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Abstract  

In the current perusal, we have discussed the impacts of free-forced convective heat-mass 

transportation on magnetohydrodynamic ,MHD  incompressible, non-Darcy nanofluid flow passing 

through a porous surface in the presence of an electrical field and a constant magnetic field with 

chemical reaction. A suitable similarity transformation is being used to non – dimensionalize the 

system of governing equations along with boundary conditions. The converted system has been 

solved numerically by operating the Spectral Quasi-linearization method ( ) .SQLM  The effect of 

various key parameters has been discussed graphically. Velocity seems to be decreasing with the 

Schmidt number, chemical reaction parameter, Brownian motion parameter, and Hartman number. 

The Hartman number and the Brinkman number decline the Bejan number in the neighbourhood of 

the stretching sheet. Nevertheless, far from the stretching sheet, impacts of both Brinkman as well 

as Hartman number on the Bejan number is negligible. On the other hand, thermal layouts, 

concentration layouts, and entropy generation are enhanced with the increment in the Hartman 

number. For the physical interest the coefficients of the skin-friction, heat transfer coefficient, and 

local Sherwood number also has been determined numerically. 
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Nanofluids have unique features that make them potentially beneficial in numerous applications in 

heat transfer, pharmaceutical process, micro forming, fuel cells, heat exchanger, cancer treatment, 

polymer and plastic extrusion, glass blowing, cooling and air conditioning and many more. Nanofluid 

is a combination of nanometer-sized particles with fluid, Choi first introduced it.   

Tlili et al.  1 investigated the Darcy Forchheimer Powell-Eyring nanofluid flow in a permeable media 

with convective boundary conditions and chemical reaction under the impacts of zero mass flux. 

They solved the governing equations by the Homotopy analysis method. Generation of entropy 

analysis is also considered in their investigation. Khan et al.  2  studied unsteady flow of a bio-

convective Maxwell nanofluid with multiple slip boundary conditions. They used bvp4c-shooting 

technique. They observed that with the enhance of time relaxation parameter, Sherwood number, 

Nusselt number, microorganism number, skin friction decline. Ramzan et al.  3 scrutinized the 

influence of thermal radiation, activation energy on Casson nanofluid flow in the presence of Hall 

current. They used bvp4c-shooting technique. In addition to in each graphs the consequences of 

magnetic fields (both inclined and vertical) with fixed angles are portrayed. Nadeem et al.  4  

examined a bio-convective unsteady incompressible micropolar nanofluid flow with magnetic field 

effect. Utilizing shooting method solved non-linear ordinary differential equations numerically. They 

observed the velocity, microorganism number, thermal energy increased for large value of slip 

parameters. Mondal et al.  5  studied the impacts of thermophoresis and Brownian motion 

parameters taking into consideration the convective boundary conditions on power-law (non-

Newtonian) fluid. Utilizing the spectral quasi-linearization method, they solved non-linear ordinary 

differential equations numerically. Furthermore, they observed velocity enhances with mixed 

convection parameter and the power law index. Khan et al.  6  investigated heat transfer rate of a 

micropolar fluid in presence of heat generation using Fourier’s heat flux model in the heat transfer 

analysis. He also observed a direct relation between Nusselt number and micropolar parameter 

while Skin friction demonstrates the opposite behavior with micropolar parameter. Ahmad et al.  

 7  investigated micropolar nanofluid immerging two distinct nanoparticles in it. They solved the 

coupled fluid problems by applying bvp4c-shooting technique. In their investigation they observed 

that generation of entropy enhances with Brinkmann number while Bejan number diminishes.  

Khan et al.  8  investigated mass and thermal transport analysis of Maxwell nanofluid Under the 

influence of thermophoretic and Brownian motion parameters. They observed that the heat 

transportation rate upsurges for large values of Biot number. Ramzan et al.  9  investigated the 

effect of magnetic dipole on Oldroyd-B fluid flow. They observed that the velocity and temperature 

profile decrease with ferromagnetic parameter. Kumar et al.   10  studied the velocity slip impact 

on nanoscale fluid flow passing through a rotating disk. Under the influence of double stratification 

and heat generation/absorption, Ahmad et al.  11  investigated steady Maxwell nanofluid three-

dimensional flow. Used 4bvp c  Matlab numerical method. They noticed that the thermal boundary 

layer increases with the enhancement of the heat generation parameter. 

Hall current is a very significant parameter whenever investigating the fluid flow with magnetic 

effect. Hall current is produced when an electric field acts as a conductor in the appearance of a 

magnetic field. The effect of Hall current with ion-slip has been investigated by Krishna et al.  12 .
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They found that with the increment of Hall current velocity profile enhanced all through the field. 

Furthermore, they also observed that on tony Hall current also the increment of ion slip condition is 

behind the enhancement of the velocity profile. Khan et al.  13  investigated the hybrid nano-fluid 

flow comprise of Silicon dioxide and Molybdenum Di-sulphide, they conclude that velocity and 

temperature show opposing behaviour due to the increment of the suction parameter, velocity is 

enhanced while temperature deteriorates. 

       In physics, industrial activity, and chemistry there is a significant impact of magnetic field on 

nanofluids. A fluid stream in presence of an electric field along with a magnetic field can control 

stretching – cooling rate. Such implementation has been observed by Vaidya et al.  14 ,  they 

considered a three-dimensional Jeffery nanofluid over a bidirectional extended lamina, taking zero 

mass concentration velocity slip. They have noted that Deborah’s number clashes with the velocity 

layout. Ramzan et al.  15  studied the influences of heat generation/absorption and Cattaneo-

Christov heat flux on MHD Ethylene glycol based 𝐹𝑒3𝑂4 nanofluid in a permeable media. They 

noticed velocity slip, porosity parameters, and nanoparticles volume fraction decline velocity profile. 

