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Abstract 

In this study, calendering process of an Oldroyd 4-constant model with the non-linear slip 

condition is presented. The fundamental laws are used to formulate the flow equations and 

then are simplified under lubrication approximation theory. We introduced the stream 

function to eradicate the pressure gradient and then numerically solved the final equations 

using the "bvp4c method" to determine the stream function and velocity profiles. The 

pressure gradient, pressure, and mechanical quantities of calendering operations are 

computed using the Runge-Kutta 4th-order approach. Using a variety of graphs, it is discussed 

how the slip, Hartmann number, and material parameters of an Oldroyd 4-constant fluid 

affect the velocity, pressure gradient, and other associated characteristics of calendering. The 

results reveal that on comparing to the no-slip situation, the pressure distribution inside the 

calender and the length of contact decreases with increasing slip parameter values. On the 

other hand, the Hartmann number is responsible to enhance pressure. Furthermore, a 

reduction is observed in final sheet thickness with increases the values of the slip parameter 

(Kn). The force and power are the decreasing function of 1 , conversely, these quantities 

increase with enhancing the values of leave off distance ( ).  
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1.  Introduction 

Calendering of molten polymers is a squeezing technique that employs two anti-clockwise 

revolving rolls to produce a continuous sheet or film with uniform thickness. Calendering 

mechanisms are widely used in many industries for finishing the layout of various shapes and 

thicknesses of paper, fabric, or plastic film. More than 90 years ago, an abstract calendering 

technique was developed. The first natural rubber processing was carried out in the 1830s by 

two American scientists named Edwin Chaffee and Charles Goodyear, who used only two 

roll mills. Ardichvili [1] did, however, conduct the first quantitative research on calendering. 

He investigated the flow problem with the Newtonian hydrodynamics model and the 

lubrication approximation theory (LAT). Gaskell made the first hydrodynamic model of 

calendering [2]. He conducted experiments using Newtonian and Bingham fluid to study the 

calendering analysis. His assumptions were based on the premise of minimal roll curvature. 

The experimental pressure distribution measurement carried out by Bergen and Scott [3] 

provided support for the viability of his hypothesis. The use of pressure distribution by 

Bergen and Scott allowed Gaskell's theoretical results and his model to be empirically 

confirmed. A hyperbolic tangent model was studied by Alston and Astill [4] and Brazinsky et 

al. [5] examined the power-law fluid in calendering. For the Weissenberg number of less than 

one, Paslay [6] was able to arrive at an approximate solution that was mostly based on the 

Maxwell fluid. According to the outcomes of his numerical solution, when the elastic shear 

modulus was decreased, the shear stress and the pressure also decreased. The issues with 

asymmetric rolls, roll speeds, and fluid flow and heat transfer systems have received a lot of 

attention but have not made much headway until lately. The bipolar cylindrical coordinates 

were used by Takserman-Krozer, et al.[7] to investigate the asymmetrical calendering 

problem. The finite element approach was used by Kiparissides and Vlachopoulous[8] to 

investigate the power-law fluid's influence on viscous dissipation in the symmetric 

calendering mechanism. Chong [9] examined the hydrodynamic theory of calendering for 

three constitutive equations namely; the Oldroyd-B equation, the power-law equation, and a 

modified second-order equation; however the velocity profile cannot be obtained analytically. 

Mckelvey [10] carried out extensive study on calendering techniques utilizing exclusively 

viscous power-law fluids. Furthermore, Middleman [11] and Tadmor and Gogos [12] 

provided thorough theoretical insights into calendering in their respective polymer processing 
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publications. Dobbles and Mewis [13] conducted no-isothermal study on the calendering with 

temperature dependent properties. 

A 3D calendering study by utilizing Newtonian fluids was conducted by Luther and Mewis 

[14]. They solved the problem numerically using finite element method. Sofou and Mitsoulis 

[15] published numerical data on the viscoplastic calendering of sheets of finite thickness. 

