustering-based [7], and artificial neural network-based methods [8]. 

Thresholding and region-growing methods are two examples of region-based segmentation. 

Thresholding is the most basic approach to image segmentation. This algorithm directly divides 

the processing of the grayscale information of the image based on the gray value of distinct targets. 

The region-growing strategy is a typical region segmentation algorithm, and its fundamental idea 

is to consider similar properties of the pixels together to create a region. The approach needs to 

begin with the selection of a seed pixel and then surrounding similar pixels be combined into the 

region where the seed pixel is located. Edge detection is another conventional and basic approach 

in image segmentation that applies discontinuous local features of the image to detect the image 

edges. 

In the clustering-based technique, the class term refers to the collection of similar elements. The 

feature space clustering method is utilized to segment the pixels within the image space into the 

corresponding feature space points. Human feature engineering, which is often used with machine 

learning approaches based on neural networks (NNs) or support vector machines (SVM), is 

another common segmentation method that is time-consuming due to the need for manual feature 

extraction  [9]. There are also some challenging problems in medical image segmentation tasks, 

such as blurred and irregular borders, annotation bias, low contrast and imbalanced images, 

absence of texture contrast, sensitivity to contrast, imaging noise, etc. [10]. Nevertheless, 

incredible developments in medical image processing have occurred through NNs, and outstanding 

outcomes are consistent. Recently, motivated by the success of Deep Neural Networks (DNNs), 

researchers in the medical field have attempted to address a variety of issues using Deep Learning 

(DL) approaches, such as image denoising [11], image reconstruction [12], image registration [13], 

and also image segmentation [14]. These approaches have been effectively utilized for the 

semantic segmentation of natural images and have also found applications in the segmentation of 

medical images. Convolutional Neural Networks (CNNs) are key concepts in DL networks as 

feature extractors and highlight popular neural network architectures for this task. These 

architectures include the Fully Convolutional Network (FCN) [15], U-Net [16], Generative 

Adversarial Network (GAN) [17], Recurrent Neural Network (RNN) [18], and Auto-Encoder 

approaches [19]. This diverse range of DL architectures addresses various aspects of medical 

image segmentation, from handling volumetric data to capturing temporal relationships in 
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sequences, ultimately contributing to the advancement of precision medicine and diagnostic 

applications in the healthcare domain. 

The complexity of targets motivates researchers to create a wide range of DL models in the field 

of medical image segmentation, which remains a significant challenge in this field and is one of 

the first issues that experts confront in diagnostic and treatment procedures. On the other hand, 

different properties, structures, and textures of the objects in the image affect the segmentation 

results. However, if the segmentation problem is investigated by concentrating on specific targets, 

the same approaches for each target could be found. In this case, we chose targets that drastically 

affect diagnosis and treatment procedures to provide a novel and informative target-based review 

of medical image segmentation, as shown in Figure 1. The "Vessel" is such a vital part of every 

organ that its accurate segmentation is critical for surgery and treatment planning, risk reduction 

in surgery, and clinical outcome evaluation. The "Tumor" almost has the potential to grow in every 

organ. So, accurate tumor segmentation leads to maximally safe resection and increases patient 

survival. Finally, "Pathology" underlies every field of medicine, from diagnosis, blood transfusion 

technology, and disease monitoring to cutting-edge genetic research. 

It could be seen that the images within each group of targets exhibit visual similarities. These 

observations have prompted us to conduct a comprehensive systematic review of DL-based 

methods in medical image segmentation. The aim is to assist researchers in identifying the most 

suitable network for their specific target and addressing current challenges. 

 
Figure 1. Visualization of three main groups of targets including tumor [20], vessel [21], and pathological images 

[22] for medical image segmentation. 

The main contributions of our work are as follows: 

(1) To employ the review protocol of the Preferred Reporting Items for Systematic Reviews 

and Meta-Analyses (PRISMA) search strategy to make the review accurate and 

reproducible.  

(2) To provide a novel and informative target-based review on medical image segmentation, 

by summarizing the most popular networks applied for medical image segmentation and 

highlighting their advantages over other approaches. 

(3) To select targets that have a drastic effect on diagnosis and treatment procedures, we 

review DNNs, datasets, and findings to provide an appropriate assessment in the medical 

image segmentation area.  

The rest of the paper is organized as follows. Section 2 briefly introduces the main DNN models 

frequently used in medical image segmentation. Then, we describe the data description, pre-

processing, and the most common performance metrics. Also, in the last part of section 2, we detail 

our review process. In section 3, we categorize the collected articles into three target-based groups: 

tumors, vessels, and pathological image segmentation. To clarify its most recent developments, 

each category was examined in detail for different body organs and imaging techniques. Finally, 

our conclusions are given in the last section. 
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2. Methodology 

2.1. Deep learning (DL) 

DL has been able to establish itself in medical image processing, especially image segmentation, 

since these tasks usually require high accuracy. CNNs as a class of artificial neural networks, 

provide the outcomes of convolving a certain number of filters with the input data and serving as 

feature extractors. In the following, we will mention some of the most commonly used neural 

network architectures for image segmentation tasks. 

 

2.1.1. Fully Convolutional Network (FCN) 

Long et al. [15] introduced the FCN, in which the final dense layer of CNN is replaced with a 

fully convolutional layer. In a study, Zhou et al. [23] employed the FCN comprising convolution 

and de-convolution section for the 2D semantic image segmentation of 19 different organs in 3D 

Computed Tomography (CT) scans. 

 

2.1.2. U-Net 

Ronneberger et al. [16] introduced U-Net, which has been extensively applied for medical image 

segmentation. The structure of U-Net is shown in Figure 2, which is established based on the 

delicate structure of FCN. Detecting or recognizing objects in medical images only based on the 

low-level features of the image is a very challenging issue. Moreover, obtaining accurate 

boundaries only from the semantic features of the image is impossible as there is no detailed image 

information. However, low-level and high-level features of the image in the U-Net are efficiently 

integrated through a combination of low-resolution and high-resolution feature maps using skip 

connections, which could be considered an ideal solution for fast and precise medical image 

segmentation.  

 

Figure 2. U-Net architecture. 

 

 

2.1.3. 3D U-Net 

Due to the volumetric nature of most medical images, 3D convolution kernels are able to explore 

high-dimensional spatial correlation in the image. In this context, Icek et al. [24] extended the idea 

of U-Net to be applied to 3D data and introduced 3D U-Net, which processes 3D medical data. 

Milletari et al. [25] presented the V-Net, similar to the 3D U-Net structure. As demonstrated in 

Figure 3, residual connections could prevent vanishing gradients and improve network 

convergence. Therefore, it is arguable that designing deeper networks provides better feature 
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representation. Finally, it was applied to the V-Net using four down-sampling paths to design a 

deeper network. This architecture leads to higher performance in comparison with the 3D U-Net. 

 
Figure 3. 3D U-Net architecture [25]. 

2.1.4. Generative Adversarial Network (GAN) 

In 2014, Goodfellow et al. [17] presented an adversarial approach for learning a deep generative 

model as a GAN, which has been widely applied in several fields of computer vision. As depicted 

in Figure 4, it includes two parts: generative and adversarial networks. The generation network is 

the initial part that receives random noise and generates an image through this noise, and the 

second part, the adversarial network, combats against the network and makes a decision, whether 

the input image is “real” or “fake”. The first time, Luc et al. [26] applied the GAN for image 

segmentation that used the generative network for segmentation and trained the adversarial 

network as a classifier.  

In medical image segmentation, the unbalanced pixels issue could not be resolved by the U-Net 

entirely, so Xue et al. [27] extended the architecture of U-Net to the generator of GAN and 

introduced a network named Segmentation Adversarial Network (SegAN), which led to better 

performance than the U-Net segmentation method. 

 

Figure 4. GAN architecture. 
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2.1.5. Recurrent Neural Network (RNN) 

RNN is invested in repeated connections and a particular type of loop architecture with a memory of 

prior knowledge, as shown in Figure 5. Long Short-Term Memory (LSTM) [18], one of the most popular 

RNNs, could maintain gradient flow by introducing a self-loop. In medical image segmentation, RNN is 

used to model the time dependency of image sequences while maintaining the total shape, smoothness, or 

regional homogeneity inside and outside the border. To model the temporal relationship between different 

brain magnetic resonance imaging (MRI) slices, Gao et al. [28] joined LSTM and CNN to enhance the 

accuracy of segmentation. FCN and RNN were combined by Bai et al. [29] to explore the spatiotemporal 

information for aortic sequence segmentation. By considering the context information relationship, local 

and global spatial features could be captured by RNN.  

 Recently, Xie et al. utilized a 2D structure of spatial Clockwork RNN (CW-RNN) in medical 

segmentation [30]. Context information extracted from the whole image could be encoded to represent 

each patch. It is extracted by splitting the entire image into a set of non-overlapping image patches. The 

proposed spatial CW-RNN model has semantic dependencies among them. 

Figure 5. RNN architecture. 

 

2.1.6. Auto-Encoder based DL Architectures 

To compress the input into a latent-space representation, an Auto-Encoder (AE), including the neural 

network encoder, is used with values similar to inputs intended in the back-propagation algorithm. This 

network includes a decoder that restores the latent representation input and an encoder that compresses 

the input to a latent representation (Figure 6). 

Zimmerer et al. [19] presented a segmentation method based on context-encoding and variational AE 

for brain T2-weighted images. They attempted to discover anomalies at the pixel level by using model-

internal latent representation deviations and reconstructing a more expressive error. Vaidhya et al. [31] 

used unsupervised 3D stacked denoising auto-encoders to detect and segment glioma patches in brain MR 

images. Baur et al. [32] combined both concepts of GANs and AEs arguing that AEs suffer from 

memorization and tend to produce blurry images, and GANs have been shown to produce very sharp 

images due to adversarial training. They leveraged a deep generative model in the form of spatial 

variational AEs to build a new model for anomaly segmentation in brain MR images. 

 

Figure 6. AE-based DL architecture. 

 

2.2. Data Description  

Since DNNs gather information from tens of thousands of images, their performance depends on using 

large datasets. In many computer vision tasks, preparing a large dataset is simple, but collecting and 

labeling representative, high-quality datasets in medical applications is challenging. This is due to the 

variety of data acquisition sources and the time it takes to label with a specialist physician's annotation as 

a ground truth. However, a wide range of public databases for various medical applications have been 
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collected and annotated in recent years. This would provide the possibility of using DL models on a wide 

range of targets and also allow the comparison of studies’ results. Here is a summary of the most widely 

used public databases available for medical image segmentation applications based on our targets: 

2.2.1. Tumor Segmentation 

• Brain Tumor Segmentation  

Brain Tumor Segmentation (BraTS)  database is a well-accepted benchmark for brain tumor segmentation 

studies using DL. This database is published annually and includes MRI scans of patients with high-grade 

and low-grade glioma in four MRI sequences (T1, T2, T1-Gd, and FLAIR), and has ground truth for each 

glioma sub-regions [33]. 

• Liver Tumor Segmentation 

Due to the importance of automatic liver tumor segmentation, in a challenge in 2017, liver tumor 

segmentation (LiTS17) data was released. The training dataset contains 130 CT scans, whereas the test 

dataset contains 70 CT scans, which are segmented by various clinical sites around the world. The LiTS 

image data and manual annotations will be made publicly available through an online evaluation system 

as a benchmarking resource. LiTS has been used frequently in automatic liver tumor segmentation studies. 

It is noteworthy that first, most studies for accurate liver tumor segmentation focused on liver tissue 

segmentation  [34]. 3D Image Reconstruction for Comparison of Algorithm Database (3D-IRCADb) is a 

database that contains 3D CT scans of ten women and ten men with liver cancers, along with specialist 

ground truth manual segmentation of different objects of interest [35]. 

• Lung Tumor Segmentation 

In [36], a radiogenomic dataset containing images of Non-Small Cell Lung Cancer (NSCLC) patients has 

been provided. It contains CT images, Positron Emission Tomography (PET)/CT images, and specialist 

annotations of the tumors as ground truth. 

2.2.2. Blood Vessel Segmentation 

For the segmentation of blood vessels in the head and neck, brain, retina, abdomen, and coronary arteries 

utilizing imaging techniques such as MRI, OCT, ophthalmoscopy, CTA, and X-Ray, various databases 

have been released, which are further referenced. Also, in the literature, the available datasets of DRIVE 

[37], TOPCON [38], STARE [39], CHASE_DB1 [40], RITE [41], HRF [42], RC-SLO [43], IOSTAR 

[44], and IndoCyanine Green (ICG) angiography [45] for retinal organ and IRCAD [35] and MSD [46] 

related to liver vessel segmentation have been used. Also, a review has been done on the organs of the 

brain, abdomen, coronary, and head and neck, whose datasets are not publicly available. 