Khan et al.  16  audited Oldroyd-B nanofluid two-dimensional flow. They observed velocity 

decreases with an enhancement of relaxation parameter, while for retardation parameter the 

opposite behavior for velocity profile has been noticed. Pal et al.  17  analyze the heat generation 

of a micropolar fluid with Ohmic dissipations including the magnetic field effect. Solved converted 

ODE by Runge-Kutta-Fehlberg technique. Scrutinized that the increment of the Prandtl number 

reduces the momentum and thermal boundary layer, and observed a strong influence of Soret – 

Dufour on mass distribution, they are directly related. Rafiq et al.  18  take into account Jeffrey fluid 

as a base fluid. Lubrication technique, they have applied to solve nonlinear equations. They reported 

as, in the neighbourhood of the centre, the velocity layout displays parabolic whereas a blended 

behavior has been noticed in the vicinity of the boundaries, also noticed tapering effect and velocity 

layout are inversely related. Reddy et al.  19  utilized the Keller box technique to obtain numerical 

solutions. They have included slips and without slips conditions. They conclude as, velocity layout 

enhances with rG  and ,cG  but the opposite impact from magnetic parameter ( ),M  and 

permeability parameter ( ),K  they have noticed. Gul et al.  20  have taken into account the laminar 

and steady stream of 2/Cu H O  and 2 3 2/ .Cu Al O H O−  Dominating ODEs  has been solved 

numerically by the R K−  order 4th  technique. They noted that the magnetic - dipole controlled 

fluid – stream turbulence. Sarkar et al.  21  scrutinize the impacts of thermal conductivity, thermal 

radiation, and temperature-dependent viscosity on Powell-Eyring fluid. Moreover, they consider 

varying Prandtl number. Used recent spectral quasi-linearization technique to solved transformed 

ordinary differential equations.   

       The research work carried out by several researchers ([22],[23],[24],[25],[26],&[27])  in the 

relevant area is presented in the Gap analysis (see Table 1). It is observed that the literature lacks a 

comprehensive study on the flow of incompressible nanofluids with chemical reactions and 

nonuniform heat generation/absorption impacts combined with non-isothermal temperature and 

concentration boundary conditions. In this present study, the main motive of the authors is to 

illustrate a mathematical model containing the steady two-dimensional incompressible and 

electrically conducting magnetohydrodynamic nanofluid flow over a stretching sheet under the 

influence of chemical reaction, mixed convection, nonuniform heat generation, viscous dissipation, 
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Ohmic heating, Brownian motion and thermophoresis with non-isothermal temperature and 

concentration boundary conditions. At first, the governing non-linear coupled partial differential 

equations ( )PDEs  have been transformed into a system of non-linear coupled ordinary differential 

equations ( )ODEs  utilizing suitable similarity transformation, and then the converted system has 

been solved numerically by operating the Spectral Quasi-linearization method ( ).SQLM  A concise 

description of the generation of entropy and the effects of several relevant flow parameters on the 

rate of generation of entropy and Bejan number are demonstrated significantly.        

In this study, the following scientific research questions are answered:  

• How is the concentration affected by the chemical reaction parameter, Brownian motion, 

thermophoresis, solutal buoyancy parameter, Hartman number, and Schmidt number ?   

• What is the effect of the Prandtl parameters, Brownian motion, thermophoresis, chemical 

reaction parameter, Hartman number, and Schmidt number on temperature and rate of heat 

transfer?  

• Is there any significant impacts of the Reynolds number, Hartman number, and Brinkman 

number on the generation of entropy and Bejan number?   

• Determine how Brownian motion, Hartman number, thermophoresis diffusion, solutal buoyancy 

parameter, and Schmidt number influence on skin-friction coefficient, Nusselt number, and 

Sherwood number. 

• How much SQLM  is compatible with other traditional methods?  

 

 

 

 

2. Mathematical Formulation 

 

2.1. Flow investigation 

Here we scrutinized the free-forced convective heat-mass transportation boundary layer of a steady, 

incompressible, laminar, magnetohydrodynamics ( )MHD  nanofluid flow passing through a vertical 

non-linear expanded non-Darcian porous surface in the presence of a constant electric field effect 

0(0,0, )E E= −  and a uniform magnetic field 0(0, ,0)B B=  with chemical reaction to stabilize the 

boundary layer flow as demonstrated in Figure 1. 

It has been taken into consideration that the flow produced due to elastic sheet. Gauss law for 

magnetism and Maxwell-Faraday equations are given by . 0B = and 0.
B

E
t


 = − =


 In case of 

weak magnetic and electric fields adhere to Ohm’s law ( )J E q B= +  , where J  signifies Joule 

current,   denotes permeability of magnetic field and q  denotes velocity of the fluid. The magnetic 

field dominating the electric fluid is in this case. The temperature as well as species concentration 

have a quadratic form. By presuming the fluid resources are unaltered, Boussinesq approximation 

implemented in momentum equation. Under prior conventions with non-uniform heat source/sink 

boundary layer leading equations are given by  

0
u v

x y

 
+ =

 
                                                                                                                                                      (1)  
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( ) ( ) ( )
2

2 2

0 0 02

b
T C

cu u u
u v E B B u u u g T T g C C

x y y

 
  

  
 

  
+ = + − − − + − + −

  
               (2)  

Where ( , )u v  denotes velocity along respective co-ordinate axes x  and ,y  g  demonstrate the 

gravitational acceleration, T  represents the thermal expansion coefficient,   indicates kinematic 

viscosity,   signifies the fluid density, wT  stands for wall-temperature, T  denote ambient 

temperature and T  signifies the temperature of the fluid.   signifies the porous medium 

permeability,   represents the dynamic viscosity, in the transverse direction 0 0,E B  signifies the 

strength of electric and magnetic fields respectively, C  indicates volumetric coefficients of mass 

expansion, dimensionless quantity bc  denotes the coefficient of drag force, and electrically 

conductivity of the fluid denoted by .  The empirical constant, in the second-order resistance, 

denoted by bc
F


= , known as Darcy-Forchheimer number. By substituting 0F = , Equation 2

becomes Darcy’s law. u



 signifies the first-order Darcy and 2bc

u


 represent second-order inertia 

resistance due to porosity.  