Mitsoulis and Sofou [16] also addressed the slip effects that occur on the surface of calendar 

rolls. Theoretical analysis of calendering concerning an incompressible Newtonian fluid with 

pressure-dependent viscosity was carried out by Hernandez et al. [17]. They used the 

perturbation method and renowned lubrication approximation theory. Arcos et al. [18] 

investigated the effect of non-isothermal circumstances on calendering with a viscoplastic 

fluid. Levine et al. [19] detailed analysis of the two-dimensional flow of a calendering device 

including a power-law fluid presented. To simplify the governing equations, lubrication 

approximation theory was employed. The final version of the flow equations is computed 

using the numerical finite element approach.  

Ali et al. [20, 21] studied the final sheet thickness and other related quantities of calendering 

using different non-Newtonian fluid models. Sajid et al. [22, 23] investigate the flow in the 

process o calendering using third order and Rabinowitsch fluid models. Javed et al. [24-30] 

conducted considerable study on the calendering mechanism using different fluid models, 

employing both analytical and numerical methods to tackle the problem. Atif et al [31] 

investigated the calendering processes using Oldroyd 4-constant model. Zaheer and Khaliq 

[32] and whereas Zaheer et al. [33, 34] employed non-isothermal study of the calendering 

analysis using a water-copper nanofluid, Sutterby and Prandtl fluid models.  

In these articles [35-39] different researcher demonstrated the detailed analysis of non-

Newtonian fluid problems using different numerical and analytical methods and various 

configurations. The effects of the MHD with heat transfer analysis using different non-

Newtonian fluid models in different configuration are discussed by Hsiao in the following 

articles[40-43]. Similarly, magnetohydrodynamic (MHD) fluid flow in the microchannel was 

discussed Ragueb et al. [44]. Ragueb and Mansouri [45] find the exact solution of the Greatz 

problem in elliptical duct using Generalized Integral Transform Method. Nazeer et al. [46-50] 

is also highlighted the applications of non-Newtonian fluids through different configurations. 

No attempt is available where the Hartmann number and slip effects are studied using non-

Newtonian fluid. Therefore, the basic objective of this study is to explore the numerical 

https://link.springer.com/article/10.1007/s10665-023-10267-6#auth-Haroun-Ragueb-Aff1
https://link.springer.com/article/10.1007/s10665-023-10267-6#auth-Haroun-Ragueb-Aff1
https://link.springer.com/article/10.1007/s10665-023-10267-6#auth-Kacem-Mansouri-Aff1
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solution of the calendering of MHD non-Newtonian fluid with slip effects on the velocity of 

the molten polymer sheet, pressure, power function, and final sheet thickness. The structure 

of the current study is as follows. Section 1 described the literature survey, section 2 provides 

problem statement and formulation, section 3 consist resolution method. Section 4 presents 

numerical findings and discussions. In Section 5, there is a succinct summary. 

2. Problem Statement and Formulation 

In order to study the MHD and slip effects in the calendering process, we used the basic 

equations of continuity and momentum for incompressible fluids are defined as: 𝑎𝑎 

0,div  =V       (1) 

 

. ,* * *V
S J × B

d
p

dt






= − + +   (2) 

In equation (2) uses the symbols are 
V ,  , p

 and d dt , which stand for velocity, 

density, pressure, and significant derivative, respectively. Specifically, B is referred to as the 

total magnetic field and is defined as 0

* *B = B b+ , where b is the induced magnetic field and 

0

*B  is the applied magnetic field. 
*

J  is referred to as the current density in this context. We 

disregard the induced magnetic field because we assume that the magnetic diffusivity is 

relatively great. As a result, the total magnetic field that is affecting the fluid is 0

*B . We also 

presume in the current investigation that no electric field is used. 