2.2.3. Pathological Image Segmentation 

Among the datasets introduced in this field, CAMELYON16, CAMELYON17 [47], the KMC dataset 

(also known as the Kumar dataset) [48], and the Pathological Myopia (PALM) dataset [49] stand out as 

prominent sources of pathological image data, each offering unique insights and challenges for research 

in this domain. 
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2.3. Data Preprocessing 

Before feeding raw image data to the network, some standard pre-processing techniques are applied to 

the multi-modal medical images, such as noise removal operations, image registration, skull-stripping, 

intensity bias correction, and normalization. This step is crucial in medical image segmentation because 

raw data has various brightness and contrast. They contain irrelevant structures and noise that are relevant 

to different imaging protocols and acquisition devices [50].  

Data preprocessing involves essential steps to prepare the data for further analysis. Noise removal is the 

process of eliminating unwanted variations or irrelevant information that could distort results. Noise 

removal is crucial to eliminate artifacts or unwanted variations in medical images, such as MRI scans or 

X-rays, ensuring that the segmentation algorithms can accurately delineate structures of interest like 

tumors or organs. Enhancement techniques improve data quality by enhancing features and patterns, 

enhancing clarity, or adjusting contrast [51]. Enhancement techniques are employed to improve the 

visibility of subtle features or boundaries within medical images, aiding in the precise identification and 

segmentation of anatomical structures. These preprocessing steps collectively ensure that the data used in 

research is of high quality, representative, and suitable for accurate analysis or modeling, enhancing the 

reliability and robustness of the results obtained.  

Moreover, collecting large amounts of data and annotating them by a specialist in medical image 

analysis is time-consuming and costly. On the other hand, low bias and high variance cause overfitting in 

training data. Image data augmentation is one of the most widely used solutions to this problem [50]. This 

method helps us improve the dataset's size and quality in the training phase to build a more powerful DL 

model by applying a set of transformations in the data or feature space [52]. Image data augmentation 

methods generally fall into two categories: creating new data by making specific changes to existing 

images using basic image manipulations such as geometric and color space transformations, mixing 

images, random erasing, and kernel filters. Creating synthetic data using crowdsourcing and DL-based 

techniques, including adversarial training, neural style transfer, and GAN data augmentation [53]. Image 

data augmentation is also helpful in creating faster convergence and improving model generalization. In 

this context, these preprocessing techniques not only enhance the accuracy and reliability of medical image 

segmentation but also contribute significantly to clinical diagnosis and treatment planning. 

 

2.4. Performance Metrics 

The efficacy of the image segmentation algorithms is evaluated regard to the ground truth, which is 

provided by experts. For quantitative studies of different segmentation methods and the possibility of 

comparing their performance, typical uniform and standard evaluation metrics are utilized. However, 

numerous definitions for a specific metric and applications of an algorithm for different 

object/organ/structure segmentation would cause challenges in introducing standard evaluation criteria.  

Various categories are recommended for evaluation metrics of medical image segmentation, including 

spatial overlap-based, spatial distance-based, volume-based, probabilistic, and information theoretical-

based metrics [54]. Based on our approach, we introduced the most common metrics that fall into the first 

category. As shown in Figure 7, all spatial overlap-based metrics could be obtained from four basic error 

rate definitions: true positive (TP), false positive (FP), true negative (TN), and false negative (FN). In the 

following, some criteria are introduced that have been used in most studies. 

 



10 | P a g e  

 

Figure 7. Schematic illustration of four basic error rate definitions. 

 

• Dice Similarity Coefficient  

The Dice Similarity Coefficient (DSC) is used to evaluate the similarity between the two sets. This 

criterion is the overlap between the segmentation results and ground truth annotation. It is widely used to 

evaluate segmentation methods and takes a value between 0 and 1. The closer this criterion is to 1, the 

greater the similarity between the segmentation masks. DSC is expressed as Equation 1. 
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• True Positive Rate 

The True Positive Rate (TPR), called Recall or Sensitivity, calculates the percentage of actual positive 

pixels/voxels in ground truth, which are correctly segmented by the algorithm. It is calculated as Equation 

2. 

TP
TPR

TP FN
=

+
 (2) 

• True Negative Rate 

The True Negative Rate (TNR), also called Specificity, calculates the percentage of actual negative 

pixels/voxels in the ground truth, which are correctly segmented (as background) by the algorithm. This 

could be stated as Equation 3. 

TN
TNR

TN FP
=

+
 (3) 

• Accuracy 

Accuracy (Acc) is the ability of the system to distinguish between foreground and background in the 

image that measures the true positive and true negative voxels/pixels in all predictions. This could be 

stated as Equation 4. 

TN TP
Acc

TN TP FP FN

+
=

+ + +
 

        

(4) 

 

2.5. Review Process 

Since the primary concern in the treatment protocol is the target, this study provided a quick 

configuration of state-of-the-art DL models for medical image segmentation based on specific targets: 

tumor, vessel, and pathology.  This new classification of articles could affect accurate access to practical 
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articles in the clinic from now on. In this paper, we attempted to provide a simple-to-use and presentative 

framework that focused on target-based medical image segmentation methods based on DL techniques.  

2.5.1. Study selection 

We employed the review protocol of the PRISMA search strategy to make the review accurate and 

reproducible (www.prisma-statement.org) [55]. This search strategy consists of 4 steps: identification, 

screening, eligibility, and included. The following are the details of the PRISMA statement: 

Identification stage: The results were obtained using the following research terms: (medical image 

segmentation*) AND (deep learning*). These keywords have been searched to obtain the latest literature 

from the Google Scholar search engine and the PubMed database, and the results are represented in Figure 

8, queried on April 30, 2023.  

Screening stage: According to an exponential growth in the number of published articles between 2015 

and 2023, this limitation was considered. As a result, we obtained 789,581 records, of which 775,905 

records were eliminated based on duplication and the considered year limitation. Also, due to the vast 

number of articles on brain tumors, articles only related to the last two years were considered. The titles 

and abstracts of the remaining articles have been reviewed and 13,247 records were eliminated due to the 

consideration of specific targets for review.  

Eligibility stage: Due to reasons such as the unavailability of full-text articles, the evaluation criteria 

considered in this review, and the use of similar methods in some articles, 311 records have been deleted.  

Included stage: Finally, 118 articles were included in the systematic review. Of these articles, 34%, 

13%, 8%, 28%, and 17% records are related to the brain tumor, liver, lung, blood vessel, and pathology 

segmentation, respectively. According to the PRISMA statement, details about the exclusion and inclusion 

of papers are shown in Figure 9. 

2.5.2. Extracted Data 

In order to better summarize the various methods for each target, a table is provided that contains the 

organ/modality that shows the organ and imaging techniques that are used, the DL network architecture 

and its approach, evaluation metrics, and finally, the dataset which is applied for evaluating the proposed 

algorithm. The tables compare and summarize related methods and identify the challenges for successful 

methods of DL for medical image segmentation tasks. This study has aimed to investigate the application 

of DL technology in medical image segmentation over the past seven years. The strengths and limitations 

of network structure and methods are also being investigated. 

Figure 8.  The number of publications for target-based segmentation (till April 2023). 

Figure 9. Inclusion and exclusion criteria for selection of articles for systematic review according to the PRISMA guidance. 

 

3. Results 

3.1. Tumor Segmentation 

Tumor segmentation represents the correct identification of the spatial location of a tumor. Therefore, 

reliable and accurate tumor segmentation is essential for accurate diagnosis and treatment planning, 
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especially in vital organs of the human body, such as the lung, liver, and brain [56]. In the following, 

tumor segmentation is investigated for three vital targets: The lung, liver, and brain. 

 

3.1.1. Brain Tumor Segmentation  

Brain tumor segmentation is associated with some issues due to the blurred and irregular boundaries of 

the tumor and the variety of its location and forms [57, 58]. Furthermore, because the brain tumor 

segmentation poses challenges such as annotation bias, low contrast, and imbalanced images, researchers 

are constantly looking for novel strategies to improve their results. 

Among all types of brain tumors, glioma is the most common and invasive type of brain tumor with 

high and low grades, which highly determines the patient survival rate. Therefore, accurate segmentation 

and grading of gliomas are essential in diagnosis and treatment planning [59]. Recently, some DL-based 

brain tumor segmentation studies have achieved good results by including the classification of glioma 

grades in their approach. For example, Yogananda et al. [60] simplified the complex segmentation 

problem by first classifying the high-grade glioma (HGG) and low-grade glioma (LGG) cases with a 

simple CNN classifier and then performing their segmentation approaches. Also, brain tumor images could 

be analyzed in 2D slices or 3D volumes, leading to some studies that trained the network directly using 

3D volumes [61, 62], or images were fed slice to slice to the network [63, 64]. For example, Kaldera et al. 

[65] used 2D slices only in the axial view, assuming that a higher resolution of the tumor could be seen in 

this view. Tripathi et al. incorporate internal residual connections in the encoder and decoder to transfer 

feature maps to preserve boundary and pixel details [66]. 

One of the practical challenges in brain tumor segmentation is the image imbalance between healthy 

tissue and tumoral tissue [67]. In [68], a proposed 3D CNN as a helpful solution addressed the data 

imbalance issue (image imbalance between foreground and background). Given that a large part of the 

images is healthy texture or background, by adding a practical loss function, a new hybrid model (IOUC-

3DSFCNN) is proposed that has better performance to solve this problem. 

DL-based brain tumor segmentation methods in the following four general categories, including CNNs, 

RNNs, AEs, and GANs, have been used frequently in recent studies. Many studies with various 

innovations have been performed to segment brain tumors using CNNs [69, 70]. In comparison, RNN, 

which could represent time series inputs, has been used less than CNN in brain tumor segmentation tasks 

[71, 72]. Recently, GANs and AEs have been utilized for brain tumor segmentation [73, 74]. Different 

architectures and training details could affect the networks' performance. The use of assembling the model 

is a recommended approach that results in an unbiased and robust brain tumor segmentation outcome by 

averaging the variance of the models [62, 75]. Despite the high efficiency of DL-based brain tumor 

segmentation models, the results of these methods require expert correction and interventions.  

Therefore, interactive methods that allow physician intervention in the segmentation results have been 

considered recently [76, 77]. In recent years, the number of studies conducted on the segmentation of brain 

tumors based on DL has grown rapidly; therefore, some recent studies have been reviewed (Table 1). 

 

3.1.2. Liver Tumor Segmentation 

In recent years, liver cancer has surpassed lung cancer as the fourth leading cause of death worldwide 

[78]. The liver could be affected by various tumors with different visual appearances. Secondary tumors, 

including lung, breast, colon, etc., metastasize to the liver in addition to tumors that originate in the liver, 
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like hepatocellular carcinoma. Due to their heterogeneous and diffusive shape, automatic segmentation of 

liver tumors is a challenging task. Between 2017 and 2019, several public challenges and competitions 

centered around liver and liver tumor segmentation were organized. These challenges, including Sliver07 

and 3D Segmentation in the Clinic: A Grand Challenge [79], primarily featured conventional methods like 

level set techniques, thresholding, and machine learning approaches. However, it became evident that 

these traditional methods struggled to match the performance of deep learning techniques. While 

significant progress has been made in achieving near-human precision in liver segmentation, robustly 

segmenting liver tumors remains a formidable obstacle. This challenge is exacerbated by the lack of 

publicly datasets containing labels for both liver and liver tumors. Access to private datasets is limited due 

to privacy concerns and the labor-intensive process of image annotation. The CHAOS challenge [80] was 

launched in 2019 to evaluate the effectiveness of multi-modal systems that leveraged voxel information 

for liver segmentation across both CT and MRI volumetric images. 

 Table 2 summarizes recent studies, including various DL models for liver tumor segmentation, which 

have acceptable results. 

 

3.1.3. Lung Tumor Segmentation 

Lung cancer is one of the most deadly kinds of cancer [81]. Hence, image segmentation would be a 

critical process in detecting and characterizing lung tumors [82]. Due to the limitations and complexity of 

diagnosing and classifying lung tumors with manual segmentation methods, automated segmentation 

methods with acceptable outcomes have been presented for accurate lung tumor segmentation [81]. These 

automated methods not only improve the precision of lung tumor segmentation but also offer the potential 

for more efficient and consistent diagnoses, ultimately playing a pivotal role in improving patient 

outcomes and the overall management of lung cancer. 