The relevant boundary conditions on velocity are as follows  

( ) , 0wu u x cx v= = = at 0y = ,  

0,u →  as y→                                                                                                                                             (3)  

Where ( )wu x  is the stretching lamina velocity, c  is a constant. To convert the leading momentum 

Equation 2 , the similarity variables take the expressions as follows   

( ) ( ), , .
c

u cxf v c f y   


= = − =                                                                                                     (4)  

Here ( ), f   stands for the non-dimensional similarity space variable and velocity function 

respectively. Utilizing Equation 4 , Equation 2  transformed to a third order non-dimensional ODE  

as 

( )2 2 * 2

1 1 0f ff Ha E f f k f F f H      + + − − − − + + =                                                            (5)  

Where 
2

2 0B
Ha

c




=  represents the magnetic parameter, 0

1

0

E
E

B cx
=  signify the electric field 

parameter, 
1k

c




=  denotes the porous parameter, * bc x

F


=  stands for the inertia coefficient, 

2Re

x

x

Gr
 =  indicates the thermal buoyancy parameter, 

2Re

c

x

Gr
 =  represents the concentration 

buoyancy parameter, 
( )

2

T w

x

g T T
Gr





−
= , 

( )
2

C w

c

g C C
Gr





−
=  denotes the thermal Grashof 

number and solutal Grashof number orderly.  
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Utilizing Equation 4  in Equation 3,  converted boundary conditions as follows 

( ) ( )0, 1f f = =  at 0, =  

( ) 0f  =  as .→                                                                                                                                      (6)  

For the physical curiosity the skin friction coefficient ,fC  is given by  

2
,

2

w
f

w

C
u




=
 
 
 

                                                                                                                                                  (7)  

Where, w , wall shear stress is given by  

0

w

y

u

y
 

=

 
=  

 
                                                                                                                                                (8)                                                                                                                                                

The dimensionless form of Equations 7  and 8,  utilizing Equation 4  as  

( )
1

2Re 2 0f xC f =                                                                                                                                            (9)  

Re w
x

u x


=  stands for the local Reynolds number.  

2.2. Energy conversion on account of similarity transformation 

The heat transportation equation in the presence of non-constant heat generation/absorption is 

given by 

( )
2 22

2

0 02

1f T
B

p p p p

DT T T u T C T
u v uB E q D

x y c y c y c c y y T y

  


    

          
+ = + + − + + +    

           

          

                                                                                                                                                                            (10)  

Where pc  indicates the specific heat, TD  and BD  stands for the thermophoretic and diffusion 

coefficient of Brownian, f  signifies the thermal conductivity,   denotes fraction of heat capacity 

of nanoparticles to the base fluid, and the free stream temperature is given by T .  

2

p

u

c y





 
 
 

 

signifies viscous dissipation for unit area and ( )
2

0 0

p

uB E
c




−  signifies Ohmic dissipation or Joule 

heating. The electric, as well as magnetic fields, transformed electric or magnetic energy into 

thermal energy. The non-constant wall temperature of the expanded lamina represented by ( )wT x ,  

( )( )wT x T . ( )wT x  varies with x , distance from the expanded lamina. Assuming non-isothermal 

flows i.e., non-constant temperature ( )wT x , to solve Equation 10 , the boundary conditions are 

given by 
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( ) 2

wT T x T ax= = +  at 0y = ,  

T T→  as y→                                                                                                                                         (11)  

Where, a  stands for thermal distribution parameter on the expanded lamina. The non-constant 

heat generation/absorption along the thermal boundary layer is manifested by q and given by 

( )
( ) * * ,

f w

w

u x
q T T A e B

x







−


  = − +                                                                                                   (12)  

Where space coefficients and heat source/sink denoted by *A  and *B  orderly. Here we consider 

that * *0, 0A B   and * *0, 0A B   indicate internal heat generation and internal heat 

absorption orderly. Dimensionless temperature variable ( )   given by 

w

T T

T T
 



−
=

−
                                                                                                                                                     (13)  

Substituting Equations 12  and 13  in Equation 10  we acquire a transformed non-dimensional ODE  

of order two as 

( ) ( ) ( ) ( )
22 2 * * 2

1Pr 2 Pr Pr Prc cf f Ha E E f E f A e B Nb H Nt     −       − − + − + + + + +   

                                                                                                                                                                            (14)                                                                                                      

Where Pr
p

f

c


=  indicates Prandtl number, Eckert number is denoted by cE  and defined as 

2

,c

p

c
E

ac
=  

( )B wD C C
Nb





−
=  symbolizes the Brownian movement parameter, 

( )T wD T T
Nt

T









−
=  materialize the thermophoresis parameter.  

The transformed boundary conditions (11)  are given by   

( ) 1  = at 0 = , 

( ) 0  = as →                                                                                                                                       (15)  

xNu indicates the local Nusselt number and characterized as  

( )
,w

x

f w

xq
Nu

T T 

=
−

                                                                                                                                    (16)  

 

The wall heat flux, i.e., wq  is given by  
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0

w f

y

T
q

y


=

 
= −  

 
                                                                                                                                        (17)  

By utilizing Equations 4  and 13  we acquire the dimensionless form of Equation 16  and 17  as  

( )1

2

0

Re

x

x

Nu
= −                                                                                                                                                 (18)  

  

2.3. Equation of mass transferred on account of similarity transformation 

The Concentration equation is manifested as below 

( )
2 2

*

2 2

T
m w

DC C C T
u v D R C C

x y y T y




   
+ = + − −

   
                                                                        (19)  

Where mD  indicates the mass diffusivity, ,wC C ( )wC C  signifies concentration at the wall and 

the ambient uniform concentration respectively. 