In Eq. (2) 
*

S  is the extra tensor of the Oldroyd 4-constant model which is defined as” [31] 

 

( )1 3 21 ,
D D

tr
Dt Dt

     

 

 
+ + = + 

 

*
* * * *

1 1

S
S S A A    (3) 

where 
*

1
A , and DS Dt 

 are the first Rivilin-Ericksen tensor and upper convected 

derivative defined as 

( ) ,* T

1
A = V + V

         (4)  

( ) ( ) .
* *

* * TS S
V S - S V

D d

Dt dt

 

 
= −       (5) 

Figure 1 demonstrates the flow geometry of the calendering process. We take the viscoelastic 

incompressible fluid flow with the presence of the MHD among two identical rolls having the 

same radii R is considered. Identical rolls rotate in the anticlockwise direction by means of 
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rotation having speed N, with a uniform velocity of every roll that is *U RN= . Let 02H  

denote the smallest gap between the rolls. At point fx x = − , the molten polymer's initial 

width of 2 fH  makes its first contact with the rolls. At point 0x x= , the final sheet separates 

from the rolls. As shown in Fig. 1, let and u v 
represent the in andx y 

 directions 

components of velocity, respectively. where the magnetic field is applied along y -axis. In the 

analysis of calendering the space between two rolls is very small as compared to the diameter 

of the rolls i.e. 0 1H R  . Therefore the lubrication approximation may be used in the 

current analysis i.e. v u   and 
x y 

 


 
. 

The velocity field for two-dimensional flow is provided as 

( ) ( ), , , .u x y v x y       =
 

V     (6) 

The molten polymer is experiences a uniform magnetic field applied in the longitudinal 

direction. Given the very small values of the magnetic so that the induced magnetic field is 

ignored. The magnetohydrodynamics(MHD) Lorentz force caused by the exerted magnetic 

field takes the form [40-43] 

2

0
0 0J B

* *
, , .B u   = −      (7) 

In the above relation 0

*B is the magnetic field and 𝜎 is said to be the electric conductivity of 

the fluid. 

By using the velocity field and Eq. (7) in the equations (1-3), one can get 

0,
u v

x y

 

 

 
+ =

 
      (8) 

2

0 ,
x yx x

SSu u p
u v B u

x y x x y
 

  

  
  

    

   
+ = − + + − 

     
  (9) 

,
x y y y

S Sv v p
u v

x y y x y


   

 
  

 

    

    
+ = − + + 

     
,   (10) 
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( )1 3

2

2

2 2 2 2

2 2 ,

x x x x x x x y x x y y

u u u u
S u v S S S S S

x y x y x x

u u u u v
u v

x y x x y y x

  



           

   
         

     

    
  

      

       
+ + − − + + =  

       

           
+ + − − +     

             

  (11) 

( )1 3

2 2

x y x y x x y y x x y y

v u u v
S u v S S S S S

x y x y y x

u v u v u v u v
u v

y x x y y x x x y y

 

 

           

   
         

     

       
  

         

         
+ + − − + + + =    

         

               
+ + + + − +      

               
,

 
 
 

           (12) 

 

( )1 3

2

2

2 2 2 2

2 2 .

y y y y x y y y x x y y

v v v v
S u v S S S S S

x y x y y y

v v v v u
u v

x y x y x x y

  



           

   
         

     

    
  

      

       
+ + − − + + =  

       

           
+ + − − +     

             

    (13) 

The flow is symmetric about the central line so, the mathematical expression of this boundary 

condition is follow as  

0, at 0,
u

y
y







= =


      (14) 

On the upper wall of the roll surface, we introduced the slip condition, which is defined in 

mathematical form as [16, 29],  

* , at ,
x y

u U S y h  

   = − =       (15) 

To made flow equations and boundary conditions in dimensionless form, introducing the 

normalized variables and parameters as. 
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( )
( )

( )
( )

( )
( )

2 0 0

0 0 0

0 0
0

00

** *
* 0 31 2

1 2 3

0 0 0

,
, 1 , , , , ,

2 2

,2
, , , , ,

22

, , , .

c
h x u x yH H py x

y x p x u x y
H H R U URH

v x yx H R
Re U H v x y

R H URH

H UU U

U H H H

 

   

 
  



    

 

  




 



= = + = = =
+

= = = =

= = = =S S

   
   (16) 

Using Eq. (16) into Eqs. (8-15), we arrived the following equations.  