 The great success of DL methods for analyzing lung tumors has significantly improved the 

segmentation, classification, and identification tasks. Table 3 provides a summary of recent studies, 

including various DL models for lung tumor segmentation. In these studies, imaging modalities such as 

PET-CT, 2D and 3D CT, and bronchoscopy have been used to show non-small-cell lung cancer, lung 

nodules, tumors of soft tissue sarcoma, benign and malignant, and lung cancer.  

Clinically, maximum tumor removal without damage to surrounding healthy tissues  )organs at risk( is 

an essential goal in neuro-oncology. Automatic segmentation with deep learning methods has recently 

received much attention in tumor segmentation. Deep convolutional networks, especially U-Net, have 

received the most attention for this task; however, in some studies, the use of GAN networks has been 

recommended. The main challenge in using these structures is the large number of model parameters and 

the need for a large amount of data for network training and acceptable generalization. This problem has 

been solved recently using more compact networks, such as capsule networks with fewer parameters. 

Table 1. Summary of DL approaches in brain tumor segmentation. 

3.2. Blood Vessel Segmentation 

Blood vessel segmentation is a topic of high interest in medical image processing since vessel analysis 

is crucial for the execution and treatment planning, diagnosis, and evaluation of clinical outcomes in 
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different fields, such as neurosurgery, ophthalmology, oncology, and laryngology. Semi-automatic or 

automatic vessel segmentation would greatly assist clinicians in this regard. A variety of medical imaging 

modalities are being employed in clinical practice, and selecting an appropriate segmentation method is 

mandatory to deal with the characteristics of adopted imaging technique (e.g., vessel contrast, noise, and 

resolution) [97].  

The process of manually segmenting blood vessels is both time-consuming and lacks consistency and 

reproducibility between different operators. In contrast, semi-automatic or fully automatic vessel 

segmentation methods necessitate the involvement of at least one expert clinician to either perform the 

segmentation or assess the obtained segmentation results. Moreover, the development and evaluation of 

these algorithms suffer from lack of support since publicly image datasets that include Ground Truth are 

now limited to specific anatomical regions, such the retina. Nonetheless, the utilization of automatic or 

semi-automatic blood vessel segmentation methods could provide assistance to clinicians. As a result, 

these areas hold significant importance in medical research, as evidenced by the substantial annual 

publication rate in this domain [97]. In recent years, the popularity of DL approaches in medical imaging 

has grown because of their robust capability in extracting features, precise classification, and adaptability 

[98]. Nonetheless, given the rapid advancements in the field, there is a need for updated reviews to assess 

and summarize the current state of the art. 

Table 4 provides a summary of recent studies, including various DL models for vessel segmentation. In 

these studies, imaging modalities such as the MRI, ophthalmoscope, optical coherence tomography 

(OCT), CT, and CT angiography (CTA) have been used to show the vessels of organs such as the brain, 

retina, esophageal, abdominal, coronary, type B aortic dissection (TBAD), liver, and head and neck. 

According to Table 4, deep learning networks have been widely used in blood vessel segmentation. The 

researchers used CNN and U-Net networks more because of their good performance on the databases. In 

addition, many authors have proposed various improved models such as the U-Net CNN, the DV-Net, 

TransFusionNet, the R2U-Net, the scale-space approximated CNN, the Hard Attention Net, ResDO-UNet, 

etc. for blood vessel segmentation. Also, due to the importance of retinal vessels, most studies on this 

organ have been done using the ophthalmoscope imaging modality. The most common performance 

evaluation metrics have been the proposed methods for blood vessel segmentation, ACC and TPR, which 

on average in this survey are 0.94±0.05 and 0.83±0.08, respectively.

Table 2. Summary of DL approaches in liver tumor segmentation 

3.3. Pathology Image Segmentation 

The digitized pathology slides provide opportunities for clinical diagnosis that could assist pathologists 

and researchers in disease monitoring. Because of the success of DL, digital pathology is rapidly 

progressing. Prior to DL's popularity in the analysis of medical images, pathology images were difficult 

to analyze due to their complexity [118]. However, digital pathology image segmentation using DL could 

not be accomplished in interpreting whole slide images to detect tumor regions [119] and lymph node 

metastases [47].  

In 2012, a grand challenge in histopathology was held and focused only on mitosis detection in breast 

cancer histological images [120]. This was the first time in a histopathology challenge where DL methods 

outperformed other methods based on handcrafted features and smoothed the way for future use of CNNs. 

For the first time in 2013, pathology image segmentation made its way through the rapid progress of DL 

by using deep max-pooling CNNs to detect mitosis in breast histology images [121]. 
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 Most efforts to date have focused on developing neural network architectures to enhance the 

performance of different computational pathological tasks. U-Net has been commonly used in several 

applications [122]. It has been implemented in an end-to-end architecture and to overcome the challenge 

of limited medical databases, it has extensively used data augmentation to better leverage the available 

annotation examples [123].  

Medical image segmentation has exponentially grown in the last few years. However, unfortunately, the 

pathological images are left out of this rapidly growing storm due to the challenges it faces in this area. 

Access to large well-annotated datasets, context switching between workflows, and lack of health 

economics are some key challenges that slow down DL and make pathologists hesitant to adopt it [123].  

In Table 5, we only consider recent studies that have yielded acceptable results in this field. As shown in 

Table 5, convolutional networks have received much attention from researchers in pathology image 

segmentation. In the meantime, by introducing U-Net in pathology image segmentation, the accuracy of 

segmentation has increased. 

 
Table 3.  Summary of DL approaches in lung tumor segmentation. 

Table 4.  Summary of DL approaches in blood vessel segmentation. 

Table 5. Summary of DL approaches in pathology image segmentation. 

4. Conclusion 

• Nowadays, due to the penetration of DL in medical image segmentation, many articles have been 

published in this field and researchers have been able to segment almost all types of medical images. 

Considering the complexity and variation of different targets, DL models have been proposed that 

specify each target in medical image segmentation. There are many available targets to review in this 

field, such as vessel, tumor, pathology, cardiac, skin cancer, lesion, and bone segmentation,  and each 

one has considerable importance. This paper first summarized the most popular networks applied for 

medical image segmentation and highlighted their different advantages. To provide a novel and 

informative target-based review on medical image segmentation, we decided to select targets that 

drastically affect diagnosis and treatment procedures, as shown in Figure 1. "Vessel" is a vital part of 

every organ that accurate segmentation of it is a crucial issue for surgery and treatment planning, 

minimization of the risks of surgery, and evaluation of clinical outcomes. "Tumor" almost has the 

potential to grow in every organ and accurate segmentation of different tumors leads to maximally 

safe resection of them and increases patient survival. Finally, "pathology" underlies every field of 

medicine, from diagnosis, blood transfusion technology, and disease monitoring to cutting-edge 

genetic research. In reviewing the mentioned targets, this issue is highly realizable, in that a variety of 

networks are provided for each target, and the most notable results for each target occur with a specific 

network. In this case, for brain and liver tumors and vessel images, different kinds of residual networks, 

GAN and CNN, respectively, and for lung tumors and pathology images, different types of U-Net had 

the best results. Along with targets, we reviewed DNNs, datasets, and results to provide an appropriate 

assessment in this area. Although enormous dataset challenges are a deniable fact, all indications point 

to the significant role of DL techniques in medical image segmentation.  

• Open problems and challenges: Although deep learning has shown significant results in medical 

image segmentation, it has yet to be placed in a suitable place in the clinical routine. This cross-

disciplinary field deals with complex pathological medical data on the one hand, and on the other hand 
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with the field of engineering, where the adaptation of these two fields has yet to happen well. In fact, 

many parts of medical knowledge that are effective in making final decisions could not be understood 

by artificial intelligence and vice versa. Fortunately, the rapid growth of deep learning methods has 

been realized, and today, more interpretable approaches such as explainable artificial intelligence have 

emerged, which have provided the expert with high interaction and confidence in artificial intelligence 

methods. 

• Future directions: With the increasing implementation of deep learning models in critical medical 

applications, the need for transparency and interpretability becomes paramount. Integrating an 

examination of explainable AI (XAI) techniques within this systematic review can help us realize how 

these methods are shaping the landscape of medical image segmentation. Understanding and 

expressing how and why deep learning models arrive at specific segmentation decisions is essential 

for gaining the trust of healthcare professionals and ensuring safe and effective clinical 

implementation. Furthermore, XAI plays a pivotal role in addressing ethical concerns, ensuring 

accountability, and meeting regulatory requirements in the healthcare sector. Thus, exploring the 

current state and future potential of XAI within medical image segmentation could be a pivotal 

component of future systematic reviews in this field, offering insights that are not only academically 

significant but also practically indispensable for the advancement of AI in healthcare. 

Acknowledgment 

The authors declare that they have no conflict of interest. 

 

References 

1. Liu, T., Liu, J., Ma, Y., et al., "Spatial feature fusion convolutional network for liver and liver tumor segmentation 

from CT images", Medical Physics,  48(1), pp. 264-272 (2021). DOI: 10.1002/mp.14585. 

2. Shrivastava, N., and Bharti, J., "Automatic Seeded Region Growing Image Segmentation for Medical Image 

Segmentation: A Brief Review", International Journal of Image and Graphics,  20(03), pp. 2050018 (2020). DOI: 

10.1142/S0219467820500187. 

3. Krissian, K., Carreira, J.M., Esclarin, J., and Maynar, M., "Semi-automatic segmentation and detection of aorta 

dissection wall in MDCT angiography", Medical image analysis,  18(1), pp. 83-102 (2014). DOI: 

10.1016/j.media.2013.09.004. 

4. Haque, I.R.I., and Neubert, J., "Deep learning approaches to biomedical image segmentation", Informatics in Medicine 

Unlocked,  18, pp. 100297 (2020). DOI: 10.1016/j.imu.2020.100297. 

5. Salman, N., Ghafour, B., and Hadi, G., "Medical Image Segmentation Based on Edge Detection Techniques", 

Advances in Image and Video Processing,  3 (2015). DOI: 10.14738/aivp.32.1006. 

6. Kazerooni, A.F., Ahmadian, A., Serej, N.D., et al., "Segmentation of brain tumors in MRI images using multi-scale 

gradient vector flow",  2011 Annual International Conference of the IEEE Engineering in Medicine and Biology 

Society,  IEEE, pp. 7973-7976 (2011). DOI: 10.1109/IEMBS.2011.6091966. 

7. Rizi, F.Y., Bidgoli, J.H., Ahmadian, A., and Alirezaie, J., "An Efficient Fuzzy Connectivity Method for Airway Tree 

Segmentation Using Fuzzy C-mean Algorithm",  4th Kuala Lumpur International Conference on Biomedical 

Engineering 2008,  Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 501-505 (2008). DOI: 

10.22038/IJMP.2009.7392. 

8. Işın, A., Direkoğlu, C., and Şah, M., "Review of MRI-based brain tumor image segmentation using deep learning 

methods", Procedia Computer Science,  102, pp. 317-324 (2016). DOI: 10.22038/IJMP.2009.7392. 



17 | P a g e  

 

9. Yuheng, S., and Hao, Y., "Image segmentation algorithms overview", arXiv preprint arXiv:1707.02051,  (2017). DOI: 

10.48550/arXiv.1707.02051. 

10. Bi, W.L., Hosny, A., Schabath, M.B., et al., "Artificial intelligence in cancer imaging: Clinical challenges and 

applications", CA Cancer J Clin,  69(2), pp. 127-157 (2019). DOI: 10.3322/caac.21552. 

11. Tian, C., Fei, L., Zheng, W., et al., "Deep learning on image denoising: An overview", Neural Networks,  131, pp. 

251-275 (2020). DOI: 10.1016/j.neunet.2020.07.025. 

12. Farnia, P., Mohammadi, M., Najafzadeh, E., et al., "High-quality photoacoustic image reconstruction based on deep 

convolutional neural network: towards intra-operative photoacoustic imaging", Biomed Phys Eng Express,  6(4), pp. 

045019 (2020). DOI: 10.1088/2057-1976/ab9a10. 