Assuming non-isothermal flows, i.e., non-constant concentration ( ) ,wC x  to solve Equation 19,  the 

boundary conditions are as follows 

( ) 2

wC C x C bx= = + at 0,y =  

C C→ as ,y→                                                                                                                                       (20)  

Where, b  stands for concentration distribution parameter on the expanded lamina. We illustrate 

the concentration variable ( )H   in non-dimensional form as  

( )
w

C C
H

C C
 



−
=

−
                                                                                                                                          (21)  

Substituting Equations 4  and 21  in Equation 19  we acquire a converted non-dimensional ODE  of 

order two as 

( )1 2 0
Nt

H ScR H Sc fH f H
Nb

   + − + − =                                                                                          (22)  

Where 
m

Sc
D


=  indicates Schmidt number. It refers to the fraction of the hydrodynamic boundary 

layer to mass transfer boundary layer, 
*

1

R
R

c
=  symbolize the chemical reaction parameter. By 

applying (4)  and (21),  the boundary conditions (20)  become 

( ) 1H  =  at 0, =  

( ) 0H  =  as ,→                                                                                                                                   (23)  
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To calculate the fraction of convective rate of mass transportation from the wall to the rate of 

diffusion, the dimensionless local Sherwood number, i.e., xSh  is defined as                     

( )
m

x

m w

xq
Sh

D C C

=
−

                                                                                                                                    (24)                                                                                                                        

The mass transfer from the lamina, i.e., mq  is given by  

0

m m

y

C
q D

y
=

 
= −  

 
                                                                                                                                      (25)  

Where molecular diffusivity indicated by .mD   

By utilizing Equations 4  and 21  we acquire the dimensionless form of Equations 24  and 25  as  

( )1

2

0

Re

x

x

Sh
H = −                                                                                                                                               (26)  

 

3. Entropy generation analysis  

Convective heat transfer or convection is an analysis of the heat transfer due to the movement of 

the fluid. To increase the thermodynamic proficiency of the system, related to industrial equipment 

as an example heat exchanger, the fundamental purpose is to enhance thermal contact as well as to 

reduce power throughout pumping. To diminish the waste of the attainable energy of the system, 

the generation of entropy, a coherent thermodynamic process has been introduced. Nowadays, the 

execution of nanofluids in medical and engineering backgrounds is increased substantially, as an end 

result, it quickens the research to observe the effect of nanoparticles on the generation of entropy. 

In the current perusal, the generation of entropy of a viscoelastic nanofluid is the most important 

consideration. In 1996,  Bejan first introduced volumetric entropy generation, based on the 

thermodynamics second law, for two-dimensional ( )2D  motion in cartesian coordinates as  

2 22
20

2

mth dif

f

gen

SS S

BT RD C RD T C
S u

T y T C y T y y

 

   

        
 = + + +     

        
                                                               (27)  

and 0 ,S   the characteristic entropy rate as 

( )
2

0 2 2

f wT T
S

T x

 



−
=                                                                                                                                        (28)  

Equation 27  demonstrates the three components because of the generation of entropy. The first 

component term thS  indicates generation of entropy due to the heat transfer, the second 

irreversibility term mS  represents irreversibility on account of magnetic field strength and the third 

term difS  describes irreversibility in the sake of mass transfer/diffusion effect. Utilizing above three 

terms, Equation 27  can be recast as 
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gen th m difS S S S = + +                                                                                                                                     (29)  

,GN  entropy generation number defined as the ratio of the local entropy rate ( )genS  to the 

characteristic entropy generation rate ( )0 ,S   i.e.,  

0

gen

G

S
N

S


=


 

Non-dimensional form of entropy generation number GN  is given by  

( )
2

2 2 2 2

0

Re Re Re Re
gen

G

S Br
N Ha f H H

S
  

  

     
    = = + +  +        

                            (30)  

Where Br  represents dimensionless Brinkman number related to heat conduction,   and   

stands for concentration and temperature associated parameters, while   represents a constant 

parameter as 

( ) ( )2

Re , , , , , ,
w w

w w

f f

u x x u x RDCT C
Br T T T C C C

T T C




  


 

 

 
= =  = − =  =  = −  =


   (31)  

Equation 30  can be recast as the sum up of irreversibility originated from heat transportation, i.e., 

1N  and the irreversibility on account of both magnetic field and diffusive, i.e., 2N  as 

1
2

,G th m dif

N N

N S S S= + +  

 

Where ( )2

1 RethN S  = =  and  

2

2 2 2

2 Re Re Rem dif

Br
N S S Ha f H H

  

    
   = + = +  +    

   
                                            (32)  

To investigate that the generation of entropy will be governed by irreversibility in the sake of heat 

transfer, ,Be  Bejan number exhibited as a ratio of entropy caused by heat transfer to the total 

entropy as;                         

1 1

1 2

1

1G

N N
Be

N N N 
= = =

+ +
                                                                                                                       (33)  

Where 2

1

N

N
 =  stands for the fraction of irreversibility. Generation of entropy is governed by 

several terms on account of .  Irreversibility caused by heat transfer dominates generation of 

entropy in the case of   )0,1 .   An effect of magnetic and diffusive irreversibility lead generation 

of entropy in case of 1.   In the case of 1, =  the sequel from the above mentioned three terms 

of generation of entropy becomes similar.  0,1 ,  represents the range of the Bejan number. 
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Irreversibility is dominated by the heat transportation when the Bejan number attains its maximum 

value, i.e., 1,Be =  on the other hand irreversibility is ruled by both magnetic field as well as 

diffusion at 0,Be =  the minimal value of Bejan number. The significance of heat transfer and 

combined effect of diffusion and magnetic field become equivalent at 0.5.Be =                            

 