0,
u v

x y

 
+ =

 
      (17) 

2Re ,
xyxx

SSu u p
u v Ha u

x y x x y
 

    
+ = − + + − 

     
 (18) 

3 2Re ,
xy yyS Sv v p

u v
x y y x y

  
    

+ = − + + 
     

 (19) 

( )1 3

2

2 2 2

2

2 2 2 2

2 2 ,

xx xx xx xy xx yy

u u u u
S u v S S S S S

x y x y x x

u u u u v
u v

x y x x y y x

    

   

       
+ + − − + + =  

       

           
+ + − − +     

            

 

          (20) 

( )2 2

1 3

2 2 2

2 2 ,

xy xy xx yy xx yy

v u u v
S u v S S S S S

x y x y y x

u v u v u v u v
u v

y x x y y x x x y y

    

     

         
+ + − − + + + =    

         

                
+ + + + − +       

                

 

           (21) 

( )2

1 3

2

2 2 2 2

2

2 2 2 2

2 2 .

yy yy xy yy xx yy

v v v v
S u v S S S S S

x y x y y y

v v v v u
u v

x y y y x x y

     

    

       
+ + − − + + =  

       

            
+ + − − +      

             

          (22) 

0, at 0,
u

y
y


= =


    (23) 
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21 , at 1 ,xyu KnS y x= − = +    (24) 

where 
*

0Kn H=  is known as the slip coefficient and 0 0Ha B H =  denote the 

Hartmann number  

3. Resolution Method 

Figure 2 shows the dimensionless physical parameter. Most physical changes in the 

calendering process occur in the narrow gap between the two rolls. In the current study, our 

primary attention is to study the influence of the involved parameters in the nip region. As 

Reynolds number is very small in the minimal region because in this region the distance 

between the two rolls is very minor as associated with the radius of the rolls. Furthermore, in 

the calendering procedure, the Reynolds is considered to be small (i.e., less than the unity) 

and β is the ratio of the nip gap and radius of the cylinders (which is also less than unity). 

These suppositions permit us to drop the expressions, which includes of β and Re so the 

above equations can be written as; 

2 0,
xySp

Ha u
x y


− + − =
 

  (25) 

0,
p

y


=


    (26) 

2

1 22 2 ,xx xy

u u
S S

y y
 

  
− =  

  
   (27) 

3 ,xy xx

u u
S S

y y


 
+ =

 
    (28) 

0,yyS =      (29) 

( )

( )

2

1

2

2

1 2
.

1 2
xy

u y u
S

yu y





 +    
=  

+    

    (30) 

where 1 2 3 2 1 3and    = = . Equation (26) demonstrates that pressure is a variables of x, to 

get rid from pressure in Equation (25), differentiating Equation (25) with respect to y. 

2

2

2
0,

xyS u
Ha

y y

 
− =

 
     (31) 
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By using the value of xyS   into equation (31), we get 

( )

( )

22
1 2

22

2

1 2
0.

1 2

u y u u
Ha

y y yu y





  +     
  − = 

  +      

   (32) 

We offer the stream function as [30-31] to address the issue quantitatively. 

, .u v
y x

  
= = −
 

     (33) 

Using Eq. (33) into Eqs. (25) and (32), we get 

( )

( )

2
2 2 2

1 2

2 22 2

2

1 2
.

1 2

ydp
Ha

dx y y yy

   

 

  +      = − 
   +     

 (34) 

( )

( )

2
2 22 2 2

1 2

22 2 22 2

2

1 2
0.

1 2

y
Ha

y y yy

   

 

  +       − = 
   +     

      (35) 

 The relevant condition in term of stream function is defined as  

2

2
0, at 0,y

y


= =


    (36) 

21 , at 1 ,xyKnS y x
y


= − = +


   (37) 

We need two extra boundary conditions to solve Eq. (35) together with (36) and (37). For 

this, we used the dimensionless form of the volume metric flow equation to find these 

additional conditions. 

2

0

1 ,

h

udy+ =      (38) 

where ( )2

01 / 2Q UH+  = dimensionless flow rate[11, 20-23].  

Eq. (38) in terms of stream function 

2

0

1 ,

h

dy
y





+ =


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( ) ( )21 0 .h  + = −     (39) 

Equation (39) implies  

 
( )

( ) 2 2

0 0, at 0
.

1 at 1

y

h y x



 

= = 


= + = + 

    (40) 

Middleman [32] defined constraint on pressure gradient and pressure as follows. 