13. Haskins, G., Kruger, U., and Yan, P., "Deep learning in medical image registration: a survey", Machine Vision and 

Applications,  31, pp. 1-18 (2020). DOI: 10.48550/arXiv.1903.02026. 

14. Mahmoudi, T., Kouzahkanan, Z.M., Radmard, A.R., et al., "Segmentation of Pancreatic Ductal Adenocarcinoma 

(PDAC) and surrounding vessels in CT images using deep convolutional neural networks and texture descriptors", 

bioRxiv, pp. 2021.06.09.447508 (2021). DOI: 10.1101/2021.06.09.447508. 

15. Long, J., Shelhamer, E., and Darrell, T., "Fully convolutional networks for semantic segmentation",  Proceedings of 

the IEEE conference on computer vision and pattern recognition, pp. 3431-3440 (2015). DOI: 

10.48550/arXiv.1411.4038. 

16. Ronneberger, O., Fischer, P., and Brox, T., "U-net: Convolutional networks for biomedical image segmentation",  

International Conference on Medical image computing and computer-assisted intervention,  Springer, pp. 234-241 

(2015). DOI: 10.1007/978-3-319-24574-4_28. 

17. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., et al., "Generative adversarial networks", arXiv preprint 

arXiv:1406.2661,  (2014). DOI: 10.48550/arXiv.1406.2661. 

18. Hochreiter, S., and Schmidhuber, J., "Long short-term memory", Neural computation,  9(8), pp. 1735-1780 (1997). 

DOI: 10.1162/neco.1997.9.8.1735. 

19. Zimmerer, D., Kohl, S.A., Petersen, J., et al., "Context-encoding variational autoencoder for unsupervised anomaly 

detection", arXiv preprint arXiv:1812.05941,  (2018). DOI: 10.48550/arXiv.1812.05941. 

20. Valente, I.R.S., Cortez, P.C., Neto, E.C., et al., "Automatic 3D pulmonary nodule detection in CT images: a survey", 

Computer methods and programs in biomedicine,  124, pp. 91-107 (2016). DOI: 10.1016/j.cmpb.2015.10.006. 

21. Ma, Y., Li, X., Duan, X., et al., "Retinal Vessel Segmentation by Deep Residual Learning with Wide Activation", 

Computational Intelligence and Neuroscience,  2020, pp. 8822407 (2020). DOI: 10.1155/2020/8822407. 

22. Menter, T., Nicolet, S., Baumhoer, D., et al., "Intraoperative frozen section consultation by remote whole-slide 

imaging analysis–validation and comparison to robotic remote microscopy", Journal of clinical pathology,  73(6), pp. 

350-352 (2020). DOI: 10.1136/jclinpath-2019-206261. 

23. Zhou, X., Ito, T., Takayama, R., et al., Three-dimensional CT image segmentation by combining 2D fully convolutional 

network with 3D majority voting, in Deep Learning and Data Labeling for Medical Applications. 2016, Springer. p. 

111-120. DOI: 10.1007/978-3-319-46976-8_12. 

24. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., et al., "3D U-Net: learning dense volumetric segmentation from sparse 

annotation",  International conference on medical image computing and computer-assisted intervention,  Springer, pp. 

424-432 (2016). DOI: 10.48550/arXiv.1606.06650. 

25. Milletari, F., Navab, N., and Ahmadi, S.-A., "V-net: Fully convolutional neural networks for volumetric medical image 

segmentation",  2016 fourth international conference on 3D vision (3DV),  IEEE, pp. 565-571 (2016). DOI: 

10.48550/arXiv.1606.04797. 

26. Luc, P., Couprie, C., Chintala, S., and Verbeek, J., "Semantic segmentation using adversarial networks", arXiv preprint 

arXiv:1611.08408,  (2016). DOI: 10.48550/arXiv.1611.08408. 

27. Xue, Y., Xu, T., Zhang, H., et al., "Segan: Adversarial network with multi-scale l 1 loss for medical image 

segmentation", Neuroinformatics,  16(3), pp. 383-392 (2018). DOI: 10.48550/arXiv.1706.01805. 

28. Gao, Y., Phillips, J.M., Zheng, Y., et al., "Fully convolutional structured LSTM networks for joint 4D medical image 

segmentation",  2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018),  IEEE, pp. 1104-1108 

(2018). DOI: 10.1109/ISBI.2018.8363764. 

29. Bai, W., Suzuki, H., Qin, C., et al., "Recurrent neural networks for aortic image sequence segmentation with sparse 

annotations",  International Conference on Medical Image Computing and Computer-Assisted Intervention,  Springer, 

pp. 586-594 (2018). DOI: 10.48550/arXiv.1808.00273. 

30. Xie, Y., Zhang, Z., Sapkota, M., and Yang, L., "Spatial clockwork recurrent neural network for muscle perimysium 

segmentation",  International Conference on Medical Image Computing and Computer-Assisted Intervention,  

Springer, pp. 185-193 (2016). DOI: 10.1007/978-3-319-46723-8_22. 

31. Vaidhya, K., Thirunavukkarasu, S., Alex, V., and Krishnamurthi, G., "Multi-modal brain tumor segmentation using 

stacked denoising autoencoders",  BrainLes 2015,  Springer, pp. 181-194 (2015). DOI: 10.1007/978-3-319-30858-

6_16. 

https://doi.org/10.1016/j.neunet.2020.07.025


18 | P a g e  

 

32. Baur, C., Wiestler, B., Albarqouni, S., and Navab, N., "Deep autoencoding models for unsupervised anomaly 

segmentation in brain MR images",  International MICCAI Brainlesion Workshop,  Springer, pp. 161-169 (2018). 

DOI: 10.1007/978-3-030-11723-8_16. 

33. Menze, B.H., Jakab, A., Bauer, S., et al., "The multimodal brain tumor image segmentation benchmark (BRATS)", 

IEEE transactions on medical imaging,  34(10), pp. 1993-2024 (2014). DOI: 10.1109/TMI.2014.2377694. 

34. Bilic, P., Christ, P.F., Vorontsov, E., et al., "The liver tumor segmentation benchmark (lits)", arXiv preprint 

arXiv:1901.04056,  (2019). DOI: 10.1016/j.media.2022.102680. 

35. Soler, L., Hostettler, A., Agnus, V., et al., "3D image reconstruction for comparison of algorithm database", IRCAD, 

Strasbourg, France, Tech. Rep (2010). DOI: 10.1109/CRC.2018.00010. 

36. Bakr, S., Gevaert, O., Echegaray, S., et al., "A radiogenomic dataset of non-small cell lung cancer", Scientific data,  

5, pp. 180202-180202 (2018). DOI: 10.1038/sdata.2018.202. 

37. Staal, J., Abràmoff, M.D., Niemeijer, M., et al., "Ridge-based vessel segmentation in color images of the retina", IEEE 

transactions on medical imaging,  23(4), pp. 501-509 (2004). DOI: 10.1109/TMI.2004.825627. 

38. Cheng, J., Tao, D., Quan, Y., et al., "Speckle reduction in 3D optical coherence tomography of retina by A-scan 

reconstruction", IEEE transactions on medical imaging,  35(10), pp. 2270-2279 (2016). DOI: 

10.1109/TMI.2016.2556080. 

39. Hoover, A.D., Kouznetsova, V., and Goldbaum, M., "Locating blood vessels in retinal images by piecewise threshold 

probing of a matched filter response", IEEE Transactions on Medical imaging,  19(3), pp. 203-210 (2000). DOI: 

10.1109/42.845178. 

40. Fraz, M.M., Remagnino, P., Hoppe, A., et al., "An ensemble classification-based approach applied to retinal blood 

vessel segmentation", IEEE Transactions on Biomedical Engineering,  59(9), pp. 2538-2548 (2012). DOI: 

10.1109/TBME.2012.2205687. 

41. Hu, Q., Abràmoff, M.D., and Garvin, M.K., "Automated separation of binary overlapping trees in low-contrast color 

retinal images",  Springer, pp. 436-443. DOI: 10.1007/978-3-642-40763-5_54. 

42. Budai, A., Bock, R., Maier, A., et al., "Robust Vessel Segmentation in Fundus Images", International Journal of 

Biomedical Imaging,  2013, pp. 154860 (2013). DOI: 10.1155/2013/154860. 

43. Zhang, J., Dashtbozorg, B., Bekkers, E., et al., "Robust retinal vessel segmentation via locally adaptive derivative 

frames in orientation scores", IEEE transactions on medical imaging,  35(12), pp. 2631-2644 (2016). DOI: 

10.1109/TMI.2016.2587062. 

44. Abbasi-Sureshjani, S., Smit-Ockeloen, I., Zhang, J., and Romeny, B.T.H., "Biologically-inspired supervised 

vasculature segmentation in SLO retinal fundus images",  Springer, pp. 325-334. DOI: 10.1007/978-3-319-20801-

5_35. 

45. Ciulla, T.A., Harris, A., and Martin, B.J., "Ocular perfusion and age‐related macular degeneration", Acta 

Ophthalmologica Scandinavica,  79(2), pp. 108-115 (2001). DOI: 10.1034/j.1600-0420.2001.079002108.x. 

46. Simpson, A.L., Antonelli, M., Bakas, S., et al., "A large annotated medical image dataset for the development and 

evaluation of segmentation algorithms", arXiv preprint arXiv:1902.09063,  (2019). DOI: 10.48550/arXiv.1902.09063. 

47. Bejnordi, B.E., Veta, M., Van Diest, P.J., et al., "Diagnostic assessment of deep learning algorithms for detection of 

lymph node metastases in women with breast cancer", Jama,  318(22), pp. 2199-2210 (2017). DOI: 

10.1001/jama.2017.14585. 

48. Kumar, N., Verma, R., Anand, D., et al., "A multi-organ nucleus segmentation challenge", IEEE transactions on 

medical imaging,  39(5), pp. 1380-1391 (2019). DOI: 10.1109/TMI.2019.2947628. 

49. Fu, H., Li, F., Orlando, J.I., et al., "Palm: Pathologic myopia challenge", IEEE Dataport,  (2019). DOI:10.21227/55pk-

8z03. 

50. Zhou, T., Ruan, S., and Canu, S., A review: Deep learning for medical image segmentation using multi-modality 

fusion. 2020. DOI: 10.1016/j.array.2019.100004. 

51. Batini, C., Cappiello, C., Francalanci, C., and Maurino, A., "Methodologies for data quality assessment and 

improvement", ACM computing surveys (CSUR),  41(3), pp. 1-52 (2009). DOI: 10.1145/1541880.1541883. 

52. Nalepa, J., Marcinkiewicz, M., and Kawulok, M., "Data Augmentation for Brain-Tumor Segmentation: A Review", 

Frontiers in Computational Neuroscience,  13(83) (2019). DOI: 10.3389/fncom.2019.00083. 

53. Shorten, C., and Khoshgoftaar, T., "A survey on Image Data Augmentation for Deep Learning", Journal of Big Data,  

6 (2019). DOI: 10.1186/s40537-019-0197-0. 

54. Taha, A.A., and Hanbury, A., "Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool", 

BMC Medical Imaging,  15(1), pp. 29 (2015). DOI: 10.1186/s12880-015-0068-x. 

55. Moher, D., Liberati, A., Tetzlaff, J., et al., "Preferred Reporting Items for Systematic Reviews and Meta-Analyses: 

The PRISMA Statement", PLOS Medicine,  6(7), pp. e1000097 (2009). DOI: 10.1371/journal.pmed.1000097. 

56. Anwar, S.M., Majid, M., Qayyum, A., et al., "Medical Image Analysis using Convolutional Neural Networks: A 

Review", Journal of Medical Systems,  42(11), pp. 226 (2018). DOI: 10.1007/s10916-018-1088-1. 

https://doi.org/10.48550/arXiv.1902.09063


19 | P a g e  

 

57. Hoseini, F., Shahbahrami, A., and Bayat, P., "An efficient implementation of deep convolutional neural networks for 

MRI segmentation", Journal of digital imaging,  31, pp. 738-747 (2018). DOI: 10.1007/s10278-018-0062-2. 

58. Hoseini, F., Shahbahrami, A., and Bayat, P., "An Efficient Implementation of Deep Convolutional Neural Networks 

for MRI Segmentation", Journal of digital imaging,  31(5), pp. 738-747 (2018). DOI: 10.1007/s10278-018-0062-2. 