4. Numerical solution utilizing the Spectral quasi-linearisation technique 

 

The system of three dimensionless non-linear ODEs  5, 14,  and 22  along with the boundary 

constraints 6,  15,  and 23  respectively, has been solved numerically to an excellence accuracy 

applying .SQLM  Richard Bellman and Robert Kalaba improved the Newton-Raphson method to 

QLM (quasi linearization method) before the last fifty years (1965).  QLM  generally utilize to 

linearize the non-linear terms associated with the flow governing equations by the help of Taylor 

series approximation, assuming infinitesimal difference between ( 1)thr +  and thr  iteration. This 

numerical procedure is very operative because of its accuracy and fast convergency. The non-linear 

components in the above-said ,ODEs  will be transformed into a recursive sequence with linear 

terms. Initially, for Equations 3,  14,  and 22,  we have to define functions ,F ,  and H  orderly, as 

( )2 2 * 2

1 1F f ff Ha E f f k f F f H      = + + − − − − + +                                                        (34)  

( ) ( ) ( ) ( )
22 2 * * 2

1Pr 2 Pr Pr Prc cf f Ha E E f E f A e B Nb H Nt      −       = − − + − + + + + +                     

                                                                                                                                                                            (35)  

( )1 2H NbH Nt NbScR H NbSc fH f H   = + − + −                                                                         (36)  

 

Applying quasilinearization method on the Equations 5,  14,  and 22,  generates the iteration as 

follows:   

0, 1 1, 1 2, 1 3, 1 4, 1 5, 1 ,r r r r r r r r r r r r Fa f a f a f a f a a H R+ + + + + +
  + + + + + =                                                          (37)  

0, 1 1, 1 2, 1 3, 1 4, 1 5, 1 6, 1 ,r r r r r r r r r r r r r rb b b b f b f b f b H R


  + + + + + + +
    + + + + + + =                                            (38)  

0, 1 1, 1 2, 1 3, 1 4, 1 5, 1r r r r r r r r r r r r H
c H c H c H c f c f c R+ + + + + +

   + + + + + =                                                          (39)  

Based on the boundary conditions:  

( ) ( ) ( )1 1 10 0, 0 1, 0,r r rf f f+ + +
 = =  →                                                                       

( ) ( )1 10 1, 0,r r + +=  →  

( ) ( )1 10 1, 0.r rH H+ +=  →                                                                                                                         (40)  

The coefficients in Equations 37 39−  are given as: 

( )2 *

0, 1, 2, 1 3, 4, 5,1, , 2 2 , , , ,r r r r r r r r r ra a f a Ha f k F f a f a a   = = = − − − − = = =   
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*

0, 1, 2, 3,1, Pr Pr 2Pr , 2Pr , 2Prr r r r r r r r c rb b f NbH Nt b f B b E f   = = + + = − + =  

( )2

4, 1 5, 6,2Pr 2 Pr , Pr , Prr r c r r r r rb Ha E E f b b Nb    = − − − = =  

 

0, 1, 2, 1 3, 4, 5,, , 2 , 2 , , .r r r r r r r r r rc Nb c NbScf c NbScR NbScf c NbScH c NbScH c Nt = = = − − = − = =  

                                                                                                                                                                            (41)  

The initial guess satisfying the boundary conditions are to be chosen as follows: 

( ) ( ) ( )0 0 01 , ,f e e H e     − − −= − = =                                                                                              (42)  

The characteristic domain  0, xL  converted to the standard interval  1,1−  by the transformation 

( )1
.

2

xL x


+
=  The Gauss-Lobatto collocation points 

cos , 0(1) ,i

i
x i N

N

 
= = 

 
  1,1ix  −                                                                                                       (43)  

are considered to interpolate the unknown functions. Here N  is the number of collocation points.  

The elementary notion of the Spectral-collocation method is to assume the derivatives of unknown 

variables at the collocation nodes by constructing a differentiation matrix [ ]D  in the form of matrix-

vector product. As the domain of[ ]D matrix is  1,1 ,−  we scale by considering 
2

1
x

D
D

L
=  for the 

characteristic domain  0, xL  as 

( ) ( )
0

,
N

r
jk k m

k

dG
D g DG

d
 

 =

= =  0(1) ,j N=                                                                                         (44)                                                                        

Where ( ) ( ) ( ) ( ) ( ) 0 1 2 3, , ,..........
T

NG g g g g g    =  is the vector function at the collocation 

points. The higher order differentiation can be traced as:  

( )q q

r rG D G=                                                                                                                                                    (45)  

Thence, Equations 37 39−  are given as: 

11 1 12 1 13 1

21 1 22 1 23 1

31 1 32 1 33 1

,

,

.

r r r F

r r r

r r r H

A f A A H R

A f A A H R

A f A A H R









+ + +

+ + +

+ + +

+ + =

+ + =

+ + =

                                                                                                              (46)         
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( ) ( ) ( ) ( )

( )

( )

3 2

11 0, 1, 2, 3,

12 4,

13 5,

,

,

,

r r r r

r

r

A diag a D diag a D diag a D diag a I

A diag a I

A diag a I

= + + +

=

=

 

 

( ) ( ) ( )

( ) ( ) ( )

( )

2

21 3, 4, 5,

2

22 0, 1, 2,

23 6,

,

,

,

r r r

r r r

r

A diag b D diag b D diag b I

A diag b D diag b D diag b I

A diag a D

= + +

= + +

=

 

 

( ) ( )

( )

( ) ( )

2

31 3, 4,

2

32 5,

2

33 0, 1,

,

,

.

r r

r

r r

A diag c D diag c D

A diag c D

A diag c D diag c D

= +

=

= +

 

 

