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Abstract 

The analysis of surface waves in an initially stressed homogeneous magneto-elastic material with voids 

source, corrugated and impedance boundary conditions influenced by an applied mechanical force on the 

surface of the material is the hallmark of this investigation. The framework of the study also encompasses 

the use of normal mode solution approach, non-dimensionalization of the resulting equations of motion 

and grooved boundary conditions occasioned by the modeled problem. The distribution of the 

displacement components, normal and shear stresses, volume fraction fields were analytically and 

graphically presented using Mathematica Software for a particular chosen material which hitherto 

demonstrates the effects of the contributing physical quantities on the material. The initial stress, voids 

source, and Mechanical force have remarkable effects to the behavior of the distribution profiles on the 

material. Increased influences of the magnetic fields decrease the amplitude of the distribution functions 

whereas impedance parameter induced a mechanical like resistance to the distributions. Thus, this work 

should prove useful in understanding studies involving seismology. Also, researchers in the fields of 

Geophysics, Mathematics of waves, Material Sciences, amongst others should be able to find the work 

helpful. 
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1. Introduction 

Studies in seismology have gained traction over the years due to its importance in examining disturbances 

in and on the earth especially as it behooves the fields of earthquake sciences, Geotechnical and 

Geophysics studies, and so on. Also, reading the disturbances in these materials, especially, has always 

been the anchor of Scientists in this field. These Scientists develop Mathematical models that could aid 

the understanding of wave phenomenon for various chosen materials like the fibre-reinforced composites, 

Spencer [1]. Fiber-reinforced composites have light weight and good stiffness property.  This has 

culminated to their relevance over the years in several applications such as in the fields of engineering, 

construction and architectural designs, among others. Hence, the need for reinforcement of structures and 

the solutions of the dispersion and attenuation characteristics of surface waves on these structures are 

paramount. This led Alam et al [2-3], to carry out works on Love-Type wave as one of surface waves on a 

fiber-reinforced composite over a viscoelastic substrate. There works equally dealt on the SH-waves in a 

temperature-dependent Voigt-type viscoelastic strip over an inhomogeneous half-space. In furthering 

these works on composites, Bounouara et al [4], examined the effect of visco-Pasternak foundation on 

thermo-mechanical bending response of anisotropic thick laminated composite plates. Further similar 

work was equally carried out by Mario et al [5], in their quest to finding SH-wave solutions for a multi-

layered model of Newtonian viscous liquid, fiber-reinforcement and poro-elasticity. Generally, it is to be 

noted that composite materials share similar material properties with orthotropic materials like the wood.  
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More so, due to many physical causes, some given physical properties and parameters such as initially 

stressed material like the earth Biot [6], and magnetic fields are sometimes inculcated into the material 

characterization Abd-Alla et al [7]. In addition to this, Alam et al [8] and Alam et al [9], rightly utilized 

such physical parameters and characterization of materials in their studies of attenuation and dispersion of 

waves in anelastic and elastic strips with porosity, and that which relates the rotating radial vibrations in 

human bones made cylindrical shell under magnetic field and hydrostatic stress, respectively. These are in 

order to elicit the understanding of the behaviors associated with these materials that are subject to an 

impact and in turn resulting to propagation of elastic waves. This was similarly observed by Cowin et al 

[10], whose works covered voids (volume fraction fields or porosity) as an important generalization to 

mechanical characteristics of materials. Thus, in studying the Love-type wave propagation due to an 

impulsive point source, Venkatesan et al [11], was able to find solution in his work for a Multi-layered 

model of poroelastic cum inhomogeneous media using the Green’s function approach. Tahir et al [12-13], 

equally proceeded to opine the solutions to the propagation analysis of a ceramic-metal functionally 

graded sandwich plate with different porosity distributions in a hygro-thermal environment and for 

functionally graded sandwich plates via a simple quasi-3D HSDT. Also, Alsubaie et al [14], contributed 

in deciphering information about porosity-dependent vibration in functionally graded carbon nanotube-

reinforced composite beam. 