59. Naser, M.A., and Deen, M.J., "Brain tumor segmentation and grading of lower-grade glioma using deep learning in 

MRI images", Computers in Biology and Medicine,  121, pp. 103758 (2020). DOI: 

10.1016/j.compbiomed.2020.103758. 

60. Bangalore Yogananda, C.G., Wagner, B., Nalawade, S.S., et al., "Fully Automated Brain Tumor Segmentation and 

Survival Prediction of Gliomas Using Deep Learning and MRI",  Brainlesion: Glioma, Multiple Sclerosis, Stroke and 

Traumatic Brain Injuries,  Springer International Publishing, Cham, pp. 99-112 (2020). DOI: 10.1101/760157. 

61. Banerjee, S., and Mitra, S., "Novel Volumetric Sub-region Segmentation in Brain Tumors", Frontiers in 

Computational Neuroscience,  14(3) (2020). DOI: 10.3389/fncom.2020.00003. 

62. Feng, X., Tustison, N.J., Patel, S.H., and Meyer, C.H., "Brain tumor segmentation using an ensemble of 3d u-nets and 

overall survival prediction using radiomic features", Frontiers in computational neuroscience,  14, pp. 25 (2020). DOI: 

10.3389/fncom.2020.00025. 

63. Munir, K., Frezza, F., and Rizzi, A., Brain Tumor Segmentation Using 2D-UNET Convolutional Neural Network, in 

Deep Learning for Cancer Diagnosis, U. Kose and J. Alzubi, Editors. 2021, Springer Singapore: Singapore. p. 239-

248. DOI: 10.1007/978-981-15-6321-8. 

64. McHugh, H., Talou, G.M., and Wang, A., "2D Dense-UNet: A Clinically Valid Approach to Automated Glioma 

Segmentation",  Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 6th International 

Workshop, BrainLes 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Revised Selected 

Papers, Part II,  Springer Nature, pp. 69 (2021). DOI: 10.1007/978-3-030-72087-2_7. 

65. Kaldera, H., Gunasekara, S.R., and Dissanayake, M.B., "MRI based Glioma segmentation using Deep Learning 

algorithms", 2019 International Research Conference on Smart Computing and Systems Engineering (SCSE), pp. 51-

56 (2019). DOI: 10.23919/SCSE.2019.8842668. 

66. Tripathi, S., Verma, A., and Sharma, N., "Automatic segmentation of brain tumour in MR images using an enhanced 

deep learning approach", Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization,  

9(2), pp. 121-130 (2021). DOI: 10.1109/ACCESS.2023.3288017. 

67. Yeung, M., Sala, E., Schönlieb, C.-B., and Rundo, L., "A mixed focal loss function for handling class imbalanced 

medical image segmentation", arXiv preprint arXiv:2102.04525,  (2021). DOI: 10.48550/arXiv.2102.04525. 

68. Liu, J., Liu, H., Tang, Z., et al., "IOUC-3DSFCNN: Segmentation of Brain Tumors via IOU Constraint 3D Symmetric 

Full Convolution Network with Multimodal Auto-context", Scientific Reports,  10(1), pp. 6256 (2020). DOI: 

10.1038/s41598-020-63242-x. 

69. Kao, P.-Y., Shailja, F., Jiang, J., et al., "Improving patch-based convolutional neural networks for MRI brain tumor 

segmentation by leveraging location information", Frontiers in neuroscience,  13, pp. 1449 (2020). DOI: 

10.3389/fnins.2019.01449. 

70. Ellison, J.C., Improving the generalizability of convolutional neural networks for brain tumor segmentation in the 

post-treatment setting. 2020, UCSF. DOI: 10.48550/arXiv.1907.01268. 

71. Grivalsky, S., Tamajka, M., and Benesova, W., "Segmentation of gliomas in magnetic resonance images using 

recurrent neural networks",  2019 42nd International Conference on Telecommunications and Signal Processing 

(TSP),  IEEE, pp. 539-542 (2019). DOI: 10.1109/TSP.2019.8769056. 

72. SivaSai, J.G., Srinivasu, P.N., Sindhuri, M.N., et al., An Automated Segmentation of Brain MR Image through Fuzzy 

Recurrent Neural Network, in Bio-inspired Neurocomputing. 2021, Springer. p. 163-179. DOI: 10.1007/978-981-15-

5495-7_9. 

73. Nema, S., Dudhane, A., Murala, S., and Naidu, S., "RescueNet: An unpaired GAN for brain tumor segmentation", 

Biomedical Signal Processing and Control,  55, pp. 101641 (2020). DOI: 10.1016/j.bspc.2019.101641. 

74. Mecheter, I., Amira, A., Abbod, M., and Zaidi, H., "Brain MR Imaging Segmentation Using Convolutional Auto 

Encoder Network for PET Attenuation Correction",  Proceedings of SAI Intelligent Systems Conference,  Springer, 

pp. 430-440 (2020). DOI: 10.1007/978-3-030-55190-2_32. 

75. McKinley, R., Rebsamen, M., Meier, R., and Wiest, R., "Triplanar ensemble of 3d-to-2d cnns with label-uncertainty 

for brain tumor segmentation",  International MICCAI Brainlesion Workshop,  Springer, pp. 379-387 (2019). DOI: 

10.1007/978-3-030-46640-4_36. 

76. Wang, G., Li, W., Zuluaga, M.A., et al., "Interactive Medical Image Segmentation Using Deep Learning With Image-

Specific Fine Tuning", IEEE Transactions on Medical Imaging,  37(7), pp. 1562-1573 (2018). DOI: 

10.1109/TMI.2018.2791721. 

77. Wang, G., Zuluaga, M.A., Li, W., et al., "DeepIGeoS: a deep interactive geodesic framework for medical image 

segmentation", IEEE transactions on pattern analysis and machine intelligence,  41(7), pp. 1559-1572 (2018). DOI: 

10.1109/TPAMI.2018.2840695. 

https://doi.org/10.1016/j.compbiomed.2020.103758


20 | P a g e  

 

78. Sung, H., Ferlay, J., Siegel, R.L., et al., "Global cancer statistics 2020: GLOBOCAN estimates of incidence and 

mortality worldwide for 36 cancers in 185 countries", CA: a cancer journal for clinicians,  71(3), pp. 209-249 (2021). 

DOI: 10.3322/caac.21660. 

79. Van Ginneken, B., Heimann, T., and Styner, M., "3D segmentation in the clinic: A grand challenge",  MICCAI 

workshop on 3D segmentation in the clinic: a grand challenge, pp. 7-15 (2007).  

80. Valindria, V.V., Pawlowski, N., Rajchl, M., et al., "Multi-modal learning from unpaired images: Application to multi-

organ segmentation in CT and MRI",  2018 IEEE winter conference on applications of computer vision (WACV),  

IEEE, pp. 547-556 (2018). DOI: 10.1109/WACV.2018.00066. 

81. Chaunzwa, T.L., Hosny, A., Xu, Y., et al., "Deep learning classification of lung cancer histology using CT images", 

Scientific Reports,  11(1), pp. 5471 (2021). DOI: 10.1038/s41598-021-84630-x. 

82. Jalali, Y., Fateh, M., Rezvani, M., et al., "ResBCDU-Net: A Deep Learning Framework for Lung CT Image 

Segmentation", Sensors,  21(1) (2021). DOI: 10.3390/s21010268. 

83. Díaz-Pernas, F.J., Martínez-Zarzuela, M., Antón-Rodríguez, M., and González-Ortega, D., "A Deep Learning 

Approach for Brain Tumor Classification and Segmentation Using a Multiscale Convolutional Neural Network", 

Healthcare,  9(2), pp. 153 (2021). DOI: 10.3390/healthcare9020153. 

84. Zhang, W., Yang, G., Huang, H., et al., "ME-Net: Multi-encoder net framework for brain tumor segmentation", 

International Journal of Imaging Systems and Technology, pp. 1834–1848 (2021). DOI: 10.1002/ima.22571. 

85. Aswani, K., and Menaka, D., "A dual autoencoder and singular value decomposition based feature optimization for 

the segmentation of brain tumor from MRI images", BMC Medical Imaging,  21(1), pp. 82 (2021). DOI: 

10.1186/s12880-021-00614-3. 

86. Zhou, X., Li, X., Hu, K., et al., "ERV-Net: An efficient 3D residual neural network for brain tumor segmentation", 

Expert Systems with Applications,  170, pp. 114566 (2021). DOI: 10.1016/j.eswa.2021.114566. 

87. Ahmad, P., Jin, H., Qamar, S., et al., "RD2A: densely connected residual networks using ASPP for brain tumor 

segmentation", Multimedia Tools and Applications,  (2021). DOI: 10.1007/s11042-021-10915-y. 

88. Cirillo, M.D., Abramian, D., and Eklund, A., "Vox2Vox: 3D-GAN for brain tumour segmentation", arXiv preprint 

arXiv:2003.13653,  (2020). DOI: /10.48550/arXiv.2003.13653. 

89. Ben naceur, M., Akil, M., Saouli, R., and Kachouri, R., "Fully automatic brain tumor segmentation with deep learning-

based selective attention using overlapping patches and multi-class weighted cross-entropy", Medical Image Analysis,  

63, pp. 101692 (2020). DOI: 10.1016/j.media.2020.101692. 

90. Bangalore Yogananda, C.G., Shah, B.R., Vejdani-Jahromi, M., et al., "A Fully Automated Deep Learning Network 

for Brain Tumor Segmentation", Tomography (Ann Arbor, Mich.),  6(2), pp. 186-193 (2020). DOI: 

10.18383/j.tom.2019.00026. 

91. Aboelenein, N.M., Songhao, P., Koubaa, A., et al., "HTTU-Net: Hybrid Two Track U-Net for Automatic Brain Tumor 

Segmentation", IEEE Access,  8, pp. 101406-101415 (2020). DOI: 10.1109/ACCESS.2020.2998601. 

92. Chen, H., Qin, Z., Ding, Y., et al., "Brain tumor segmentation with deep convolutional symmetric neural network", 

Neurocomputing,  392, pp. 305-313 (2020). DOI: 10.1016/j.neucom.2019.01.111. 

93. Aziz, M.J., Zade, A.A.T., Farnia, P., et al., "Accurate automatic glioma segmentation in brain MRI images based on 

CapsNet",  2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society 

(EMBC),  IEEE, pp. 3882-3885 (2021). DOI: 10.1109/EMBC46164.2021.9630324. 

94. Munir, K., Frezza, F., and Rizzi, A., "Deep Learning Hybrid Techniques for Brain Tumor Segmentation", Sensors,  

22(21), pp. 8201 (2022). DOI: 10.3390/s22218201. 

95. Ottom, M.A., Rahman, H.A., and Dinov, I.D., "Znet: deep learning approach for 2D MRI brain tumor segmentation", 

IEEE Journal of Translational Engineering in Health and Medicine,  10, pp. 1-8 (2022). DOI: 

10.1109/JTEHM.2022.3176737. 

96. Chang, Y., Zheng, Z., Sun, Y., et al., "Dpafnet: A residual dual-path attention-fusion convolutional neural network for 

multimodal brain tumor segmentation", Biomedical Signal Processing and Control,  79, pp. 104037 (2023). DOI: 

10.1016/j.bspc.2022.104037. 

97. Moccia, S., De Momi, E., El Hadji, S., and Mattos, L.S., "Blood vessel segmentation algorithms—review of methods, 

datasets and evaluation metrics", Computer methods and programs in biomedicine,  158, pp. 71-91 (2018). DOI: 

10.1016/j.cmpb.2018.02.001. 

98. Goni, M.R., Ruhaiyem, N.I.R., Mustapha, M., et al., "Brain vessel segmentation using deep learning-a review", IEEE 

Access,  (2022). DOI: 10.1109/ACCESS.2022.3214987. 

99. Xiao, X., Zhao, J., Qiang, Y., et al., "Radiomics-guided GAN for segmentation of liver tumor without contrast agents",  

International Conference on Medical Image Computing and Computer-Assisted Intervention,  Springer, pp. 237-245 

(2019). DOI: 10.1007/978-3-030-32245-8_27. 