In matrix form, this can be written as 

11 12 13 1

21 22 23 1

31 32 33 1

r F

r

r H

A A A F R

A A A R

A A A H R




+

+

+

    
    

=     
         

 

  

5. Result and discussions 

The perusal imparts an impact of the non-dimensional parameters on generation of entropy and 

Bejan number take into account a ,MHD  steady 2D  viscoelastic, nanofluid flow in the presence of 

chemical reaction. Conservation equations are solved by applying .SQLM  The computational 

results of the suggested technique ( )SQLM  are compared with those obtained by various 

researchers ([22],[23],  and [24])  under limiting circumstances (see Table 2 ). For evaluating the 

Nusselt number, they utilized finite difference scheme, and shooting method (Runge-Kutta-Fehlberg 

scheme). Gap analysis reveal that the current outcomes are compatible. We investigate the impacts 

of governing flow parameters on skin-friction coefficient, Nusselt number, and Sherwood number 

numerically and presented in Table 3.  From Table 3,  we observed that Skin-friction coefficient 

enhances consistently together with , ,Ha Sc  and ,Nb  whereas it declines consistently upon 

enhancing .  Thus, the coefficient of skin-friction coefficient increases with the strength of the 

Lorentz force. On the other hand, both Nusselt number and Sherwood number decreases with 

increasing values of Ha  and ,Nt  whereas the buoyancy parameter is to increase both Nusselt and 

Sherwood number. 

5.1.   Impacts of Hartman number Ha  

An enhancement of the resistance force affiliated with the applied magnetic field generates a drag 

(force) in terms of Lorentz force, as a result velocity profile and boundary layer thickness declines 
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with an enhancement of the magnetic field. Figure 2  exhibits the influence of the applied magnetic 

field onto the velocity profile ( ) .f   It has been observed that velocity layout declines with an 

enhancement of a magnetic parameter, i.e., Hartman number. On the other hand, the resistance 

affiliated with the Lorentz force by virtue of the applied magnetic field raises the thermal boundary 

layer, i.e., more heat was generated and raises the thermal boundary layer ( )   as portrayed in 

Figure 3.  

 

5.2.   Impact of solutal buoyancy parameter   

Impacts of various values of buoyancy parameter   on velocity ( )f   and temperature ( )   has 

been portrayed by Figures 4  and 5  orderly. In a permeable media, fluid velocity is inversely 

proportional with kinematic viscosity. Again, with an increment in buoyancy parameter viscosity 

decreases, as a consequence in a permeable media with the increment of buoyancy parameter ,  

i.e., with low viscosity fluid velocity ( )f   enhanced, which has been portrayed in Figure 4.

Whereas from Figure 5  we noticed thermal boundary layer ( )   are inversely related to buoyancy 

parameter .  

 

5.3.  Influence of Prandtl number Pr  

The influence of distinct values of the Prandtl number on temperature layout has been portrayed in 

Figure 6.  Prandtl number is a ratio between the momentum diffusivity rate to the heat diffusion 

rate. It acts as a hyperlink between the fluid stream and the way it impacts the thermal layout. The 

significance of the Prandtl number is as follows, to identify the dominant terms among momentum 

and thermal diffusivity, correlative thickness of hydro (fluid) dynamic and thermal boundary layer. 

An enhancement of viscous force i.e., momentum diffusion and reduction to thermal force, enhance 

the Prandtl number Pr,  consequently, temperature layout diminished as shown in Figure 6.  

 

5.4.  Sequel of Brownian motion parameter Nb  

Impacts of various values of Brownian motion parameter Nb  on temperature layout ( )   and 

concentration layout ( )H   has been exhibited by Figures 7  and 8  orderly. An ‘unstable’ random 

movement of particles treated as the Brownian motion. Because of collision, Brownian motion 

occurs in the fluid during rapid movement of the molecules. An increment on account of random 

motion of molecules (nano-particles), i.e., an increment in Brownian motion parameter ,Nb  thermal 

boundary layer ( )   is highly effected. The influence of Nb  on thermal boundary layer ( )   is 

portrayed in Figure 7.  Whereas, from Figure 8,  we noticed concentration reduces with Brownian 

parameter. 

 

 

5.5.  Influence of Thermophoresis parameter Nt  
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Thermophoresis (Thermo migration), is a particular type of force caused by the temperature 

gradient T  affecting the movement from higher to lower temperature walls. An enhancement in 

the Thermo migration is associated with a rise in the temperature of the fluid. The sequel of this on 

temperature layout has been displayed in Figure 9.  In the case of kinematic viscosity diminished i.e., 

if the buoyancy impact increased, the thermophoretic parametric value will increase which leads to 

an increment of thermal boundary layer. Thermophoretic and concentration gradients are directly 

correlated. This physical phenomenon is due to the particle’s movement from higher to lower 

temperature regions. If the heat capacity of the base fluid diminishes or if the heat capacity of the 

nanoparticles increases, the thermophoresis effect will enhance, as a result, the concentration 

boundary layer will increase. The concentration outcome due to thermophoretic parameters has 

been depicted in Figure 10.       

 

 

5.6.  Influence of Schmidt number Sc  

The sequel of rising ,Sc  Schmidt numbers on the velocity, temperature and concentration layout are 

depicted in Figures 11,12,  and 13  respectively. The velocity and the concentration diminished with 

rising ,Sc  but Sc  and temperature layout are directly related. ,Sc  represent the ratio of kinematic 

viscosity (momentum viscosity) and mass diffusivity. With an increase in the value of Schmidt 

number, kinematic viscosity   and hence velocity layout of the fluid flow will be diminished. Again, 

with the increase in the value of the Schmidt number, the mass diffusivity or fluid density or 

concentration layout will be reduced, consequently, as a consequence thickness of the solutal 

boundary layer will become thinner. Further, it has been noticed that there will be no indicative 

influence for enhancing the value of Schmidt number Sc  after 2.0  on velocity and temperature 

layout because of the reduction in the sequel of solutal thermal buoyancy within the flow of fluid.  