Furthermore, it’s evident that boundary surfaces of some materials are plane, grooved/corrugated or 

entirely of different shapes in nature. Grooved boundary surface could be visualized as series of parallel 

furrows and ridges whose encounter in mechanical propagation of wave results to several effects 

especially across interfaces, Asano [15]. It is worthy to mention that several related works has been 

carried out by some authors on irregular boundary surface. Chowdhury et al [16] is one of such authors 

whose study covered solutions on irregular common interface of two hydrostatic stressed media. In a 

similar vein, Sadab et al [17-18], equally examined such kind of model in their investigation about SH-

wave propagation in double layers imperfectly bonded media, and also in their work for piezoelectric 

layer over a heterogeneous dry sandy material. 

Be that as it may, impedance boundary conditions are a linear combination of unknown functions and 

their derivatives prescribed on the boundary, Singh [19]. These kinds of boundary conditions are 

commonly used in various fields such as in electromagneto-acoustics phenomena. They are usually not in 

vogue in seismology even though one could speak of the existence of virtually various boundaries in the 

earth’s interior. Frankly speaking, the contact between two solid media represents a complex 

phenomenon. For instance, in the case of seismic wave contacts with discontinuities, an ideally well 

bonded contact is assumed to include the continuity of appropriate stress and displacement components 

on the media. Thus, it is appropriate to assume such contact planes as very thin layers which could lead to 

impedance-like boundary conditions on the surface of the structure.  In the quest for solutions involving 

impedance, Maleki et al [20] constructed model tests on determining the effect of various geometrical 

aspects on horizontal impedance function of surface footings. 

In spite of this, some other authors have also made contributions to these concepts of corrugated boundary 

and other related wave propagation phenomena; Singh et al [21-23], Das et al [24], Abd-Alla et al [25],  

Chattopadhyay et al [26],  Roy et al [27], Singh et al [28], Gupta et al [29-30], Anya et al [31-34], Sunita 

et al [35], Dey et al [36], Nunziato et al [37] and Puri et al [38], Singh et al[39-40], Sahu et al [41], 

Giovannini [42] and Rakshit et al [43-44], most especially as an individual or part considerations of the 

interacting physical quantities rather than in a combined effect as observed in this current examination. 

In considerations of the above literatures, this study is aimed at deriving a Mathematical model of waves 

that could aid the understanding of the analysis of surface waves in an initially stressed homogeneous 

magneto-elastic material with voids source, corrugated and impedance boundary conditions influenced by 

an applied mechanical force. Consequently, this tend to be advantageous and imperative to investigate 

owing to the nature of the considered physical structure and its characterization in solid mechanics of 

materials, Mathematics of waves phenomena and generally, seismic solutions. Thus, the chosen boundary 

conditions of corrugation and impedance occasioned by the voids source and mechanical force, forms a 
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huge contributions in combined form to the result of the current study on composites. Hence, the 

equations of motion are derived by incorporating magnetic fields and initial stress to field equations of the 

material characterization. And by the utilization of normal mode analysis and non-dimensionalized 

quantities of the resulting equations of motion and grooved boundary conditions, the analytical and 

graphical solutions are presented for the displacement components, volume fraction fields and stresses on 

the structure. We observed that the physical parameters used in this study has varying degrees of effect on 

the distribution component of displacements of the waves, volume fraction fields and stresses on the 

material. 