100. Lei, T., Wang, R., Zhang, Y., et al., "DefED-Net: Deformable Encoder-Decoder Network for Liver and Liver Tumor 

Segmentation",  (2021). DOI: 10.1109/TRPMS.2021.3059780. 

https://doi.org/10.1002/ima.22571
https://doi.org/10.1016/j.eswa.2021.114566
https://doi.org/10.1016/j.media.2020.101692
https://doi.org/10.1016/j.neucom.2019.01.111


21 | P a g e  

 

101. Zhang, Y., Pan, X., Li, C., and Wu, T., "3D liver and tumor segmentation with CNNs based on region and distance 

metrics", Applied Sciences,  10(11), pp. 3794 (2020). DOI: 10.3390/app10113794 

102. Chen, L., Song, H., Wang, C., et al., "Liver tumor segmentation in CT volumes using an adversarial densely connected 

network", BMC bioinformatics,  20(16), pp. 1-13 (2019). DOI: 10.1186/s12859-019-3069-x. 

103. Yuan, Y., "Hierarchical convolutional-deconvolutional neural networks for automatic liver and tumor segmentation", 

arXiv preprint arXiv:1710.04540,  (2017). DOI: 10.48550/arXiv.1710.04540. 

104. Albishri, A.A., Shah, S.J.H., and Lee, Y., "CU-Net: Cascaded U-Net model for automated liver and lesion 

segmentation and summarization",  2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM),  

IEEE, pp. 1416-1423 (2019). DOI: 10.1109/BIBM47256.2019.8983266. 

105. Bi, L., Kim, J., Kumar, A., and Feng, D., "Automatic liver lesion detection using cascaded deep residual networks", 

arXiv preprint arXiv:1704.02703,  (2017). DOI: 10.48550/arXiv.1704.02703. 

106. Wang, B., Yang, J., Ai, J., et al., "Accurate tumor segmentation via octave convolution neural network", Frontiers in 

Medicine,  8, pp. 653913 (2021). DOI: 10.3389/fmed.2021.653913. 

107. Ayalew, Y.A., Fante, K.A., and Mohammed, M.A., "Modified U-Net for liver cancer segmentation from computed 

tomography images with a new class balancing method", BMC Biomedical Engineering,  3, pp. 1-13 (2021). DOI: 

10.1186/s42490-021-00050-y. 

108. Rahman, H., Bukht, T.F.N., Imran, A., et al., "A Deep Learning Approach for Liver and Tumor Segmentation in CT 

Images Using ResUNet", Bioengineering,  9(8), pp. 368 (2022). DOI: 10.3390/bioengineering9080368. 

109. Balasubramanian, P.K., Lai, W.-C., Seng, G.H., and Selvaraj, J., "Apestnet with mask r-cnn for liver tumor 

segmentation and classification", Cancers,  15(2), pp. 330 (2023). DOI: 10.3390/cancers15020330. 

110. Baek, S., He, Y., Allen, B.G., et al., "Deep segmentation networks predict survival of non-small cell lung cancer", 

Scientific Reports,  9(1), pp. 17286 (2019). DOI: 10.1038/s41598-019-53461-2. 

111. Kasinathan, G., Jayakumar, S., Gandomi, A.H., et al., "Automated 3-D lung tumor detection and classification by an 

active contour model and CNN classifier", Expert Systems with Applications,  134, pp. 112-119 (2019). DOI: 

10.1016/j.eswa.2019.05.041. 

112. Dutta, K., "Densely Connected Recurrent Residual (Dense R2UNet) Convolutional Neural Network for Segmentation 

of Lung CT Images", arXiv preprint arXiv:2102.00663,  (2021). DOI: 10.48550/arXiv.2102.00663. 

113. Yamunadevi, M.M., and Ranjani, S.S., "Efficient segmentation of the lung carcinoma by adaptive fuzzy–GLCM (AF-

GLCM) with deep learning based classification", Journal of Ambient Intelligence and Humanized Computing,  12(5), 

pp. 4715-4725 (2021). DOI: 10.1007/s12652-020-01874-7. 

114. Fu, X., Bi, L., Kumar, A., et al., "Multimodal Spatial Attention Module for Targeting Multimodal PET-CT Lung 

Tumor Segmentation", IEEE Journal of Biomedical and Health Informatics, pp. 1-1 (2021). DOI: 

10.1109/JBHI.2021.3059453. 

115. Nishio, M., Fujimoto, K., Matsuo, H., et al., "Lung cancer segmentation with transfer learning: usefulness of a 

pretrained model constructed from an artificial dataset generated using a generative adversarial network", Frontiers in 

Artificial Intelligence,  4, pp. 694815 (2021). DOI: 10.3389/frai.2021.694815. 

116. Chiu, T.-W., Tsai, Y.-L., and Su, S.-F., "Automatic detect lung node with deep learning in segmentation and imbalance 

data labeling", Scientific Reports,  11(1), pp. 11174 (2021). DOI: 10.1038/s41598-021-90599-4. 

117. Zhang, G., Yang, Z., and Jiang, S., "Automatic lung tumor segmentation from CT images using improved 3D densely 

connected UNet", Medical & Biological Engineering & Computing,  60(11), pp. 3311-3323 (2022). DOI: 

10.1007/s11517-022-02667-0. 

118. Janowczyk, A., and Madabhushi, A., "Deep learning for digital pathology image analysis: A comprehensive tutorial 

with selected use cases", Journal of pathology informatics,  7 (2016). DOI: 10.4103/2153-3539.186902. 

119. Wang, S., Chen, A., Yang, L., et al., "Comprehensive analysis of lung cancer pathology images to discover tumor 

shape and boundary features that predict survival outcome", Scientific reports,  8(1), pp. 1-9 (2018). DOI: 

10.1038/s41598-018-27707-4. 

120. Roux, L., Racoceanu, D., Loménie, N., et al., "Mitosis detection in breast cancer histological images An ICPR 2012 

contest", Journal of pathology informatics,  4 (2013). DOI: 10.4103/2153-3539.112693. 

121. Cireşan, D.C., Giusti, A., Gambardella, L.M., and Schmidhuber, J., "Mitosis detection in breast cancer histology 

images with deep neural networks",  International conference on medical image computing and computer-assisted 

intervention,  Springer, pp. 411-418 (2013). DOI: 10.1007/978-3-642-40763-5_51. 

122. Lal, S., Das, D., Alabhya, K., et al., "NucleiSegNet: Robust deep learning architecture for the nuclei segmentation of 

liver cancer histopathology images", Computers in Biology and Medicine,  128, pp. 104075 (2021). DOI: 

10.1016/j.compbiomed.2020.104075. 

123. Serag, A., Ion-Margineanu, A., Qureshi, H., et al., "Translational AI and deep learning in diagnostic pathology", 

Frontiers in medicine,  6, pp. 185 (2019). DOI: 10.3389/fmed.2019.00185. 

https://doi.org/10.1016/j.eswa.2019.05.041


22 | P a g e  

 

124. Livne, M., Rieger, J., Aydin, O.U., et al., "A U-Net deep learning framework for high performance vessel segmentation 

in patients with cerebrovascular disease", Frontiers in neuroscience,  13, pp. 97 (2019). DOI: 

10.3389/fnins.2019.00097. 

125. Yan, Q., Wang, B., Zhang, W., et al., "Attention-guided deep neural network with multi-scale feature fusion for liver 

vessel segmentation", IEEE Journal of Biomedical and Health Informatics,  25(7), pp. 2629-2642 (2020). DOI: 

10.1109/JBHI.2020.3042069. 

126. Su, J., Liu, Z., Zhang, J., et al., "DV-Net: Accurate liver vessel segmentation via dense connection model with D-BCE 

loss function", Knowledge-Based Systems,  232, pp. 107471 (2021). DOI: 10.1016/j.knosys.2021.107471. 

127. Survarachakan, S., Pelanis, E., Khan, Z.A., et al., "Effects of enhancement on deep learning based hepatic vessel 

segmentation", Electronics,  10(10), pp. 1165 (2021). DOI: 10.3390/electronics10101165. 

128. Yang, J., Fu, M., and Hu, Y., "Liver vessel segmentation based on inter-scale V-Net", Math. Biosci. Eng,  18(4), pp. 

4327-40 (2021). DOI: 10.3934/mbe.2021217. 

129. Meng, X., Zhang, X., Wang, G., et al., "Exploiting full resolution feature context for liver tumor and vessel 

segmentation via fusion encoder: Application to liver tumor and vessel 3D reconstruction", arXiv preprint 

arXiv:2111.13299,  (2021). DOI: 10.48550/arXiv.2111.13299. 

130. Wu, M., Qian, Y., Liao, X., et al., "Hepatic vessel segmentation based on 3D swin-transformer with inductive biased 

multi-head self-attention", BMC Medical Imaging,  23(1), pp. 1-14 (2023). DOI: 10.1186/s12880-023-01045-y. 

131. Alirr, O.I., and Rahni, A.A.A., "Hepatic vessels segmentation using deep learning and preprocessing enhancement", 

Journal of applied clinical medical physics,  24(5), pp. e13966 (2023). DOI: 10.1002/acm2.13966. 

132. Gu, Z., Cheng, J., Fu, H., et al., "Ce-net: Context encoder network for 2d medical image segmentation", IEEE 

transactions on medical imaging,  38(10), pp. 2281-2292 (2019). DOI: 10.1109/TMI.2019.2903562. 

133. Xiao, X., Lian, S., Luo, Z., and Li, S., "Weighted Res-UNet for High-Quality Retina Vessel Segmentation",  2018 9th 

International Conference on Information Technology in Medicine and Education (ITME), pp. 327-331 (2018). DOI: 

10.1109/ITME.2018.00080. 

134. Zahangir Alom, M., Hasan, M., Yakopcic, C., et al., "Recurrent Residual Convolutional Neural Network based on U-

Net (R2U-Net) for Medical Image Segmentation", arXiv e-prints, pp. arXiv:1802.06955 (2018). DOI: 

10.48550/arXiv.1802.06955. 

135. Valanarasu, J.M.J., Sindagi, V.A., Hacihaliloglu, I., and Patel, V.M., "KiU-Net: Towards Accurate Segmentation of 

Biomedical Images Using Over-Complete Representations",  Medical Image Computing and Computer Assisted 

Intervention – MICCAI 2020,  Springer International Publishing, Cham, pp. 363-373 (2020). DOI: 10.1007/978-3-

030-59719-1_36. 

136. Fu, H., Xu, Y., Lin, S., et al., "DeepVessel: Retinal Vessel Segmentation via Deep Learning and Conditional 

Random Field",  Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016,  Springer 

International Publishing, Cham, pp. 132-139 (2016). DOI: 10.1007/978-3-319-46723-8_16. 

137. Yan, Z., Yang, X., and Cheng, K.T., "Joint Segment-Level and Pixel-Wise Losses for Deep Learning Based Retinal 

Vessel Segmentation", IEEE Transactions on Biomedical Engineering,  65(9), pp. 1912-1923 (2018). DOI: 

10.1109/TBME.2018.2828137. 

138. Jiang, Z., Zhang, H., Wang, Y., and Ko, S.-B., "Retinal blood vessel segmentation using fully convolutional network 

with transfer learning", Computerized Medical Imaging and Graphics,  68, pp. 1-15 (2018). DOI: 

10.1016/j.compmedimag.2018.04.005. 

139. Noh, K.J., Park, S.J., and Lee, S., "Scale-space approximated convolutional neural networks for retinal vessel 

segmentation", Computer Methods and Programs in Biomedicine,  178, pp. 237-246 (2019). DOI: 

10.1016/j.cmpb.2019.06.030. 

140. Jiang, Y., Wang, F., Gao, J., and Liu, W., "Efficient BFCN for automatic retinal vessel segmentation", Journal of 

Ophthalmology,  2020 (2020). DOI: 10.1155/2020/6439407. 

141. Wang, D., Haytham, A., Pottenburgh, J., et al., "Hard Attention Net for Automatic Retinal Vessel Segmentation", 

IEEE Journal of Biomedical and Health Informatics,  24(12), pp. 3384-3396 (2020). DOI: 

10.1109/JBHI.2020.3002985. 

142. Ma, Y., Li, X., Duan, X., et al., "Retinal Vessel Segmentation by Deep Residual Learning with Wide Activation", 

Computational Intelligence and Neuroscience,  2020 (2020). DOI: 10.1155/2020/8822407. 

143. Al-Masni, M.A., and Kim, D.-H., "CMM-Net: Contextual multi-scale multi-level network for efficient biomedical 

image segmentation", Scientific Reports,  11(1), pp. 1-18 (2021). DOI: 10.1038/s41598-021-89686-3. 

144. Liu, Y., Shen, J., Yang, L., et al., "ResDO-UNet: A deep residual network for accurate retinal vessel segmentation 

from fundus images", Biomedical Signal Processing and Control,  79, pp. 104087 (2023). DOI: 

10.1016/j.bspc.2022.104087. 