00 at ,
dp

p x x
dx

= = =    (41) 

0 at .fp x x= = −    (42) 

In the current scenario equation (35) is non-linear fourth order differential equation. 

Therefore analytical solution of equation (35) into possible, we solved this problem by 

applying Matlab's built-in "bvp4c" method [30, 31]. After calculated the stream function 

values numerically we use these values in equation (34) to find out the pressure gradient. 

In order to get pressure, one can integrate pressure gradient using the Runge-Kutta fourth-

order technique as use many researcher in their research [16, 17, 20-23] 

.

x
dp

p dx
dx



=       (43) 

Utilizing the formula ( )
1 2

0
1

f f
x H H= −  as specified by Middleman [11, 12], the entering 

sheet thickness ( )0f
H H  can be calculated. 

The most prominent mechanical quantities use in the calendering process are defined as 

Roll-separating force and power transferred to the fluid are expressed as [11,20] 

2 2

0

( ) ( ),
F UR

W H


  =   (44) 

2 2

0

( ) ( ),2 R
W WU

H

•

 =      (45) 

where 

2 2( ) ( ) ,
fx x

dx dx
 

−

   =  
       (45) 
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( ) 2

2 2( ) 2 2 (1 ) ,
fx

x dx


−
  =   +   (47) 

( )
( )

( )

2

1

2 2

2

1 2
.

1 2

u y u

y yu y

  +     
   =  

 +       

   (48) 

We validated our numerical results with the Middleman [11] for Newtonian fluid and Ali et 

al [31] paper as presented in figure 3(a, b) for pressure curves. Our numerical results 

consistent Newtonian scenario [11] for, 1 2 0,and Ha kn → = =  as well as Atif et al. [31], 

where 1 23, 2 0and Ha kn = = = = . 

4. Graphical results and their explanations 

In this section we demonstrated numerical results through graphs how polymer sheet 

velocity, pressure gradient pressure and mechanical variables of calendering process are 

affected with involved parameters such as slip coefficient (Kn), Hartman number (Ha) and 

non-Newtonian fluid parameters. 

The influence of the Hartmann number on the polymer sheet velocity is presented in Figure 

4(a, b) at two different cross section i.e. x=-0.6 and x=0.1 within the intervals [ , ]fx − −  

(upstream region) and [ , ] −  (downstream region) for fixed values of Kn = 0.2. Figure 4a 

depicts that the velocity of the molten sheet at position x = -0.6(where dp/dx>0) in upstream 

region is an increases in the central area of the rolls, while its decreases near the rolls surface, 

as the values of the Hartmann number increases from 0 to 5. Figure 4b depicts that the 

velocity of molten sheet at position x = 0.1(where dp/dx<0) in downstream region show 

decreases trend in nip region while it increases near the rolls surface. 

How the slip parameter (Kn) impacts the velocity profile at x=-0.6 in the interval [ , ]fx − −  , 

where 0dp dx   for fixed values of 0.440 = , 1 20.5, 2 2and Ha = = =  is depicted in 

figure 5a. On rising slip parameter (Kn), the velocity distribution in this figure demonstrates 

an increase trend in the middle plane. The velocity of the molten sheet is opposite when it is 

close to the roll surface (decreases). Moreover, Figure 5b demonstrates that, for increasing 

slip parameter (Kn), velocity decreases towards the roll surface. As the slip parameter (Kn) is 

increased, figure 5b demonstrates that the velocity distribution grows in the center of the 

plane, while decreasing at the roll surface at the position 0.1x =  in downstream region 

[ , ] − (where dp/dx<0). 
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The pressure curves against x for the different values of the Hartmann number (Ha), slip 

parameter (Kn), 𝛼1 and 𝛼2 are plotted in figures 6-8 with exiting points 0.2923 =  and 

0.440 =  respectively. Figures 6(a, b) demonstrate the influence of the Hartmann number 

(Ha) on pressure, while Figures 7(a, b) demonstrate the influence of the slip parameter (Kn) 

on pressure. According to the boundary condition (41), all figures demonstrate that the 

pressure begins at zero at x = λ and continuously enhancing and gain its maximum values at 

x = − and then continuously decreasing until it goes to zero at 
fx x= −  (the point where 

sheet contact the roll first time), when we move from right to left on x-axis. Both figure 6(a, 

b) reveals that the magnitude of pressure is grater for flow rate value ( 0.440 = ) as 

compared to flow rate value ( 0.2923 = ). One can see that the length of contact of molten 

sheet with roll extended with enhancing Hartmann number (Ha). 