2. The Mathematical Formulations 

We present the constitutive equations for an initially stressed magneto-porous fibre–reinforced 

composites, Spencer [1], Biot [6], Abd–Alla et al [7], Anya et al [31], Singh[45], and Othman et al [46] 

by: 

( ) 2 ( ) 2( )( )

( ) ,

ij ij ij kk ij T ij k m km ij kk i j L T i k kj j k ki

k m km i j ij

P a a a a a a a a

a a a a

              

   

= − + + + + + + − +

+ +
   (1)

( )2
0 0 ,1 0 0 1 ,2 0 0 2 , , 0 ,iF H e u e u    = − −                                                                                                (2) 

where, 1,1 2,2( )e u u= + , ( )1
, ,2ij i j j iu u = − is the rigid body rotation tensor, and ( )1

, ,2
.ij i j j iu u = + ij , ,ij ij ,

, ( , , ( )L T − ), ,iu  ,P and iF  are the stress tensor, strain tensor, Kronecker–delta function, 

Lames constant, fiber-reinforced parameters, displacement components, volume fraction fields, initially 

stressed parameter, and magnetic force respectively, 1,2,3.i j= =  Take 0 3 ,i i iH H h= + and ih as the 

induced magnetic field. o is the electric permeability such that the solid medium lies in the 
1 2x x − plane. 

( )1 2 3 , 3, , .i k k ih x x x u =− iH is the magnetic vector field while o  is the magnetic permeability as adapted 

from Maxwell’s equations of electromagnetism. Also, we assume 1 2 3( , , )a a a a=  such that (1,0,0)a =

represents the fibre directions. Consequently, the field equations in the presence of magnetic, Abd–Alla et 

al [7] and volume fraction fields, Cowin et al [10], take the forms:
 

 

, ,ij j i iF u + =                                                                                                                             (3)

1 , ,( ) ( ) .ii o i iu      − − − =                                                                                                           (4)                                                      

In view of the above formulations, we restrict our analysis to a 2D problem in the 1 2 –x x plane such that 

3 0x =  and 1 2 0,x x   since the displacement 3u is uncoupled in the equation of motion whereas the 

displacements 1 2 0u u   are coupled.  Thus, the component forms of Equations (3–4); are presented 

below: 

2 2

1 1,11 2 2,21 3 1,22 0 0 0 1 ,1{ } ,Au A u A u H u   + + = + −                                                                           (5) 

2 2

2 1,12 4 2,11 5 2,22 0 0 0 2 ,2{ } ,A u A u A u H u   + + = + −                                                                                (6) 

1 , ,( ) ( ) .ii o i iu      − − − =                                                                                                           (7) 

Here,  
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2 2

1 0 0 2 0 0 3

2

4 5 0 0

( 2 4 2 ), ( / 2), / 2,

/ 2, ( 2 ).

L T L L

L T

A H A H P A P

A P A H

          

   

= + + − + + = + + + + = −

= − = + +
 

The following dimensionless constants;
2

0 1 2 1 2 0 1 2 1 2( ) t, , ( , , , ) ( , , , ),t c x x u u c x x u u      = = =

2 2

0 0 1/ , / ,ij ij c c A    = = are introduced into Equations (5-7). Dropping the sign “  ”, the resulting 

equations of motion yields: 

2 2

1,11 12 2,21 13 1,22 11 ,1 0 0 0 1{1 / } ,u A u A u A H u   + + + = +                                                                             (8) 

2 2

12 1,12 14 2,11 15 2,22 11 ,2 0 0 0 2{1 / } ,A u A u A u A H u   + + + = +                                                                      (9) 

6 , 7 8 9 , 10( ) ( ) .ii i iA A A A u A   − − − =                                                                                                     (10) 

Where;
12 13 14 15 6 8 11 2 3 4 5 1 1

( , , , , , , ) ( , , , , , , ) /A A A A A A A A A A A A  = , 2

7 9 1
( ), ,( ) / ,

o
A A A= 10 .A =  

3. Normal Mode Approach  

Considering impedance and grooved boundary of an initially stressed porous homogeneous fibre-

reinforced solid in the half-space under the influence of mechanical force and magnetic fields, we take 

into account that the normal mode analysis is adopted such that the wave displacements and volume 

fraction fields are taken as; 

1

2 2( , ) { ( ), ( )} , 1, 2.
t ibx

j ju u x x e j
  +

= =                                                                                    (11) 

Equations (5-7); give rise to the equations below when Equation (11); is introduced into it, i.e. 