145. Oda, M., Roth, H.R., Kitasaka, T., et al., "Abdominal artery segmentation method from CT volumes using fully 

convolutional neural network", International Journal of Computer Assisted Radiology and Surgery,  14(12), pp. 2069-

2081 (2019). DOI: 10.1007/s11548-019-02062-5. 

https://doi.org/10.1016/j.compmedimag.2018.04.005
https://doi.org/10.1016/j.cmpb.2019.06.030


23 | P a g e  

 

146. Mohammadi, S., Mohammadi, M., Dehlaghi, V., and Ahmadi, A., "Automatic Segmentation, Detection, and Diagnosis 

of Abdominal Aortic Aneurysm (AAA) Using Convolutional Neural Networks and Hough Circles Algorithm", 

Cardiovascular Engineering and Technology,  10(3), pp. 490-499 (2019). DOI: 10.1007/s13239-019-00421-6. 

147. Yang, S., Kweon, J., Roh, J.-H., et al., "Deep learning segmentation of major vessels in X-ray coronary angiography", 

Scientific reports,  9(1), pp. 1-11 (2019). DOI: 10.1038/s41598-019-53254-7. 

148. Fu, F., Wei, J., Zhang, M., et al., "Rapid vessel segmentation and reconstruction of head and neck angiograms using 

3D convolutional neural network", Nature communications,  11(1), pp. 1-12 (2020). DOI: 10.1038/s41467-020-

18922-7. 

149. Bar, Y., Diamant, I., Wolf, L., and Greenspan, H., "Deep learning with non-medical training used for chest pathology 

identification",  Medical Imaging 2015: Computer-Aided Diagnosis,  International Society for Optics and Photonics, 

pp. 94140V (2015). DOI: 10.1117/12.2083124. 

150. Xu, J., Luo, X., Wang, G., et al., "A deep convolutional neural network for segmenting and classifying epithelial and 

stromal regions in histopathological images", Neurocomputing,  191, pp. 214-223 (2016). DOI: 

10.1016/j.neucom.2016.01.034. 

151. Hermsen, M., de Bel, T., Den Boer, M., et al., "Deep learning–based histopathologic assessment of kidney tissue", 

Journal of the American Society of Nephrology,  30(10), pp. 1968-1979 (2019). DOI: 10.1681/ASN.2019020144. 

152. Jiménez, G., and Racoceanu, D., "Deep learning for semantic segmentation vs. classification in computational 

pathology: Application to mitosis analysis in breast cancer grading", Frontiers in bioengineering and biotechnology,  

7, pp. 145 (2019). DOI: 10.3389/fbioe.2019.00145. 

153. Kurc, T., Bakas, S., Ren, X., et al., "Segmentation and classification in digital pathology for glioma research: 

Challenges and deep learning approaches", Frontiers in neuroscience,  14 (2020). DOI: 10.3389/fnins.2020.00027. 

154. Conze, P.-H., Brochard, S., Burdin, V., et al., "Healthy versus pathological learning transferability in shoulder muscle 

MRI segmentation using deep convolutional encoder-decoders", Computerized Medical Imaging and Graphics,  83, 

pp. 101733 (2020). DOI: 10.1016/j.compmedimag.2020.101733. 

155. Huang, P., Tan, X., Chen, C., et al., "AF-SENet: Classification of Cancer in Cervical Tissue Pathological Images 

Based on Fusing Deep Convolution Features", Sensors,  21(1), pp. 122 (2021). DOI: 10.3390/s21010122. 

156. Khened, M., Kori, A., Rajkumar, H., et al., "A generalized deep learning framework for whole-slide image 

segmentation and analysis", Scientific reports,  11(1), pp. 1-14 (2021). DOI: 10.1038/s41598-021-90444-8. 

157. Hemelings, R., Elen, B., Blaschko, M.B., et al., "Pathological myopia classification with simultaneous lesion 

segmentation using deep learning", Computer Methods and Programs in Biomedicine,  199, pp. 105920 (2021). DOI: 

10.1016/j.cmpb.2020.105920. 

158. Deng, R., Liu, Q., Cui, C., et al., "Single Dynamic Network for Multi-label Renal Pathology Image Segmentation",  

International Conference on Medical Imaging with Deep Learning,  PMLR, pp. 304-314 (2022). 

 

Tables and Figures List 

Figure 1. Visualization of three main groups of targets including tumor  [20], vessel [21], and pathological 

images [22] for medical image segmentation. 

Figure 2. U-Net architecture. 

Figure 3. 3D U-Net architecture [25]. 

Figure 4. GAN architecture. 

Figure 5. RNN architecture. 

Figure 6. AE-based DL architecture. 

Figure 7. Schematic illustration of four basic error rate definitions. 

Figure 8.  The number of publications for target-based segmentation (till April 2023). 
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Figure 9. Inclusion and exclusion criteria for selection of articles for systematic review according to the 

PRISMA guidance. 

Table 1. Summary of DL approaches in brain tumor segmentation. 

Table 2. Summary of DL approaches in liver tumor segmentation. 

Table 3.  Summary of DL approaches in lung tumor segmentation. 

Table 4.  Summary of DL approaches in blood vessel segmentation. 

Table 5. Summary of DL approaches in pathology image segmentation. 
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Table 1. Summary of DL approaches in brain tumor segmentation. 

Ref 
Organ/ 

modality 
Method 

Performance metrics 

DSC TPR TNR ACC 

[83] 

B
ra

in
 

M
R

I 
im

ag
e 

Network arch: CNN 

Approach: Image processing in 3 spatial scales 

Dataset: BraTS2015 

0.82 0.94 - - 

[84] 

Network arch: CNN 

Approach: “Categorical Dice” loss function 

Dataset: BraTS2020 

0.88 - - - 

[85] 

Network arch: Auto-encoder 

Approach: latent space optimization 

Dataset: BraTS2015 

0.84 0.89 - - 

[86] 

Network arch: Residual net 

Approach: A fusion of Dice loss & cross-entropy loss, introducing a computation-

efficient network 

Dataset: BraTS2018 

0.91 - - - 

[87] 

Network arch: Residual net 

Approach: A combination of the residual connections, dilation, and dense Atrous-

Spatial Pyramid Pooling to preserve more contextual information 

Dataset: BraTS2019 

0.90 - - - 

[88] 

Network arch: GAN 

Approach: 3D volume-to-volume Generative Adversarial Network 

Dataset: BraTS2020 

0.87 - - - 

[89] Network arch: CNN 0.90 - - - 

Id
en

ti
fi

ca
ti

o

n
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u
d

ed
 

Records identified through Google 

Scholar search engine (n = 785,450)  
Records identified through the PubMed 

database searching (n = 4,131) 

3,149 Records after duplicates removed 

The 786,432 articles were explored based on 

publication year  
772,756 Records, after limited to the years 

2015 to 2023, were removed 

The title and abstract of articles were 

screened of 13,676 

429 Full-text articles evaluated for eligibility 

118 Full-text articles included 

13,247 Records excluded after considering of 

specific targets: brain, liver, and lung tumors, 

vessels, and pathology 

311 articles excluded with following reasons: 

- Full text not available (n=117) 
- Lack of stated evaluation criteria (n=75) 
- Use the same method (n=119) 
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Approach: Using the selective attention technique 

Dataset: BraTS2018 

[90] 

Network arch: 3D-Dense-UNets 

Approach: Designed three separate 3D-Dense-UNets to simplify the complex 

multiclass segmentation problem 

Dataset: BraTS2017 - BraTS2018 

0.90 - - - 

[91] 

Network arch: Hybrid Two Track U-Net 

Approach: Using hybrid networks, Leaky ReLU activation, and optimization of the 

loss function to address the class imbalance problem 

Dataset: BraTS2018 

0.89 - - - 

[92] 

Network arch: Hybrid Two Track U-Net 

Approach: Adding symmetric masks in several layers to improve segmentation 

results 

Dataset: BraTS2015 

0.85 - - - 

[93] 

Network arch: capsule network 

Approach: Use new networks to achieve high performance using less data 
Dataset: BraTS2020 

0.87 - - - 

[94] 

Network arch: MI-UNet 

Approach: Depth-wise separable Hybrid model  
Dataset: BraTS2019 

0.87 0.90 0.99 - 

[95] 

Network arch: Znet 

Approach: Z-net based on an encoder-decoder architecture, and data amplification 

to propagate the intrinsic affinities 
Dataset: TCGA - LGG 

0.91 - - 0.99 

[96] 

Network arch: DPAFNet 

Approach: 3D segmentation model based on dual-path module and multi-scale 

attention fusion module 
Dataset: BraTS2018, BraTS2019 and, BraTS2020 

0.89 - - - 

 

 

Table 2. Summary of DL approaches in liver tumor segmentation. 

Ref Organ/modality Method 
Performance metrics 

DSC TPR TNR ACC 

[99]  

L
iv

er
 /

 C
T

 I
m

ag
e 

Network architecture: Radiomics-guided GAN 

Approach: The discriminator uses the radiomics feature from the 

contrast images as prior knowledge 

Dataset: LiTS17 

0.92 --- --- --- 

[100] 

Network architecture:  deformable encoder-decoder network 

(DefED-Net) 

Approach: Deformable convolution is used to enhance the feature 

representation capability of DefED-Net 

Dataset: LiTS and the 3DIRCADb 

LiTS: 0.87 

--- --- --- 3DIRCADb: 

0.66 

[101] 

Network architecture: Improved V-net algorithm 

Approach: 3D liver and tumor segmentation based on three distance-

based loss functions and the regional loss function jointly 

Dataset: LiTS17 and 3D-IRCADb 

LiTS17: 

0.764 
0.998 0.682 --- 

3DIRCADb: 

0.682 
0.999 0.682 --- 

[102] 

Network architecture:  Adversarial densely connected network 

Approach: Develop a deep 3D densely connected fully CNN with an 

adversarial training strategy 

Dataset: LiTS17 

0.68 --- --- --- 

[103] 

Network architecture: CDNN 

Approach: Liver histogram equalization, input to the CDNN for 

tumor segmentation. Jaccard distance is used as a loss function. 

Dataset: LiTS17 

0.657 --- --- --- 

[104] 

Network architecture:  Cascaded U-Net 

Approach: Cascaded U-Net model for automated liver and lesion 

segmentation 

Dataset: LiTS 

0.59 --- --- --- 

[1] 

Network architecture: Spatial Feature Fusion Convolutional 

Network 

Approach: SFF-Net learns more spatial information by adding skip 

connections and feature fusion blocks 

Dataset: LiTS17 

0.59 --- --- --- 

[105] Network architecture: ResNet 0.500 --- --- --- 
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Approach: Novel cascaded ResNet architecture with multi-scale 

fusion 

Dataset: LiTS17 

[106] 

Network architecture: Octave CNN 

Approach: Learning multiple-spatial-frequency features 

Dataset: LiTS 

0.96 --- --- 0.95 

[107] 

Network architecture: Modified U-Net 

Approach: Class balancing method 

Dataset: LiTS 

0.74 --- --- --- 

[108] 

Network architecture: Hybrid ResUNet 

Approach: Combining the ResNet and UNet models 

Dataset: IRCADB01 

0.99 --- --- 0.99 

[109] 

Network architecture: Enhanced Swin Transformer Network with 

Adversarial Propagation 

Approach: Enhanced mask region-based CNN model then 

segmented picture is fed onto an Enhanced Swin Transformer 

Network with Adversarial Propagation 

Dataset: LiTS17 and SLiver073 

--- --- --- 0.94 

Table 3.  Summary of DL approaches in lung tumor segmentation. 