  

 

5.7.  Influence of chemical reaction parameter 1R  

The influence of chemical reaction parameter 1R  on the temperature and concentration layout are 

depicted in Figures 14  and 15  respectively. 1R  and temperature layout are directly related (see 

Figure 14).  Whereas, at the time of suction chemical reaction diminishes species of concentration, 

which is depicted in Figure 15.  

 

 

Generation of entropy is affected by multiple pertinent parameters/factors. The alternation in the 

generation of entropy layout together with numerous valuers of pertinent parameters, for instance, 

the Brinkman number ,Br  the Reynolds number Re,  and Harmann number Ha  were investigated 

and depicted in several diagrams.   

5.8.  Entropy generation and Bejan number: Brinkman number 

Non-dimensional ,Br  Brinkman number stated as the fraction of viscous dissipation to thermal 

conduction in fluid. Brinkman number is a composition of dynamic viscosity ,  fluid flow velocity, 
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thermal conductivity ,f  and temperature gradient .T  The impacts of ,Br  Brinkman number on 

the generation of entropy ( )GN   and Bejan number ( )Be   has been portrayed in Figures 16  and 

17  respectively. From these diagrams it has been noticed that generation of entropy ( )GN   and 

Brinkman number Br  are directly related near the stretching sheet, whereas, Brinkman number 

Br  has opposite behaviour with the Bejan number ( )Be   in the vicinity of the stretching sheet, 

i.e., with an increment of the ,Br  Bejan number ( )Be   declined near the stretching sheet. In the 

vicinity of the stretching sheet, a significant reduction of heat take place beyond the boundary layer 

during fluid flow, as a consequence generation of entropy ( )GN   rises by enhancing the degree of 

disorder of the system and declining the Bejan number ( ).Be   Whereas, the impacts of Brinkman 

number Br  is insignificant far from the lamina. 

 

5.9.  Entropy generation and Bejan number: Reynolds number  

The sequel of Reynolds number Re  on the generation of entropy ( )GN   depicted in Figure 18.  In 

the vicinity of the extended lamina, Reynolds number Re  has significant impacts on the generation 

of entropy ( ) ,GN   i.e., with an increment of the Reynolds number Re  give rise to a remarkable 

enhancement in the generation of entropy ( ).GN   Heat transfer impacts due to diffusion and 

magnetic field effect caused Reynolds number Re  and generation of entropy ( )GN   rise together 

in the neighbourhood of the lamina. Actually, Reynolds number Re  is revealed as the quotient of 

inertia force to viscous force. When forces on account of inertia will be incremented and forces 

because of viscosity will be reduced, there will be a hike in Reynolds number, as an out – turn fluid 

acceleration will bump up in the proximity of the sheet. On the other hand, far from the sheet, there 

are no such ramifications of the Reynolds number Re.  

 

5.10. Entropy generation and Bejan number: Hartmann number  

The influence of Hartmann number Ha  on the non-dimensional generation of entropy ( )GN   and 

Bejan number ( )Be   are portrayed in Figures 19  and 20  respectively. In the vicinity of the lamina, 

remarkable influence of Hartmann number Ha  on entropy generation have been noticed, at the 

same time ,Ha  Hartmann number has a weak influence on the fluid flow and hence on entropy 

generation far from the lamina ( approx. 4).   This impact gives an upwards trend to the motion 

resistance in the vicinity of the lamina, consequently, the rate of heat transfer increments, yielding a 

rise in entropy generation number in the neighbourhood of the lamina. However, far away from the 

sheet, the impact of ,Ha  Hartmann number is just contrary, irreversibility due to entropy has a slow 

decreasing tendency with the increasing value of Ha  and declining the Bejan number ( )Be   ( see 

Figure 20).  

6. Conclusion  

The current investigation has been manifested to examine the generation of entropy of MHD  

viscoelastic nanofluids stream together with chemical reaction. Graphical representations were 
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acquired to exhibit the notable influence of some non-dimensional pertinent parameters on 

generation of entropy as well as on Bejan number together with velocity, thermal boundary layer 

and concentration layouts. We deduce as follows from present perusal:  

 

• Thermal ( )   and Brownian motion parameter Nb  are directly associated, while, 

concentration ( ) ,H   as well as velocity layout ( ) ,f   are reverse in nature with .Nb  

• An increment in the Thermo migration Nt  is associated with a rise in temperature, 

concentration and fluid velocity. 

• The velocity and the concentration diminished with rising ,Sc  but Sc  and temperature 

layout are directly related. 

• Physically chemical reaction parameter 1R  minimizes the momentum diffusivity and mass 

transportation whereas the heat transportation rises. 

• In the vicinity of the extended lamina, Br  and entropy generation are related directly in 

spite of that an opposite behaviour for the Bejan number Be  has been observed.  
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7. Appendices sections:  

 

Figure 1.  Physical model and Co-ordinate system 

 

Table 1.  Gap Analysis 

Authors Considered problem Findings 

Chen [22]  Effects of velocity and temperature on 
power law fluid with buoyancy force, 
utilized the finite difference method. 

Heat transfer depends on buoyancy 
parameter, Prandtl number, velocity, 
and temperature exponent 
parameter.   

Ishak, Nazar, 

and Pop. [23]  

Effects of velocity and temperature on 
electrically conducting MHD power law 
fluid, solved by Keller – box method. 

Skin-friction and Nusselt number 
decline as magnetic parameter 
enhances. 

Pal and Mondal 

[24]  

 

Impacts of non-constant heat 
source/sink on electrically conducting 
incompressible fluid, utilized Runge-
Kutta-Fehlberg Fifth order method.   

Impacts of the coefficients of the 
skin-friction, heat transfer 
coefficient, and local Sherwood 
number also has been determined 
numerically. 