2 2 2 2 2

13 0 0 0 1 12 2( (1 / ) ) ( ) 0,A D b H u iA bD u bi    − − + + + =                                                                              (12) 

2 2 2 2 2

12 1 15 14 0 0 0 2( ) ( (1 / ) ) 0,iA bD u A D A b H u D    + − − + + =                                                                         (13) 

2 2 2

9 1 9 2 6 6 7 8 10( ( )) 0.A ibu A Du A D A b A A A  − − + − + + − =                                                            (14) 

For a non-trivial solution, the set of homogenous equations(12-14); becomes: 

6 4 2

1 2 3 4 1 2( )( , , ) 0C D C D C D C u u + + + = .                                                                                           (15) 

Where , 1,2,3,4iC i =  are complex coefficients having attributes of the physical constants of the 

material. Given that , 1,2,3i i = prescribe positive real roots of the auxiliary Equation (15); normal mode 

approach implies we have the following form of solution: 

 2

3

1, 2 1 2

1

( , ) ( , , ) nx

n n n

n

u u N N N e
 −

=

= ,                                                                                                       (16) 

,nN 1nN and 2nN depends on the wave number b in the 1x  direction and the complex frequency  of the 

waves. Making use of Equation (16) into Equations (12-14); we get the relations; 
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1 1 ,n n nN H N=                                                                                                                                            (17)

2 2 ,n n nN H N=                                                                                                                                           (18) 

where;
2 2 2 2 2 2

1 12 13 1 12 15 14 1{ ( )} / { ( )},n n n n n nH A b A b K N ib A A A b K   = − + − − − + − −

2 2 2 2 2

2 1 9 8 10 6 7 1 0 0 0{ } /{( ( )) ( ) },K (1 / ) , 1,2,3.n n n n nH H ib A N A A A b A H n       = − + − + − + = + =

The solutions for the total displacement component functions and stresses on the material in the 

dimensionless forms are thus, obtained: 

2 1

3

1

1

,n x t ibx

n

n

u N e
 − + +

=

= 2 1

3

2 1

1

,nx t ibx

n n

n

u N H e
 − + +

=

= 2 1

3

2

1

,nx t ibx

n n

n

N H e
  − + +

=

=

2 1

3
2

11 0 0 1 1 16 2 1

1

{ (1 ( / )) } / ,nx t ibx

n n n n

n

ib H A H A H N e P A
    − + +

=

= − − + −  

2 1

3

22 16 1 17 2 1

1

{ } / ,n x t ibx

n n n n

n

ibA H A H N e P A
   − + +

=

= − + − 2 1

3

12 1 31 13

1

{ } ,nx t ibx

n n n

n

ibH A A N e
   − + +

=

= −  

( ) ( )2 1

3

21 1 13 31 16 1 17 1 31 1

1

{ } , / , 2 / , ( / 2) / .nx t ibx

n n n T L

n

ibH A A N e A A A A A P A
       − + +

=

= − = + = + = +

4. Corrugated Boundary Conditions and Applications  

We assume the corrugated boundary of the porous fibre-reinforced half‐space with voids source and 

mechanical force is denoted by
2 1( )x x= , where 

1( )x  is a function which is periodic in nature and 

independent of 3x such that the Trigonometric Fourier series of 
1( )x is presented:  

         1 1

1

1

( ) ( )
ilbx ilbx

l l

l

x e e  


−

−

=

= + .                                                                                                       (19) 

That is, following Asano [15],
1 1( ) cos .x a bx =  Here a  is the amplitude of the corrugated boundary, 

and b  is the wavenumber found at the corrugated boundary surface with the wavelength 2 / .b  It 

suffices that the boundary conditions of the modeled problem follows below. 

i. The corrugated and impedance boundary conditions due to the initially stressed medium w.r.t 

2x  and the associated mechanical force becomes: 

     1

22 1 21 22 2 2 1( )
t ibxx Z u P Pe     +− + + + = , 

     12 1 11 1 1 12( ) 0x Z u P    − + + = , at 2 1( )x x= , for all
 1x  and t . 

ii. The boundary condition due to voids and its associated voids source become: 
1

,2 2

t ibx
P e

 +
= , at 2 1( ),x x=  respectively. 