Ref Organ/ modality Method 
Performance metrics (Mean ± std) 

DSC TPR TNR ACC 

[110] 
NSCLC / CT Network architecture: The U-Net 

Approach: “Bottleneck Layer” to compress image features 

Dataset: PET-CT images of 96 NSCLC patients 

0.86± 0.03 --- --- --- 

NSCLC / PET 0.82± 0.08 --- --- --- 

[111] Nodule / CT 

Network architecture: CNN with the active contour model 

(ACM) 

Approach: Enhanced CNN algorithm (E-CNN) with AlexNet 

layer  

Dataset: 311 early-stage NSCLC patients 

--- 0.95 0.91 0.97 

[81] NSCLC / CT 
Network architecture: The VGG-16 

Approach: Machine learning classifiers on CNN 

Dataset: 311 early-stage NSCLC patients 

--- --- --- --- 

[112] Nodule / CT 

Network architecture: The Dense R2U CNN 

Approach: Using layers of recurrent, residual, convolutional, and 

dense interconnections 

Dataset: LUNA 

0.98 ± 

0.009 

0.99 ± 

0.002 

0.98 ± 

0.02 

0.99 ± 

0.003 

[113] 
Carcinoma / 

Bronchoscopy 

Network architecture: The CNN 

Approach: Adaptive fuzzy-GLCM + GoogLeNet 

Dataset: 200 images of Hamlyn lung and bronchoscopy 

--- 0.98 0.98 0.98 

[114] STS / PET-CT 
Network architecture: The U-Net 

Approach: Multimodal Spatial Attention Module (MSAM) 

Dataset: NSCLC and STS 

NSCLC Dataset 

0.71 0.81 0.99 --- 

STS Dataset 

0.62 0.64 0.99 --- 

[82] Lung Cancer / CT 

Network architecture: The ResBCDU-Net 

Approach: The BConvLSTM as an integrator module 

Dataset: LIDC-IDRI 
0.97 0.97 --- 0.97 

[115] Lung Cancer / CT 

Network architecture: The GAN 

Approach: Transfer learning 

Dataset: LUNA16 
0.72 --- --- --- 

[116] Lung Cancer / CT 

Network architecture: The 2D U-net 

Approach: Using a 2D UNet network with imbalance data 

labeling 

Dataset: 472 cases of TMUH clinical data  

0.79 --- --- --- 

[117] Lung Cancer / CT 

Network architecture: DenseUNet 

Approach: Aims to contribute similar feature maps between 

encoder and decoder sub-networks 

Dataset: TCIA and LIDC 

0.83 --- --- 0.97 
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Table 4.  Summary of DL approaches in blood vessel segmentation. 

Ref 
Organ/ 

modality 
Method 

Performance metrics 

DSC TPR TNR ACC 

[124] Brain / MRI 
Network architecture: The U-Net CNN model 

Approach: “Half U-Net" 

Dataset: PEGASUS study 

0.88 --- --- --- 

[125] 

Liver/ 3Phasic 

CT 

Network architecture: The LVSNet model 

Approach: Attention-Guided Deep Neural Network with Multi-

Scale Feature Fusion Dataset:  MSD 

0.90 --- --- --- 

[126] 

Network architecture: The DV-Net model 

Approach: Segmentation via dense connection model with D-

BCE loss function 

Dataset:  MSD 

0.75 --- --- --- 

[127] 

Network architecture: The 3D U-net model 

Approach: Effect of enhancement on segmentation using a deep 

learning model 

Dataset: 57 cases from Oslo University hospital 

0.80 --- --- --- 

[128] 

Network architecture: The 3D V-net model 

Approach: Using inter-scale dense connections and high-level 

semantic information 

Dataset: 3Dircadb 

0.71 --- --- --- 

[129] 

Network architecture: The TransFusionNet model 

Approach: A multi-scale feature fusion network 

Dataset: 3Dircadb 

0.92 --- --- --- 

[130] 

Network architecture: IBIMHAV-Net 

Approach: Expanding the swing transformer to 3D and 

employing an effective combination of convolution and self-

attention 

Dataset: 3Dircadb 

0.74 0.77 --- --- 

[131] 

Network architecture: U-Net 

Approach: Modified residual block to include concatenation skip 

connection 

Dataset: MSD 

0.79 --- --- --- 

[132] Retinal/ OCT 

Network architecture: The CE-Net model 

Approach: Using blocks of ResNet, dense atrous convolution, and 

residual multi-kernel pooling 

Dataset: DRIVE and TOPCON 

--- 0.83 --- 0.95 

[133] 

R
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Network architecture: The Weighted ResUNet model 

Approach: The binary cross-entropy loss function 

Dataset: DRIVE and STARE 

DRIVE dataset 

--- 0.77 --- 0.96 

STARE dataset 

--- 0.74 --- 0.96 

[134] 

Network architecture: The R2U-Net 

Approach: RCLs and RCLs with residual units 

Dataset: DRIVE, STARE, and CHASE_DB1 

DRIVE dataset 

--- 0.78 0.98 0.95 

STARE dataset 

--- 0.82 0.99 0.97 

CHASE_DB1 dataset 

--- 0.77 0.98 0.96 

[135] 

Network architecture: The KiU-Net Model 

Approach: Up-sampling layer after every conv layer in the 

encoder 

Dataset: RITE 

0.75 --- --- --- 

[136] 

Network architecture: The DeepVessel network 

Approach: The CNN and CRF layers 

Dataset: DRIVE, STARE, and CHASE_DB1 

DRIVE dataset 

0.76 ---  --- 0.95 

STARE dataset 

--- 0.74 --- 0.95 

CHASE_DB1 dataset 

--- 0.71 --- 0.94 

[137] 

Network architecture: The joint-loss DL framework 

Approach: A segment-level loss to measure the thickness 

inconsistency of vessel 

Dataset: DRIVE, STARE, CHASE DB1, and HRF 

DRIVE dataset 

--- 0.76 0.98 0.95 

STARE dataset 

--- 0.75 0.98 0.96 

CHASE_DB1 dataset 

--- 0.76 0.98 0.96 

HRF dataset 

--- 0.78 0.96 0.94 

 

 

[138] 

Network architecture: The AlexNet 

Approach: Layers of the feature hierarchy + the spatial precision 

of the output 

Dataset: DRIVE, STARE, and CHASE_DB1 

DRIVE dataset 

--- 0.75 0.98 0.96 

STARE dataset 

--- 0.83 0.98 0.97 

CHASE_DB1 dataset 

--- 0.86 0.97 0.96 

 Network architecture: The three-stage DL model DRIVE dataset 
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Approach: ThickSegmenter, ThinSegmenter, FusionSegmenter, 

and pixel-wise cross-entropy loss function 

Dataset: DRIVE, STARE, and CHASE_DB1 

--- 0.98 0.95 0.76 

STARE dataset 

--- 0.98 0.96 0.77 

CHASE_DB1 dataset 

--- 0.98 0.96 0.76 

 

 

 

[139] 

Network architecture: The scale-space approximated CNN 

(SSANet) 

Approach: Incorporating up-sampling layers 

Dataset: DRIVE, STARE, and CHASE_DB1 

DRIVE dataset 

--- 0.83 0.97 0.95 

STARE dataset 

--- 0.85 0.99 0.97 

CHASE_DB1 dataset 

--- 0.99 0.99 0.97 

 

 

 

[140] 

Network architecture: The butterfly fully convolutional neural 

network (BFCN) 

Approach: Multiscale input, dilated convolution, and the transfer 

layer 

Dataset: DRIVE, STARE, and CHASE_DB1 

DRIVE dataset 

--- 0.81 0.98 0.96 

STARE dataset 

--- 0.82 0.99 0.97 

CHASE_DB1 dataset 

--- 0.83 0.99 0.96 

[141] 

Network architecture: The Hard Attention Net (HAnet) 

Approach: Three decoder networks for regions of hard or easy 

and vessel segmentation 

Dataset: DRIVE, STARE, CHASE DB1, HRF, IOSTAR, RC-

SLO, and a self-collected ICG angiography 

DRIVE dataset 

--- 0.79 0.98 0.95 

STARE dataset 

--- 0.81 0.98 0.96 

CHASE_DB1 dataset 

--- 0.82 0.98 0.96 

HRF dataset 

--- 0.78 0.98 0.96 

IOSTAR dataset 

--- 0.75 0.99 0.96 

RC-SLO dataset 

--- 0.86 0.98 0.96 

ICG angiography dataset 

--- 0.87 0.98 0.96 

[142] 

Network architecture: The Deep Residual Learning 

Approach: Wide Activation (WA-Net) + LASPP module 

Dataset: DRIVE and STARE 

DRIVE dataset 

--- 0.78 0.98 0.95 

STARE dataset 

--- 0.77 0.99 0.96 

[143] 

Network architecture: The Contextual Multi‑Scale Multi‑Level 

Network 

Approach: Fusing the global contextual features of multiple 

spatial scales + re‑exploiting the dilated convolution module 

Dataset: DRIVE 

0.80 0.78 0.98 0.96 

[144] 

Network architecture: ResDO-UNet 

Approach: Combined with depth-wise over-parameterized 

convolutional layer and taking advantage of max pooling and 

average pooling layers, a pooling fusion block 

Dataset:  DRIVE, STARE, and CHASE DB1 

DRIVE dataset 

--- 0.79 0.97 0.95 

STARE dataset 

--- 0.80 0.98 0.96 

CHASE_DB1 dataset 

--- 0.80 0.97 0.96 

[145] 
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Network architecture: The U-Net 

Approach: 2D patch-based segmentation and area imbalance 

reduced training patch generation (AIRTPG) 

Dataset: 20 cases of abdominal 

--- 0.88 --- --- 

[146] 

Network architecture: CNN 

Approach: Hough Circles Algorithm 

Dataset: CT and CTA images of ten patients 

--- 0.98 --- 0.98 

[147] 
Coronary 

vessels / X-ray 

Network architecture: The U-Net 

Approach: The DenseNet121 

Dataset: X-ray coronary angiography images of 2042 patients 

--- 
0.92 ± 

0.11 
--- --- 

[148] 

Head and 

Neck Vessels / 

CTA 

Network architecture: The 3D-CNN model 

Approach: The bottleneck-ResNet (BR) + ResU-Net + connected 

growth prediction model (CGPM) 

Dataset: 18,766 head and neck CTA scans 

0.94 0.93 --- 0.93 
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Table 5. Summary of DL approaches in pathology image segmentation. 

Ref   Organ/ modality Method 
Performance metrics 

DSC TPR TNR ACC 

[149] 
Breast and colon 

cancer 

Network arch: DCNN 

Approach: Extracted descriptors with CNN and PiCoDes 

Dataset: NA 

--- 0.83 0.84 --- 

[150] 
Breast and colon 

cancer 

Network arch: DCNN 

Approach: Feature extraction with DCNN 

Dataset: NA 

--- 0.87 0.82 0.85 

[151] 
Brain/needle-core 

biopsy 

Network arch: U-Net 

Approach: Multiclass segmentation with periodic acid–Schiff 

(PAS) with CNN 

Dataset: NA 

0.87 --- --- --- 

[152] 

Mitosis in a 

histopathological 

tissue 

Network arch: U-Net/ AlexNet 

Approach: Classify and detect mitosis using U-Net and 

AlexNet 

Dataset: NA 

0.6 0.94 0.95 0.95 

[153] 

Brain 

MRI and 

pathology images 

Network arch: U-Net 

Approach: Used U-Net and AlexNet, then outputs feed into 

ResNet-101 

Dataset: NA 

--- --- --- 0.90 

[154] 
Shoulder muscle 

MRI 

Network arch: U-Net 

Approach: Categorize adult diffuse glioma cases into 

oligodendroglioma and astrocytoma classes using radiographic 

and histologic image data using DL 

Dataset: NA 

0.93 0.78 0.38 --- 

[155] 
Cervical cancer 

tissue 

Network arch: AF-SENet 

Approach: Fine-tuning pre-trained DNNs/ classification AF-

SENet  

Dataset: NA 

--- --- --- 0.95 

[122] 

Liver cancer 

histopathology 

images 

Network arch: U-Net 

Approach: Using a robust residual block, a bottleneck block, 

and an attention decoder block 

Dataset: KMC dataset/ Kumar dataset 

0.68 --- --- --- 

[156] 

Liver cancer/ colon 

cancer/ g breast 

cancer metastases 

histopathology 

images 

Network arch: DenseNet-121, Inception-ResNet-V2, and 

DeeplabV3Plus 

Approach: Sequence of individual techniques in the 

preprocessing training-inference pipeline 

Dataset: CAMELYON16, CAMELYON17 

0.78 --- --- --- 

[157] 

Pathological 

Myopia / retinal 

images 

Network arch: CNN 

Approach: CNN bundles lesion segmentation and PM 

classification 

Dataset: Pathological Myopia (PALM) dataset 

0.93 --- --- --- 

[158] 
Renal pathology 

images 

Network arch: Dynamic single segmentation 

network (Omni-Seg) 

Approach: Omni-Seg learns to segment multiple tissue types 

using partially labeled images 

Dataset: NA 

0.96 --- --- --- 
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