The pressure with Ha = 0.2 and for two different flow λ = 0.2923 and 0.440 are affected by 

the slip parameter (Kn) varying from 0 to 0.4, as shown in figures 7(a, b). The influence of 

the slip parameter is opposite to the Hartmann number (Ha). Due to the boundary condition 

established (in Equation (41)), both figures show that all curves start at zero. Moving left 

from this point on the axis, the pressure grows and attains its maximum value at x = - λ , after 

this point the pressure shows decline trend and becomes zero at 𝑥 = −𝑥𝑓 . (where the sheet 

contact the roll initially). It is obviously from figure 7(a, b), as the slip parameter (Kn) 

enhancing for 0 to 0.4, the pressure curves decreases and the pressure domain, or the area 

where the fluid touches the rolls, becomes smaller. Figure 7(a, b) exhibits that the maximum 

pressure decreases by 48% and 39%, when slip parameter value (Kn = 0.4) applied, 

compared to the no-slip condition (Kn = 0) for two different exit points

0.2923 and 0.440 = = , while keeping other parameters fixed values

1 20.5, 2 0.1and Ha = = = . 

To illustrate how the pressure is affected by the 𝛼1𝑎𝑛𝑑 𝛼2, figure 8(a, b) is plotted with 

exiting point λ = 0.440. Both parameter shows opposite effects on the pressure profiles. 

When the values of 𝛼1 increases from 0.2 to 2.5 it is noted from figure 8a that the magnitude 

of the pressure increases and the length of domain decreases, while in figure 8b the opposite 

behavior is noted when the values of 𝛼2 increases from 0.5 to 2.5.   

In figures 9 and 10 pressure gradient is computed numerically to show how the Hartmann 

number (Ha), slip parameter (Kn), 𝛼1𝑎𝑛𝑑 𝛼2 influence the pressure gradient. and Figures 9–

10 plot the computed pressure gradient dp/dx versus x to examine how the Hartmann 
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parameter (Ha) from 0 to 0.4 and slip parameter (kn) from 0 to 0.4 impact the pressure 

gradient. Due to the boundary condition defined in equation (41), all of the pressure gradient 

curves start from zero at x = . Moving left from this point on the x-axis, the pressure 

gradient continues to decrease until it reaches its minimum value at 0x = . From there, the 

pressure gradient increases until it reaches zero at x = − . As it passes this point, it keeps 

going up until it reaches its highest levels just before the entry point. The  magnitude of the 

pressure gradient as well as the contact length between the polymer sheet and the rolls are 

increases as the Hartmann number(Ha) rises shown in figure 9(a, b). 

Similarly, pressure gradient is plotted against x to see the influence of slip parameter (Kn), 1  

and 2  in figure 10 (a-d). Figures 10(a, b, d) show that magnitude of the pressure gradient 

decreases with increasing the values of the slip parameter(Kn) and 2  while in figure 10c the 

magnitude of the pressure gradient reduces with enhancing the values of the 𝛼1. The length of 

contact of the molten sheet with rolls in figure 10 (a, b, d) increases with increasing the 

values of the Hartmann number (Ha) and ( 2 ), while in figure 10c its decreases with 

increases the values of 1 . 

The mechanical quantities such as power function, roll-separating force, and sheet thickness 

are presented in this paragraph. The roll separation force against 2  is shown in Figure 11. 

This figure demonstrates how the separation force reduces as the 2  raises. Moreover, when 

the leave-off distance rises, the roll separation force increases. 

Figure 12 depicts power usage as a function of 2 , it is evident from this figure that power 

function decreases as the range of the material parameter 2  increases. Moreover, power 

function values increases with increasing the values of λ. 