Where 22  is an additional stress on the material due to Maxwell’s electromagnetism, Abd-Alla et al [7], 

Anya et al [31] and Azhar et al [47]. 

Owing to the physics of stress and impedance, the component of tangential stress 12  and normal stress 

component 22 are proportional to tangential and normal displacement components multiply by the 

frequency, respectively. In view of this, we combine the stresses and the grooved boundary conditions of 

the porous fibre-reinforced material with the tangential and normal displacement components in addition 

with the impedance term.  The initial stress components are equally taken into account at the boundary 

and as part of application phenomena to this study Ailawalia et al [48], yielded (i) above when subjected 
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to mechanical force 1.P 1Z and 2Z  are the impedance parameters. Hence, following the application of the 

boundary conditions (i-ii), we obtain the system of non-homogeneous algebraic equations below: 

1

16 1 17 2 1 13 1 31

( )2

1 2 0 0 1 1 1

{{ } sin {( )}

{ ( )}} / ,n

n n n n n

x

n n n n

ibA H A H ab bx ibA H A

H Z H ib H N e P A
 

 

   −

− + + −

+ + − =
                               (20) 

1 1

* 2

1 13 1 0 0 1 1 16 2

( )

1 1 1

{{ } sin { (1 ( / )) }

{ }} ( / )sin ,n

n n n n n

x t ibx

n

ibH A ab bx ib H A H A H

Z N e abP A bx
  

  

 − + +

− + − − +

+ =
                        (21)

1( )

2 2 1{( )} / .n x

n n nH N e P A
  −

− =                                                                                                              (22) 

*

13 1/ ,LA A= 1, 2,3.n =  

The above system of Equations (20-22); prescribes the solutions to the displacement components of the 

waves and stresses on the porous fibre-reinforced material with voids source and mechanical force when

, 1,2,3nN n =  are found. If 1 2 0,P P P= = =  the traction free grooved boundary conditions are achieved. 

When the Mechanical force and voids source are removed from the entire material, we observe that the 

introduction of the initially stressed parameter P has made the system of algebraic equations for the 

model to retain its non-homogeneous state as occasioned by the shear stress boundary conditions in (i) 

above i.e. the shear stress boundary condition which was in its free boundary state became non-

homogeneous on introduction of the initial stress on the material. 

5.  Computational Results and Discussion 

In this section we utilize the physical constants Othman et al [46], of fiber-reinforcements and other 

parameters as given below to study attributes of the material as it relates to its stresses and component of 

displacements occasioned by the effect of voids source, magnetic fields, mechanical force, grooved and 

impedance boundary parameters on the material. The analyses of the various behaviors of these field 

parameters are shown in Figures (1-9). This is sequel to the solutions of the equations of motion and 

dimensionless boundary conditions of the model given in this article at a constant time t.  

Figure 1 depicts the effects on normal stress
22 , shear stresses

12 , 
21 , volume fraction field  and the 

displacement components , 1,2iu i = versus 2x coordinate for varying wavenumber b associated with the 

grooved boundary. Also,  this is when the magnetic fields
0H , mechanical force 

1,P  initial stress ,P voids 

source 
2 ,P  impedance , 1,2iZ i = and amplitude of the grooved boundary a  parameters are constantly 

applied on the material. In view of this, it is obvious from Fig.1 that all the distribution functions attain 

their maximum in the range
20 0.75.x   The displacement 1u , normal stress

22 and the volume fraction 

fields tend to possess uniform behaviors in the range 
26.5 10x  along where their minimum 

amplitudes of distribution functions on the material tend to hold. 
2u , and the shear stresses