Bhukta et al. 

[25]  

 

Dissipative effect on electrically 
conducting unsteady flow in a porous 
medium, solved by Runge-Kutta fourth 
order method.  

Skin-friction reduces with Prandtl 
number, but positively related with 
electric field.   

Mondal et al. 

[26]  

Semi-infinite permeable inclined flat 
plate in the presence of chemical 
reaction, used Runge-Kutta-Fehlberg 
Fifth order method. 

As the angle of inclination increases, 
thermal and concentration layout 
enhances, but velocity layout 
decreases.   

Wang et al. 
[27]  

Darcy-Forchheimer viscous fluid with 
chemical reactions, utilized ND-solve 
procedure.  

Thermal layout enhances with heat 
generation parameter, reduces with 
thermal slip parameters.   
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Table 2.  Comparison of (0) −  for different values of Pr, 0, 0Nt Nb→ →  and the remaining 

parameters are zero. 

Pr  Chen [22]  Ishak et al. [23]  Pal and Mondal [24]  Our Outcomes 

1.0

2.0

3.0

5.0

10.0

 

1.33334

2.50997

4.79686

−

−

 

1.3333

2.5097

4.7969

−

−

 

1.333333

2.000000

2.509725

3.316482

4.796873

 

1.33333333

1.99999557

2.50972157

3.31647940

4.79687060

 

 

 

Table 3.  The values of coefficient of skin-friction, local Nusselt number, local Sherwood number 
for various parameters 

Ha    Sc  Nb  Nt  1

2Ref xC  
1

2Rex xNu
−

 
1

2Rex xSh
−

 

0.1

0.5

1.0

 

0.4  0.22  0.5  0.4  0.97253011

1.07530119

1.35814201

 

1.20882119

1.19042791

1.13811685

 

0.03420891

0.04151450

0.05680289

−

−

−

 

 0.4

0.7

1.0

 

   1.12123485

0.92423144

0.73877730

 

1.92980389

1.94490734

1.96051643

 

0.66162882

0.61169790

0.57613154

−

−

−

 

  0.22

0.50

0.66

 

  0.87365049

0.92014739

0.93510072

 

1.65942751

1.39188005

1.30278878

 

0.59663825

0.17182333

0.47385202

−

 

   0.5

0.7

0.9

 

 0.84929188

0.87365049

0.88703996

 

1.77529010

1.65942751

1.55379907

 

1.23105777

0.59663825

0.25039234

−

−

−

 

    0.2

0.4

0.6

 

1.09572872

1.07534106

1.05671776

 

1.88814549

1.77834780

1.67772325

 

0.24995326

0.21879220

0.61490050

−

−
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Nomenclature 

, , ,a b c D  constants  Re  Reynolds number 

 
* *,A B  

coefficient of space and 
temperature-dependent heat 
source/sink 

 

Sc  

 
Schmidt number 

0B  magnetic field strength Sh  Sherwood number 

Br  Brinkman number T  temperature [ ]K  

C  concentration of the species  
wT  wall temperature of the lamina 

wC  concentration at the surface T  ambient temperature 

C  ambient concentration  C  difference between ( )wC C−  

bc  coefficient of drag force T  difference between ( )wT T−  

fC  coefficient of skin friction ,x y  Cartesian coordinates [ ]m  

pc  specific heat 1 1Jkg K− −    ,u v  velocities along x  and y  directions 
1ms−    

BD  diffusion coefficient of species 
wu  velocity of the stretching sheet  

TD  thermophoretic diffusion coefficient Greek symbols 

cE  Eckert number   dimensionless parameter  

0E  electric strength [ / ]V m  
T  thermal expansion coefficient  

1E  electric parameter    kinematic viscosity 2 1m s−    

f  dimensionless velocity 
C  concentration expansion coefficient  

*F  inertia coefficient   concentration buoyancy parameter  
g  

gravitational acceleration 2ms−      
fluid density 3kgm−    

xGr  local Grashof number   dimensionless variable 

cGr  solutal Grashof number   
dynamic viscosity 1 1kgm s− −    

H  Dimensionless concentration 
f  thermal conductivity 1 1Wm K− −    

1k  porosity parameter   fraction of heat capacity of 
nanoparticles to the base fluid 

Ha  Hartmann number   stream function of the fluid  

1R  chemical reaction parameter  
w  temperature ratio parameter 

  permeability 2m      electrical conductivity 1Sm−    

Nb  Brownian motion parameter    thermal buoyancy parameter  

Nt  thermophoresis parameter    dimensionless temperature  

Nu  Nusselt number ,   constant parameters  

Pr  
Prandtl number 

.

mol

L s

 
 
 

 
 

q  Non-uniform heat source/sink 
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Figure 2.  Impact of Ha  on ( )f   

 

Figure 3.  Impact of Ha  on ( )   
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Figure 4.  Impact of   on ( )f   

 

Figure 5.  Impact of   on ( )   
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Figure 6.  Impact of Pr  on ( )   

 

Figure 7.  Impact of Nb  on ( )   
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Figure 8.  Impact of Nb  on ( )H   

 
 

Figure 9.  Impact of Nt  on ( )   
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Figure 10.  Impact of Nt  on ( )H   

 
 

Figure 11.  Impact of Sc  on ( )f   
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Figure 12.  Impact of Sc  on ( )   

 

 
 

Figure 13.  Impact of Sc  on ( )H   
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Figure 14.  Impact of 1R  on ( )   

 

 
 

Figure 15.  Impact of 1R  on ( )H   
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Figure 16.  Impact of Br  on ( )GN 

 
 

Figure 17.  Impact of Br  on ( )Be   
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Figure 18.  Impact of Ha  on ( )GN   

 

Figure 19.  Impact of Ha  on ( )Be   
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Figure 20.  Impact of Re  on ( )GN   

 

 

 

 