In figure 13, we have plotted leave-off distance versus entering sheet thickness different 

values of slip parameter (Kn). One can see that leave-off distance decreases with increasing 

the values of the slip parameter (Kn) and entering sheet thickness.  

4 Conclusions  

The current study deals with the combined effects of Hartmann number and slip 

parameters using the Oldroyd 4-constant fluid model during calendering process. The 

numerical solution to the problem is obtained through the stream function. The graphical 

effects of the material parameters together with slip and MHD parameters are presented 

in various quantities. 
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The principal conclusions are: 

• As the Hartmann number (Ha) is increased, the pressure profile inside the 

calender grows along with the domain's length.  

• The maximum pressure decreases by 48% and 39% when slip parameter value (Kn = 

0.4) applied, compared to the no-slip condition (Kn = 0). 

• The power function and roll separating force enhancing with increasing the values 

of the leave off distance. 

• Exiting Sheet thickness behave decreasing trend with increasing the slip 

parameter values. 

• We aim for this numerical solution to serve as a robust benchmark for more 

complicated two-dimensional non-isothermal analysis of the calendering problems. 

• Furthermore, the present analysis could help in establishing correlation between 

theoretical results and experimental observations in the rheological calendering 

process. 

Nomenclature  

*
V  Velocity field (m/sec) 

  Density (kg/m3)  

*
S  Cauchy stress tensor (N/m2)   

p  Pressure(N/m2) 

* *

1 3,   relaxation time(s) 

*

2  Retardation time(s) 

*

1
A  first Rivilin-Ericksen tensor(N/m2)  

*

0x  detachment point of sheet(m) 

*

fx  entering point of sheet(m) 

R roll radius(m) 

λ final sheet thickness(m) 

*
J  current density 

  Viscosity(N.s/m2) 

*
B  the magnetic field 

Dimensionless parameter 
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Ha Hartman number 

β Geometric parameter 

Re Reynolds number 

Kn Slip parameter 

1  Dimensionless parameter 

2  Dimensionless parameter 
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Figure captions 

Fig. 1. Diagram of a calender and its variables. 

Fig. 2. Calendering geometry in dimensionless variables. 

Fig. 3(a, b). Comparison of current numerical results to published work. 

Fig. 4(a, b). Hartman number (Ha) effects on the velocity curve at x = -0.6 and x = 0.1. 

Fig. 5(a, b). Slip parameter (Kn) effects on the velocity curve at x = -0.6 and x = 0.1. 

Fig. 6(a, b). Hartman number (Ha) effects on pressure at two different exiting points. 

Fig. 7(a, b). Slip number (Kn) effects on pressure profile at two different exiting points. 

Fig. 8(a, b). Impact of ( 1 )and ( 2 ) on the pressure profile. 

Fig. 9(a, b). Hartman number (Ha) effects on pressure gradient. 

Fig. 10(a-d). Effects of slip parameter (Kn), 1 and 2  on pressure gradient. 

Fig. 11. Force function versus 2 . 

Fig. 12. Power function versus 2 . 

Fig. 13. Relationship between   and Hf/H0. 
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Fig. 1. Diagram of a calender and its variables. 

Fig. 2. Calendering geometry in dimensionless variables. 
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Fig. 3(a, b). Comparison of current numerical results to published work. 
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Fig. 4(a, b). Hartman number (Ha) effects on the velocity curve at x = -0.6 and x = 0.1. 
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Fig. 5(a, b). Slip parameter (Kn) effects on the velocity curve at x = -0.6 and x = 0.1. 
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Fig. 6(a, b). Hartman number (Ha) effects on pressure at two different exiting points. 
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Fig. 7(a, b). Slip number (Kn) effects on pressure profile at two different exiting points 
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Fig. 8(a, b). Impact of ( 1 ) and ( 2 ) on the pressure profile. 
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Fig. 9(a, b). Hartman number (Ha) effects on pressure gradient. 
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Fig. 10(a-d). Effects of slip parameter (Kn), 1  and 2  on pressure gradient. 

 

Fig. 11. Force function versus 2 . 
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Fig. 12. Power function versus 2 . 

 

Fig. 13. Relationship between   and Hf/H0. 