12 and 
21 have 

similar behaviors and the shear stresses would likely attain their minimum amplitude in the range

25.5 10.x  However, an increase in the wavenumber ,b associated with the grooved boundary, decreases 

the amplitudes of the distribution functions on the material. These behaviors are uniformly decreasing in 

the range
26.5 10x  and 

25.5 10x   for 1u , normal stress
22 , the volume fraction field and the 

shear stresses
12 and

21 , respectively. Also, mixed behaviors were observed for some of the distributions 

especially 
22 and  in the range 

20 2.x  Owing from Fig 1, it physically entails that more wave 
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numbers on the material boundary would reduce the displacements and modulations of surface waves on 

the material which in turn would reflect on the stresses applied to the considered structure.  

 

 

 

Figure 2 entails the effects on normal stress 22 , shear stresses 12 , 21 , volume fraction fields   and the 

displacement components , 1,2iu i = as against 2x  coordinate for distinct grooved boundary parameter a . 

This is such that the magnetic fields 0H , mechanical force 1,P  initial stress ,P voids source 2 ,P  

impedance , 1,2iZ i = and wavenumber b , parameters are constant on the material. Hence, Fig. 2 

demonstrates that all the distribution functions attain maximum amplitudes in the range 20 1.x 

Almost all the given distributions tends to have uniform behaviors for 2 0x  . The minimum amplitude 

of the distribution functions exists in the range 2 6.x   In a different vein, an increase in the amplitude a

of the grooved boundary increases the amplitudes of the distribution functions. This increase in behavior 

exists at certain points especially for 20 6x  . Physically, we could infer that the displacements or 

propagation of the waves happened along the grooved path at this instance.  

Nevertheless, Fig. 3 depicts the effects on normal stress 22 , shear stress 12 , volume fraction fields   

and the displacement components , 1,2iu i = versus 2x coordinate for varying magnetic fields 0H , when 

the mechanical force 1,P  initial stress ,P voids source 2 ,P  impedance , 1,2iZ i = and grooved  parameters 

are constant on the material. Thus, we observed that all the distribution functions attain their maximum 

amplitude of distribution in the range 20 0.75x  . They possess similar behaviors as in Fig.1. This is 

such that an increase in the magnetic fields 0H , completely decreases the amplitudes of the distribution 

functions as they ultimately attains uniform behavior between 26 10x   where the minimum 

amplitudes for the respective distributions holds. This physically shows that the magnetic field is acting 

as a pull to the propagation of the waves, its displacements cum other distributions. 

Furthermore, Fig 4 shows the behaviors of normal stress 22 , shear stress 12 , volume fraction field   

and the displacement components , 1,2iu i = against 2x coordinates for distinct initial stress P , when the 

mechanical force 1,P voids source 2 ,P  impedance , 1,2iZ i = , magnetic fields 0H  and grooved  

parameters are constant on the material. Moreover, Fig. 4 stipulates that for 20 0.5,x   all the 

distribution functions attain their maximum amplitudes. They essentially demonstrate uniform behavior 

for 2 5.5x  where the minimum amplitude of the distribution functions exists except for 2u whose 

minimum value of amplitude lies between 22 10x  . Be that as it may, an increase in the initial stress

P on the material increases the amplitudes of the distribution functions. This increase in behavior exists 

at certain points especially for 20 6.x    

In addition, Fig 5 shows the behaviors of normal stress 22 , shear stress 12 , volume fraction fields   

and the displacement components , 1,2iu i = versus 2x coordinate for varying applied mechanical force 1P  

when the initial stress ,P  voids source 2 ,P  impedance , 1,2iZ i = , magnetic fields 0H and grooved  

parameters are constant on the material. In addition, this is such that for 20 0.8,x   all the distribution 

functions attains their maximum amplitudes. They portray uniform behavior for 2 5.5x  where the 
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minimum amplitude of the distribution functions occurs except for 2u whose minimum value lies between

22 10x  . Also, an increase in the applied mechanical force 1P on the plane surface of the fibre-

reinforced material tends to increase the amplitudes of the distribution functions. This increase in 

behavior exists between 20 6,x   and thus, this shows that the mechanical force is acting as a push on 

the material. Observe that Fig 4 and Fig 5 are similar but with striking difference in amplitude profiles for 

some of the field distributions. 

Also, Fig 6 prescribes the effects of normal stress 22 , shear stress 12 , volume fraction fields   and the 

displacement components , 1,2iu i = versus 2x for varying voids source 2P . Observe that this occurs when 

the initial stress ,P  mechanical force 1P  , impedance , 1,2iZ i = , magnetic fields 0H  and grooved 

parameters are not varying on the material. Moreover, this is such that for 20 8,x   all the distribution 

functions attains their maximum amplitudes of distributions. They present uniform behavior for 2 5.5x 

where the minimum amplitude of the distribution functions occurs except for 2u whose minimum value of 

amplitude lies between 22 10x  . Also, an increase in the voids source 2P  on the fibre-reinforced 

material increases the amplitudes of the distribution functions. This increase in behavior exists between

20 6.x   

In a similar manner, Fig 7 gives the variations of normal stress 22 , shear stresses ( 12 , 21 ), volume 

fraction fields   and the displacement components , 1,2iu i = versus 2x for varying impedance 1Z . In this 

instance, the initial stress ,P  mechanical force 1P  , impedance 2Z , voids source 2P , magnetic fields 0H  

and grooved  parameters remains constant on the material. The distribution functions attain their 

maximum amplitudes in the range 20 0.75.x   An increase in the impedance 1Z , shows no significant 

increase nor decrease in the amplitudes of the distribution functions of 2u , and shear stresses 12 and 21 ; 

as they fast attains uniform behavior between 20 10x  . The minimum amplitudes for the respective 

distributions hold for 2 6x  . Observe a very slight change in behaviors of 1u , 22 , and voids  between 

20.25 2.5.x  This shows that the impedance 1Z  is acting as a resistance to change for the given 

distribution functions on the material.  

Consequently,  Fig 8 stipulates the behaviors of normal stress 22 , shear stresses 12 , 21 , volume 

fraction fields   and the displacement components , 1,2iu i = versus 2x for varying impedance 2Z when 

the mechanical force 1P , voids source 2P , impedance 1Z , magnetic fields 0 ,H  initial stress ,P  and 

grooved  parameters are constant on the material. The distribution functions attain their maximum 

amplitudes in the range 20 0.75.x    An increase in the impedance 2Z , essentially demonstrated 

neither increase nor decrease in the amplitudes of the distribution functions as they fast attained uniform 

behavior between 20 10x  . The minimum amplitudes for the respective distributions hold for 2 6x  . 

This shows that the impedance 2Z is acting as a mechanical resistance to change for the given distribution 

functions at every point on the material at this instance. 

In a similar vein, Fig 9 demonstrates the variations of the normal stress 22 , shear stresses ( 12 , 21 ), 

volume fraction fields and the displacement components , 1,2iu i = against 2x  coordinate for varying 

fibre-reinforcement parameter  when the initial stress ,P  mechanical force 1P  , impedances ( 1 2,Z Z ), 

voids source 2P , magnetic fields 0H  and grooved  parameters are constant on the material. Fig 9 shows 
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that for a decreasing reinforcement parameter , all the distribution components of displacements, 

stresses and volume fraction fields on the material increases in modulation. The maximum distribution 

profiles of the displacement, stresses and voids, lies within the region of early impact of the waves on the 

material. However, the normal component of displacement has more impact of the reinforcement 

decrease. Physically, we can deduce that for a more reinforced structure, the modulation and impact of 

surface waves on the structure would be curtailed or decreased. This is owing to the decreasing effects of 

displacement and stresses on the structure for an increased reinforcement. 

 

7. Conclusion 

 

This study practically dealt on the analyses of surface waves in an initially stressed magneto-elastic 

material with voids source, corrugated and impedance boundary conditions influenced by an applied 

mechanical force on the surface of the material. In the light of this, we observe that these contributing 

physical parameters cum fields have remarkable degrees of influences on the propagation of the surface 

waves such that: 

• An increase in the wavenumber b associated with the grooved boundary, decreases the 

distribution functions after attaining certain amplitudes. Uniform behaviors at certain points were 

equally recorded. 

• An increase in the amplitude a  of the grooved boundary increases the amplitudes of the 

distribution functions; displacements or propagation of the waves happened along the grooved 

path at this instance. 

• The initial stress, voids source, and Mechanical force had an increased behavior to the 

distribution functions on the material when increased. 

• An increase in the magnetic influences decreases the distribution profiles on the material.  

• An increase in the impedance 2Z gave neither increase nor decrease in the amplitudes of the 

distribution functions as they fast attained uniform behavior. This shows that the impedance 2Z is 

acting as a mechanical resistance to change for the given distribution functions at every point on 

the material at this instance. 

• A decrease in one of the reinforced parameter , increases the distribution profiles of modulation 

of waves on the structure. 

Physically, we can deduce that for a more reinforced structure, the modulation and impact of surface 

waves on the structure would be curtailed or decreased. Subsequently, this study also stipulates some 

considerable assertions such that more wave numbers associated with the grooved material boundary 

would reduce the modulations of surface waves on the considered medium. This in turn would reflect on 

the stresses applied to the considered structure whilst having high displacement around short distances 

across the material as vanishing and uniform effects are observed across further lengths on the material. 

In line with the combined effects of the physical parameters on the material, the magnetic fields acted as a 

pull affecting modulation of the surface waves on the structure. Also, the symmetric nature of the shear 

stresses on the material is evident and is depicted from this study especially from the given graphs. Thus, 

this research should be of great value to new researchers in the field and experimental based study 

involving wave propagations in a fibre-reinforced medium especially in computations likened to the 

dispersions and attenuations of surface waves. 
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Figure Captions 

Figure 1: The distribution of displacement components , 1,2iu i = , normal stress
22 , shear stresses

12 ,

21 , and volume fraction field  versus 
2x  in meters for distinct values of wavenumber .b  

Figure 2: The distribution of displacement components , 1,2,iu i = normal stress 22  shear stresses 12 , 21  

and volume fraction field  versus 2x in meters for distinct values of grooved parameter .a  

Figure 3: The distribution of displacement components , 1,2iu i = , normal stress 22  shear stresses 12 , 

21 , and volume fraction field  versus 2x  in meters for distinct values of magnetic field 0H . 

Figure 4: The distribution of displacement components , 1,2iu i = , normal stress 22  shear stresses 12 , 

21 , and volume fraction field  versus 2x  in meters for distinct values of initial stress P in 
2/ mN . 

Figure 5: The distribution of displacement components , 1,2iu i = , normal stress 22  shear stresses 12 , 

21 , and volume fraction field  versus 2x  in meters for distinct values of mechanical force 1P in Newton. 

Figure 6: The distribution of displacement components , 1,2iu i = , normal stress 22  shear stresses 12 , 

21 , and volume fraction field  versus 2x  in meters for distinct values of voids source 2P . 

Figure 7: The distribution of displacement components , 1,2iu i = , normal stress 22  shear stresses 12 , 

21 , and volume fraction field  versus 2x  in meters for distinct values of impedance parameter 1Z . 

Figure 8:  The distribution of displacement components , 1,2iu i = , normal stress 22 , shear stresses 12 , 

21 , and voids  versus 2x  in meters for distinct values of impedance parameter 2Z . 

Figure 9:  The distribution of displacement components , 1,2iu i = , normal stress 22 , shear stresses 12 , 

21 , and voids  versus 2x  in meters for distinct values of a fibre-reinforced parameter  . 
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